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PARTITIONS OF VERTICES
Jaroslav NESETRIL, Vojt&ch RODL, Praha

DEDICATED TO EMANUEL GRINBERG ON THE OCCASION OF HIS 65~TH
BIRTHDAY

: In this note we show how a theorem by Erdos-
Hajnal may “be used for proving theorems concerned with par-
titions of vertices of graphs, relations etc.

Key-words: Ramsey theorem, partitions, chromatic number.

AMS: 05499 Ref. Z.: 8.83
Introduction. In 1966 Erdos and Hajnal [1] proved the
folloz_ving.

Theorem A : For every positive integer kz2 , 422 ’
nzl there exists a hypergraph ¢ = ¥(k,£,n) = (Xx,Mm)
with the following properties:

1} ¥ is a k-uniform hypergraph

2} 9 does not contain cycles or length smaller than £
33z ($)>n |

The notation is the following: A (9 ) = chromatic number
of ¥ i.e. the minimal number of colours which are necessa-
ry for colouring the vertices of & in such a way that no
monocoloured hyperedge occurs; k-uniform means that [M| =
=k for every M e M ; a cycle of length £ 1is a sequen-
ce  Xp,MpX;,My,...,Xp, M, such that x;e M, 1ell,el;
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xi+1;Mi,ie£1,£-11; x) € My
{¥;|1el2, £33 M , {x:|1e[1, L1}cX .

To avoid the trivisl cycle consisting of only one hyperedge
we assume that there are i, j such that M4 M.j .

Theorem A was proved by nonconstructive means. In 1968 L,
Lovédsz proved the same theorem constructively.

In this note we show how this theorem implies (using a simp~-
le trick) a very general theorem of Ramsey type for parti-
tions of vertices. There are two reasons for publishing of
this note: rirst, the trick provides simpler proofs to known
theorems ([21,03),(4]), secondly, partitions of vertices are
used as a tool for proving a Ramsey type theorem for parti-
tions of edges and we shall need a general theorem for par—
titions of vertices for our forthcoming papers.

We apply the Theorem A to partitions of vertices of graphs,
hypergraphs, relations and universal algebras. In § 4 we show
that given a graph G there exists an infinite set of mini-
mal graphs with the vertext partition property for G . We
end this note with a few problems and comments concerning

infinite graphs.

1. Folkman’s theorem. In 1967 J. folkman [3] proved:
For every positive integer r and for every graph G = (V,E)
without complete subgraphs on m vertices there exists a
graph H = (W,F) without complete subgraphs on m vertices
such that for every partition W = &k?q Wi there exists an
i nnd an embedding f: G-~ H such that £(V)& LA (in em~
bedding & G=»H 1s an 1-1 mapping with the property
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{£(x),2(y)} € Pée==>{x,y3€ E .). We denote by G _}. B

the validity of the above statement for G, H , the negation
is denoted by G +—:—-> H . This notation has the following

sense: Let G—> H denote the fact that there exists an em

bedding of G into H . Then G ——%—9 E means that the-

re are "so many"embeddings of G into H that even if we
partition vertices of H into r parts we still have an em-
bedding in one of the parts. In this way —1’;—-—» may be
seen as a combinatorially strengthened embedding arrow (see
[8l) .

Folkman gave a direct constructive proof o: the above fact.
An another (less elementary) proof is due to the authors of

(7). However, Theorem A instantly yields a much stronger re-
sult.

Definition: Let K be a fixed graph. Dencte by Gra (K)
the class of all graphs which do not contain K as a sut-

graph. (I.,e. G & Gra (K)¢===> there are sets VeV, EcE
such that (vo,no)'?é K.)

I£ X is a set of graphs put Gra (X) = N (Gra (K)| K eX).

Theorem 1: Let ¥ be a finite set of 2-connected

graphs. Then for every graph GeGra (K) there exists a

graph HeGra (¥) such that G ——1;—>- H.

We may assume |K|»>2 for every KeX as for |KlL 2 we

get either the void class of graphs of the class of all dis-
crete graphs.

Proof: Let G = (V,E) Gra (¥X)
=max | K|+1,

B |G| =k .—L%’c’?u—:s choose ¥ (k,2,r) = (X,M)

be fixed., Let b =



with the properties of Theorem A. For each M € M let

Lyt V—>M be a fixed bijection. Define the graph H =

= (X,F) such that {x,y } € F¢=e==> there exist M e and
{z,t 3 € E such that {£y,(2),£,(¢)} ={x,y? . This graph H
will be denoted by (X,T) % G .

A8 AL >2 we have |MNN| < 1 whenever M&%N , {M,N3icMm
(see above) and consequently

1) £y: V—>M is an embedding of G into H for each
Hem.

2) If X° is a subgraph of H, K=K € X then K¢

c (M,F) ,MeMm .

(This follows by the 2~connectivity of K and by the fact
that (X,”M) does not contain a cycle of length <| K|+ 1 .)

Finally G ——— H follows immedistely from 7z (X,7) >
>r:

»
Given a partition X = &\ng X; there exists M e m eand
iell,r] such that Min « Consequently G 1is an indu-

ced subgraph of (Xi,f‘) end f;; 1is an embedding.

This theorem does not hold for graphs with connectivity <2 =3
i) If K is disconnected and K = K'UK” wyhere K'= K”

e
then H ——F—> K’ for every HeGra (K) as may be seen
easily.
ii) If K= Pl,1
== 4,(G)4 n . from this follows that there exists G e

is a path of length n then GCe&Gra (Pn)-———->

e Gra (P,) such that G #}:—9 H for every graph H e
eGra (P) (it suffices to take GeGra (Pn) which satis-

ties % (G) >1;- ; obviously G ——E—) Hes 2(H) 2
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i1i) If ¥ 4is an infinite set then the statement may be
false (consider % ={Ch41 ] k£13% the set of all odd

cycles).

2, Part o) v relations and hyper-
graphg. Using the same ideaas in 1l we may prove analo-
gous theorems for relations and hypergraphs. We list only

statements:

Theorem 23 : Let & be a finite set of 2-weakly con-
nected relations (see [5] , p.199) . Then for every positi-
ve integer r and for every R € Rel (R) there exists
S € Rl (B) such that R —2—> S .

Theorem 2b: Let % be a finite of hypergraphs which
are 2-connected (i.e. (X,”7) is 2-connected <=—=>
= (X,lI](Pr(M)[ MeM)) is a 2-connected graph).
Then for positive integer r and for every (X,M)e Hyp (&)
there exists (Y,MN)eHyp (%) such that
x,m —— (€M) .
The definitions of Rel (R) and Hyp(¥) and of symbols
-—':—* are quite analogous to the derinitions Gra (X) and

—{-——» for graphs. Again in certain sense these theorems are

best possible.

3. Partitions of algebras. Let 2 be the class of
all finite universal algebras of given type A =(n;j|iel ).
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Let ¥= (X,(w;|16¢I)) ,Y= (Y,Coey|1eI)) be algebras
from ¥ . We write ¥ —»> Y 1ff for every partition

Y= kk:% Y:l there exists an 1 and a monomorphism £:
: % -—> Y such that £x)c Yy .

Theorem 3: Let »r be positive integer and let &£ e
€V and w@y(X,x,000 x) =x forevery i€l and xe€
e X (idempotent algebras). Then there exists ’y- & 7 such

thet & ——> Y -

Pooof: Let |Xl=k, £ =3, n=2r . Consider
(Y, M) = P(k,3,r) . Let y6Y . Por every MeM let
us choose a bijection £, X—p M . Define (Y,(2ey|4e€X))
by Y=Y ufy'? and sey (y5) |Jell,ng1) =
= £ wi(x:j |3 €Lfl,n;1)) where fl(xJ) =¥y if such an
M exists, otherwise we put aei(yj |de Ci,ng 1) = vy, 1el.

It 1s easy to check that Y eV, % —f> Y .

Again it is easy to see that, generally, for non-idempotent
algebras Theorem 3 fails to be true.

Remark: A very difficult problem seems to be the cha-
racterization of those primitive classes of algebras for
which the statement analogous to Theorem 3 holds. This is

true for example for the class of all finite distributive
lattices.

4. Critical Folkman graphs: Let G be a graph. We
say that H 1s an irreducible (r,v)-graph for G if

G —%—; H but G 4—%—) H® for every proper subgraph
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H of H.

Theorem 4 a: For every graph G , |G| >1 there ex-
ists a countable set of non-isomorphic irreducible (r,v)=
graphs for G .

Proof: A proof follows directly from the x construc-
tion in 1. Let G be fixed. We may asssume that G is a con-
nected graph (otherwise we consider the complement of G ) .

It suffices to put

H= 90161, 3r) %6
E = S0I61, 5|, o

e o o o

Hy =9 Clcl I8 ), Pk a

G -—E—-» H; holds for every i . Let H, be an irreducib-

le (r,v)-graph for G contained in H , 1=1,2,....
Obviously |Hyl <| BJ‘ for all i, J satisfying i< J .
Assume Ki“-"ﬁ‘1 for i<j . As 'EJSHJ y Hy=

= ¥(lal, lHyy | y0) %, and [Hg 121 Hy| we have
1Hyle T %6 where FcFClc], I IH,l,r) 15a
hypergraph which does not contain any cycle. But in this

cage x(?* G) = 2,(G) . This contradicts

Qr -
G_PHio

Remark 1: Using a modified proof we may even prove
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Theoren 4 b: Let ¥ be a finite set of 2-comnected
graphs. Then for every graph GeGra (X) there exists a
countable set {Hy 1 = 1,2,.40 3 of non-isomorphic graphs
such that
1) HyeGra (X)

2) H; 4s an irreducible (r,v)-graph for G .

Remark 2: Theorem 4a does not hold for infinite graphs.
Every complete graph of infinite cardinality is the only
(ryv)-irreducible graph for itself. Theorem 4a fails to be

true for |G|=1, too .

Remark 3: Let G = (V,E) , H= (W,f) be graphs. We
e = .Y -
write G -—-“—-> H if for every partition F = ;ng" F; the

re exists an embedding $£: G—>»H such that {{£(x),f(y) 3)
I{x,y}eE3€ F; for an 1e€l[1l,r] . The existence of an
Ramsey graph for every finite graph was proved independently
by Deuber, Erdds, Hajnal, Posa and Rodl [ 9], see also much
stronger L 7].

Define . H to be an (r,e)-irreducible graph for G if

G '"'f?"" H but G = B’ for all propr subgraphs H’
of H.

Problem 1: Characterize those finite graphs G for
which there exists an infinite set of non-isomorphic (r,e)-
irreducible graphs for G .

If a graph G contains at most one edge ‘then there exists
precisely one (r, e)-irreducible graph H such that

e
G ——;‘-—-) H 4 namely G itself.
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Conjecture: For a finite graph G the following two
statements are equivalent:
1. For G there exists a countable set of (r, e )-irredu~

cible graphs.

2. 84> GC.

The path of length 2 is an example of a graph G for which
there exists a countable set of (2, e)-irreducible graphs.
One can take the family of all odd cycles.

More generally, the same is true for every paths of length

£ , £ finite.

Finally let us remark that Theorem 1 shows the power of Erdos—
Hajnal theorem for partitions of vertices.

There is no general method known for deriving similar theorems
for partitions of edges (see [8] for results in this direct-
ion). Let ws add a few remarks concerning infinite graphs. In

an obvious way we may extend the symbol G —-':L:——-» "H for in=-

finite graphs G , H and any cardinal r . The following is

then true:

Theorem 53 : For every graph G and every positive in-

teger r there exists H such that G ——”};——> H.

Theorem 5b: For every finite graph G and every cardi-

ngl r there exists a graph H such that G —':‘:—-» H . More-

over, if G does not contain a complete graph on m verti-
ces then H may be chosen with the same property.
Theorem 5a may be proved by the following construction:

Let G = (V,E) , assume withcut loss of generality r =2
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(this is possible as G -——;{-—b B -—1’9_—»1 ==p G —E—»I )e

Put H = (VxV,P) where {(x,y),(x’,7 )}€F¢===p either x =
=x" {y,y31€E or {x,x"3eE.
Given a colouring ¢: Ve V—>{1,2% either there exists

xeV smch that c(4x3xV) =1 or there exists 1 suech
that for every xe€V there exists y with c(lxy) =1.
From this follows easily G —%-bﬂ .

Theorem 5b follows from the Erdos-Rado generalization of the
classical Ramsey theorem for cardinal numbers and from the
representation of finite graphs by type-graphs, see [71,[81].
Thié is a straightforward application of type-graphs and we
ommit the proof.

This leads to the following problems (see also [2]):

Problem 2: Let G be a graph and r a cardinal number.
Does there exist a graph H such that G —’Z-—» H?

Moreover, providing that G does not contain a complete graph
with m vertices is it possible to choose H with the same
property?

Not much is known, even the case m=3 and r =2 is un-
solved. The purpcse of this remark is to show that even dea-

ling with vertex partitions one cannot be overoptimistic.
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