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OÓMMENTATIONES MATHEMATICAE UNI7ERSITATIS CAROLINA! 
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PARTITIONS 0.F VERTICES 

Jaroslav NEŠETŘIL, Vojtěch BffDL, Praha 

.DEDICATED T0 EMANUEL GRINBERG ON THE OCCASION OF HIS 65-TH 

BIRTHDAY 

Abstract: In t h i s note we show how a theorem by Erdos-
Hajnal may%e used for proving theorems concerned with par­
t i t ions of vertices of graphs, relations etc* 

Key-words: Ramsey theorem, partitions, chromatic number. 

AMS: 05A99 Ref. 2. J 8.83 

Introduction. In 1966 Erdos and Hajnal t l ] proved the 

following. 

Theorem A : .For every positive integer k z 2 , t>2 , 

n > l there ex is ts a hypergraph tf » ?f(k, Z fn) « CX,7Jt) 

with the following properties: 

1J! ^ i s a k-uniform hypergraph 

2) $ does not contain cycles of length smaller than i 

3) ft (<f )> n 

The notation i s the following: fy (̂ f ) - chromatic number 

of v? i . e . the minimal number of colours which are necessa­

ry for colouring the vertices of Jf in such a way that no 

monocolcured hyperedge occurs; k-uniform means that I M I -

- k for every M e /tfl ; a cycle of length Z i s a sequen­

ce x1,MJ?x2,M2,...,xJg>M^ such that *.,€ M̂  , i e C 1, 11 5 
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x i + l * % , i € t l , .4 - 1 1 ; x l 6 % 

^ l i t t l . - t J J S W , {x, j i € [ 1 , Z 11 £ X . 

To avoid the t r i v i a l cycle consisting of only one hyperedge 

we assume that there are i , j such that M ^ M.* • 

Theorem A was proved by nonconstructive means. In 1968 L. 

Lov&sz proved the same theorem construct ively. 

In t h i s note we show how t h i s theorem implies (using a simp­

le t r i c k ) a very general theorem of Ramsey type for p a r t i ­

t ions of v e r t i c e s . There are two reasons for publishing of 

t h i s note: f i r s t , the t r i c k provides simpler proofs to known 

theorems (C23-.C3],C4l), secondly, pa r t i t i ons of ver t ices are 

used as a tool for proving a Ramsey type theorem for parti— 

tions of edges and we sha l l need a general theorem for p a r ­

t i t i o n s of ve r t i ces for our forthcoming papers. 

We apply the Theorem A to pa r t i t i ons of ve r t i ces of graphs, 

hypergrapha, r e l a t i o n s and universal a lgebras . In § 4 we show 

that given a graph G there ex i s t s an i n f i n i t e set of min i ­

mal graphs with the vertext pa r t i t i on property for G . We 

end t h i s note with a few problems and comments concerning 

i n f i n i t e graphs. 

1. •ffolkman's the ore nu In 1967 J . Jfolkman [33 proved; 

For every posi t ive integer r and for every graph G -=- (V,E) 

without complete subgraphs on m ver t ices there ex i s t s a 

graph H = (W,iT) without complete subgraphs on m v e r t i c e s 

such that for every p a r t i t i o n W - * w . W4 there ex i s t s an 

i and mi embedding f: G—*H such that f(V)S W.̂  (An em­

bedding f: G—*>H is an 1-1 mapping with the property 
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-Cf(x),f(y)Jc -?<«=*>ix,y}c E . ) . We denote by G - 2 1 ^ B 

the val idity of the above statement for G, H , the negation 

i s denoted by G -- / > H • This notation has the following 

sense* Let G—»H denote the fact that there exists an em­

bedding of G into H . Then G > H means that the-

re are "so manywembeddings of G into H that even i f we 

partition vertices of H into r parts we s t i l l have an em­

bedding in one of the parts. In this way —-^—*» may be 

seen as a combinatorially strengthened embedding arrow (see 

C83) . 

.Folkman gave a direct constructive proof or the above fact. 

An another ( l e s s elementary) proof i s due to the authors of 

C73« However, Theorem A instantly yields a much stronger re­

s u l t . 

Definition: Let K be a fixed graph. Denote by Gra (K) 

the class of a l l graphs which do not contain K as a sub­

graph. ( I . e . G <£ Gra (K)<«s=s> there are sets VQcV , £ Q c £ 

such that (Vrt,E ) S* K . ) o* o 
If X i s a set of graphs put Gra (X) = C\ (Gra (K) 1 K € X ) . 

Theorem 1: Let X be a f in i te set of 2-connected 

graphs. Then for every graph GsGra (X) there exists a 

graph He Gra CSC) such that G .———> H . 

to 

We may assume \K\y2 for every K e X as for \&[£2 we 

get either the void class of graphs of the class of a l l d i s ­

crete graphs. 

Proof: Let G =- (V,E) Gra (3C) be fixed. Let b ~ 
= max I K I + 1 , | G | =- k . Let us choose tf (k, Z ,r) - (X,#t) 
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with the p roper t i es of Theorem A. .For each M C 1ft l e t 

fM: V—>M be a fixed b i s e c t i o n . Define the graph H » 

« (X,F) such that { x , y } c F < a « > > there ex i s t M e Tfl and 

Aztt } e B auch tha t 4 % ( z ) , f M ( t ) \ = i x , y ? . This graph H 

w i l l be denoted by (X,77l) # G • 

As X > 2 we have l M O N I ^ l whenever M4»N , 1M9$} c m 

(see above) and consequently 

1) fM: V—*lff i s an embedding of G i n t o H for each 

i f m . 

2) I f K' i s a subgraph of H , K 'SK C Ot then K ' Q 

S (Mt#) , If * 491 . 

(This follows by the 2-connectivi ty of K and by the fact 

t h a t ( X , W does not contain a cycle of length < I K I + 1 • ) 

.Finally G ——*- H follows immediately from % (Xt7H) > 

> r : 

Given a p a r t i t i o n X =- - O , X4 there e x i s t s M e W and 

i e t l , r 3 such tha t M§X i « Consequently G i s an indu­

ced subgraph of (X^,.?) and fjy- i s an embedding. 

This theorem does not hold for graphs with connectivity -< 2 

i ) I f K i s disconnected and K = K'L; K" where K'£* K* 

then H • / ™; » K for every H€Gra (K) as may be seen 

easi ly* 

i i ) I f K = P n i s a path of length n then GcGra (Pn) «=-> 

-,.. •"> ^,(G)-4n • From t h i s follows that there exis t s G 6 

eGra (P^) such tha t G / '* > H for every graph H e 

eGra (Pn) ( i t suffices to take GeGra (Pn) which s a t i s ­

f i e s %(Q) > 2~ ; obviously G ^ > H —» ^(H) > 
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Z2 ^(G)• - 1 ) . 

i i i ) I f % i s an i n f i n i t e se t then the statement may be 

false (consider X 'MC^k+l I k - 1 ? t h e s e t o f a 1 1 od<i 

cycles) . 

2* Pa r t i t i ons of ver t i ces of re la t ions and h.vper-

graphs. Using the same ideaaa i n 1 we may prove analo­

gous theorems for r e l a t i o n s and hypergraphs. We l i s t only 

statements: 

Theorem 2a : Let % be a f i n i t e se t of 2-weakly con­

nected r e l a t ions (see 152 » p.199) . Then for every p o s i t i ­

ve integer r and for every R € Slejl (31) there ex i s t s 

S € SteJL (%) such that R — £ — > S . 

Theorem 2b: Let if be a f i n i t e of hypergraphs which 

are 2-connected ( i . e . (Xf^Tl) i s 2-connected <a—> 

<«=-===> (XttfXPr(M) I M C W ) ) i s a 2-connected graph). 

Then for posi t ive integer r and for every (X$ffl)& Hyp (£P) 

there exis ts (Y f7l)eHyp (5f) such that 

(xf«i) . ^ > (rf-u> • 

The defini t ions of fle£ (%) and Hyp(Jf) and of symbols 

-> are quite analogous to the definit ions Gra (3C) and 
JC 

ñГ 
> for graphs. Again in certain sense these theorems are 

best possible 

3. Partitions of algebras. Let V be the class of 

all finite universal algebras of given type A
 =
 (n^ | i c I ), 
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Let 3e=* (X,C<«>t 1 i d ) ) , %* (X,i*,± \ i e l ) ) be algebras 

from V • We write % — > % i f f for every partition 

X » j ^ ^ r.| there exis ts an i and a monomorphism f % 

: 9£ —* % such that f (*) £ Xt • 

Theorem 3: Let r be positive integer and let 9£ e 

€ V and c a ^ x , # , . . . * ) « * for every l e i and x c 

€ X (idempotent algebras). Then there e x i s t s ty m V such 

that $£ —%-»> % • 

.ftp oof: Let | X | « k , i ' « 3 , n « p . Consider 

Cx',m) » tf(kf3,r) . Let y ' c l ' • -for every M e m l e t 

us choose a bisection fMz X—--*>M . Define <Y,C ae^ | i e X ) > 

by X « x ' u * y ' j and ^ ( y j ) j J € tltn±l ) « 

« % ( ^ i ^ 4 1 4 e Cl ,*^] )) where %(-Cj) * J* i f such an 

M e x i s t s , otherwise we put ^ ( y ^ | i « CI*1-* J ) * y ' , i € I 

I t i s easy to check that ty, c 1f 7 % —• > OL . 

Again i t i s easy to see that, generally, for non-idempoten* 

algebras Theorem 3 f a i l s to be true. 

Remark: A very diff icult problem seems to be the cha­

racterization of those primitive classes of algebras for 

which the statement analogous to Theorem 3 holds. This i s 

true for example tor the class of a l l f i n i t e distributive 

la t t i ces* 

4* Cr:ttl<?»A f9l,kmTi KfiPte- I*t G be a graph. We 

say that H i s an irreducible (r,v)~graph for G i f 

G —-—» H but G •/ I > H for every proper subgraph 
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H of H . 
* 

Theorem 4 a; For every graph G , I G ) > 1 there ex­

i s t * a countable s e t of non-isomorphic irreducible (r,v)~ 

graphs for G • 

Proof: A proof folio*© direct ly from the *c construc­

t i o n in !• Let G be fixed* We may assume that G is a con­

nected graph (otherwise we consider the complement of G ) • 
I t suffices t o put 

% * <f ( 1G I , 3 , r ) * G 

%. « Sf ( I G I , I Ex | ,r) # G 

H Q ^ » tf ( ІGІ, |H n l , l O * G 

6 ** -» H^ holds for every i . Let Ĥ  be an irreducib­

le (r,v)-graph for G contained in Ĥ  , i = 1,2, . . . • 

Obviously IHJJ < l H4I for a l l i , j satisfying i < J • 

Assume H^fi-Hj for i < j . As H^SHj , Hj « 

-* tf ( I G I , I H j ^ I ,r) # f and I H ^ I fe | E± \ we have 

I E± 1 S «? * G where ? £ & ( I G | , I H j ^ I , r) i s a 

hypergraph which does not contain any cycle. But in this 

case % C W * G) » ^ (G) • This contradicts 

G - -J-> Ht . 

Remark 1: Using a modified proof we may even prove 
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Theorem 4 b : Let % be a f i n i t e s e t of 2-connected 
# 

graphs. Then for every graph GeGra (X) there exists a 

countable set i R± i - 1 , 2 , . . . } of non-isomorphic graphs 

such that 

1> H ^ G r a (X) 

2) E± i s an i r reducible (r fv)-graph for G . 

Remark 2: Theorem 4a does not hold for in f in i t e graphs. 

Every complete graph of in f in i t e c a r d i n a l i t y i s the only 

( r f v) - i r r educ ib l e graph for i t s e l f . Theorem 4a f a i l s to be 

t rue for I G | =- 1 f too • 

lemark 3 : Let G « (V,E) f H • (w,*1) be graphs. We 

wri te G - it > H i f for every p a r t i t i o n F » . ^ F* the-

re ex ia t s an embedding £: ^—^H such tha t -Cl f (x ) f f (y ) J ) 

I < x f y } 6 I } S i ^ for an i e [ l f r 1 • The existence of an 

Ramsey graph for every f i n i t e graph was proved independently 

by Beuber, Erdoa, Hajnal, Posa and Rodl C93, see also much 

atronger C73. 

Define H to be an ( r , e ) - i r reduc ib le graph for G i f 

G ^ - > H but G / < » H ' for a l l proper subgraphs H# 

of H . 

Problem 1: Characterize those f i n i t e graphs G fo r 

which there ex is t s an inf in i te set of non-isomorphic ( r f e ) -

i r redueible graphs for G • 

I f a graph G contains at most one edge then there e x i s t s 

precisely one ( r , e )- irreducible graph H such that 

G , e » H f namely G i t s e l f . 
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Conjecture: For a f i n i t e graph G the following two 

statements are equivalent : 

! • For G there ex is t s a countable set of ( r , © ) - i r redu-

cible graphs. 

2 . G / * > G . 

The path of lexigth 2 i s an example of a graph G for which 

there ex is t s a countable se t of (2 , e ) - i r r educ ib l e graphs. 

One can take the family of a l l odd cycles. 

More general ly, the same i s true for every paths of length 

Z 9 & f i n i t e . 

F inal ly l e t us remark that Theorem 1 shows the power of Erdos-

Hajnal theorem for p a r t i t i o n s of ve r t i ces . 

There i s no general method known for deriving similar theorems 

for pa r t i t ions of edges (see C8] for r e su l t s in th i s d i rec t ­

i o n ) . Let us add a few remarks concerning in f in i t e graphs. In 

an obvious way we may extend the symbol G -—-—> H for in-

f i n i t e graphs G , H and any cardinal r . The following i s 

then t rue : 

Theorem 5a : For every graph G and every positive in­

teger r there ex i s t s H such that G —-—> H • 

Theorem 5bs For every f i n i t e graph G and every cardi­

nal r there ex i s t s a graph H such that G - ^ ••> H • More-

over, i f G does not contain a complete graph on m v e r t i ­

ces then H may be chosen with the same property. 

Theorem 5a may be proved by the following construction: 

Let G = (V,E) , assume without loss of general i ty r -» 2 
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(this is possible as G — ~ - ^ H - ** » I = s G ^ jr I ). 

Put H = (VxY, .?) where <(x,y),(x%y#)}€J
l<-«5> either x « 

* x' {y»y'J € E or «{x,x'j € E • 

Given a colouring c: V x ? — • t l f 2 ? either there exists 

x c T such that 0(4x3x7) =- i or there ex i s t s i such 

that for every x 6 ? there ex i s t s y with cC(x,y) - i • 
ir From this follows eas i ly G v » H . 

Theorem 5b follows from the Erdoa-Rado generalization of the 

c lass ical .Ramsey theorem for cardinal numbers and from the 

representation of f in i te graphs by type-graphs, see t73fC83 • 

This i s a straightforward application of type-graphs and we 

ommit the proof* 

This leads to the following problems (see also £2]) : 

Problem 2: Let G be a graph and r a cardinal number. 

Does there exist a graph H such that G • *f > H ? 

Moreover, providing that G does not contain a complete graph 

with m vertices i s i t possible to choose H with the same 

property? 

Not much i s known, even the case m = 3 and r « 2 i s un­

solved. The purpose of this remark i s to show that even dea­

l ing with vertex partitions one cannot be overoptimistic. 
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