Commentationes Mathematicae Universitatis Caroline

Jiří Adámek; Jan Reiterman
 Exactness of the set-valued colim

Commentationes Mathematicae Universitatis Carolinae, Vol. 17 (1976), No. 1, 97--103
Persistent URL: http://dml.cz/dmlcz/105677

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

> 17,1 (1976)

EXACTNESS OF THE SET-VALUED COLIM

J. ADÁMEK, J. REITERMAN, PRAHA

Abstract

It is well-known that, in the category of sets, filtered colimits commute with finite limits; thus, if K is a filtered small category then the functor colim: Set ${ }^{K} \rightarrow$ Set is exact (i.e. preserves regular epis and finite limits). The converse is proved in the present note and other properties of colim are investigated and compared with these of colim: $A b^{K} \longrightarrow A b$ for the category Ab of Abelian groups.

Key words: Exact colimits, category of sets. AMS: 08AlO, 18BO5 Ref. Ž.: 2.726

I. Formulation

I.1. The exactness of colim for Ab has been investigated by Tsbell and Mitchell [2], [3]. In that case colim is exact iff it preserves equalizers and iff it preserves monics. For the set-valued colim (i.e. for colim : Set ${ }^{K} \rightarrow$ \longrightarrow Set) these properties differ. We shall prove namely the following propositions (see part III).
I.2. (a) colim preserves monics iff every diagram (*)

(*)

(**)
in K is a part of commutative square ($* *$)
(b) colim preserves equalizers iff K has filtered components, i.e. iff K fulfils the condition of (a) and for every pair f, g of parallel morphisms there is k with $\mathbf{k f}=\mathbf{k g}$,

(c) colim is exact iff K is riltered, i.e. iff K fulfils the conditions of $(a),(b)$ and for every pair A, B of K-objects there is C with $\operatorname{Hom}(A, C) \neq \neq \operatorname{Hom}(B, C)$.
I.3. This characterization is rather simple in comparison with the $A B$ case. Colim: $A D^{K} \longrightarrow A b$ is exact iff the following category aff K has filtered components: objects of aff K are just the objects of K; morphisms from A to B are those elements $\quad \sum \propto_{i} P_{i}$ of the free Abelian group over $\operatorname{Hom}_{K}(A, B)$ for which $\Sigma \alpha_{i}=1$, see [3].
I.4. It is easily seen that 1) aff K has filtered components provided that K has, 2) if aif K has filtered components then K fuliils the condition of (a). Thus,
denoting $A=$ colim $: A b^{K} \longrightarrow A b, S=$ colim : Set ${ }^{K} \longrightarrow$ Set we get
S is exact $\Rightarrow S$ preserves equalizers $\Longrightarrow A$ is exact $\Rightarrow S$ preserves monics

None of these implications can be reversed. The counterexamples are easy (according to I.2, I.3) except that to the second implication: for the category K or finite ordinals and order preserving injections, A is proved to be exact in [3] but the only component of K is not filtered.

II. Relation to indecomposable functors

II.1. Colimits in sets are closely related to indecomposability: a functor $F: K \longrightarrow$ Set is indecomposable if whenever $F=F_{1} \vee F_{2}$ then F_{1} or F_{2} is the constant functor to \varnothing. Notice that F is indecomposable iff colim F is a singlet on set.

Let us observe that each non-triviai functor $F: X \longrightarrow$ \longrightarrow Set can be decomposed into a sum of its components, i.e. maximal indecomposable subfunctors, $f=i \frac{\|}{\epsilon} I F_{i}$. If μ : $: F \longrightarrow F^{\prime}$ is a transformation and $F^{\prime}=j \frac{\|}{e} \rho F_{j}^{\prime}$ is a decomposition of F^{\prime} into components then for every $i \in I$ there is $c(i) \in J$ with $\mu\left(F_{i}\right) \subset F_{c}(i)$. We have colim $F=I$, colim $F^{\prime}=J, \operatorname{colim} \mu=c$. From these observations one can derive the following properties, of colim: Set ${ }^{K} \rightarrow$ Set .
II.2. (a) colim preserves monics iff each non-trivial subfunctor of an indecomposable functor $F: K \longrightarrow$ Set is indecomposable, too.
(b) colim preserves equalizers iff indecomposable
functors from I to Set have always the following "agreement property"; for each couple $\mu, \nu: P \longrightarrow F^{\prime}$ of transformation there is and $x \in$ with $\mu_{M} x=\nu_{M} x$.
(c) colim preserves finite products iff the product of two indeoomposable functore from K to Set is indecomposable, too.
II.3. The exactnose of colim in the $A b$ case can be also characterized analogously [1]: colim: $A b^{\mathbf{K}} \rightarrow \mathrm{Ab}$ is exact iff the agreement property from (b) holds for all couples of endo-transformations of indecomposable functors from K to Set ; equivalently, iff each endotransformation μ : $: F \rightarrow F$ of an indecomposable functor $F: K \rightarrow$ Set has a fixed point (i.e. x in some $P M$ with $\mu_{M} x=x$).
III. Proor
III.1. Noceseities in I. 2 follow from II. 2 if we take into account that
(a) the subfunctor P of $\operatorname{Hom}(M,-)$ generated by f : $: M \rightarrow C, g: \mathbf{M} \longrightarrow D$ must be indecomposable (then we have $f^{\prime}: C \rightarrow E_{0}, g^{\prime}: D \longrightarrow E$ with $\left.f^{\prime} f=g^{\prime} g\right)$,
(b) the tranaformations $\operatorname{Hom}(f,-), \operatorname{Hom}(g,-)$:
$: \operatorname{Hom}(N,-) \longrightarrow \operatorname{Hom}(M,-)$ must coincide at some $k \in \operatorname{Hom}(N, C)$; and all monics are equalizers in set ${ }^{K}$,
(c) the product $\operatorname{Hom}(M,-) \times \operatorname{Hom}(N,-)$ must be non-trivial.
III.2. Sufficiencies. (a) Let $r: K \rightarrow$ Set be an indecomposable functor. To prove that all subfunctors of F
are indecomposable it suffices, for given $x \in F M, \quad J \in F N$, to find $h: M \rightarrow Z, k: N \rightarrow Z$ with $F h(x)=F k(y)$. Fix x EMM

For every object T put $H T=\{t \in F T$; there are h : $: M \rightarrow Z, k: T \longrightarrow Z$ with $\mathrm{Fh}(\mathrm{x})=\mathrm{Fk}(\mathrm{t})\}$; we shall prove that $H=F$. Firat, H is a subfunctor of F : given $t \in H T$ and given a morphism $\mathrm{P}: ~ \mathrm{~T} \longrightarrow \mathrm{~T}_{1}$ we have $\mathrm{h}: \mathrm{T} \rightarrow \mathrm{Z}, \mathrm{k}$: $: T \rightarrow Z$ with $F h(x)=F k(t)$; ince p, k have common do main there exist p^{\prime}, k^{\prime} with $p^{\prime} p=k^{\prime} k$. This proves $F_{p}(t) \in H T_{1}$, because $P\left(k^{\prime} k\right)(x)=P_{p}^{\prime}\left(F_{p}(t)\right)$.

Second, $F-H$ (defined by $(F-H) T=F T-H T)$ is a subfunctor of F, as is eatily seen. Since F is indecomposable and $F=H V(F-H)$, either $F=H$ or $F=F-H$. The latter cannot occur, since $x \in H M$.
(b) Let $\mu, \nu: F \rightarrow F^{\prime}$ be transformatioss between non-trivial indecomposable functors. Choose $z \in f M$ arbitrarily and put $x=\mu_{k^{2}}, y=\nu \mu^{2}$. Via the previous part of the proof there exist $h, k: M \rightarrow Z$ with $r^{\prime} h(x)=F^{\prime} k(y)$ Choose $p: Z \rightarrow T$ with $p h=p k$ and put $t=F(p h)(x)$. Then $\mu_{\mu^{\prime}} t=F^{\prime}(\mathrm{ph})(\mathrm{z})=\mathrm{F}^{\prime}(\mathrm{pk})(\mathrm{z})=\nu_{\mathrm{T}} \mathrm{t}$.
(c) is well known.

This concludes the proof.
IV. A corollary
IV.1. Let T be a cocomplete category which has a full subcategory D isomorphic to Set and closed under colimits and finite limits. Then we have
colim: $T^{K} \longrightarrow T$ is exact $\longrightarrow K$ is filtered.
Indeed, if colim: $T^{K} \longrightarrow T$ is exact $s o$ is colim:
$: D^{K} \longrightarrow D$, the latter being a restriction of the former one. As $D \sim$ Set, K is filtered by I.2c.
IV.2. The above corollary applies e.g. to the category of

- topological (resp. uniform) spaces,
- graphs,
- unary algebras of a given type
and to T^{L} for any such T and any small L.
In all of these examples filtered colimits commute with finite limits (as is easily seen) so that we have
colim: $\mathrm{T}^{K} \longrightarrow \mathrm{~T}$ is exact $\Longleftrightarrow \mathrm{K}$ is riltered.

References
[1] J. ADÁMEK, J. REITERMAN: rixed points in representations of categories, Trans. Amer. Math. Soc. 211(1975), 239-247.
[2] J.R. ISBELL: A note on exact colimits, Canad. Math. Bull. 11(1968), 569-572.
[3] J.R. ISBELL and B. MITCHELL: Exact colimits, Bull. Amer. Math. Soc. 79(1973), 994-996.

Elektrotechnická čak ulta	Fakulea jadernáa fyzikáne
CVUT	inženýrska CVUT
Suchbatarova 2,16627 Praha 6	Husova 5, 11900 Praha 1
Ceskoslovensko	Ceskoslovensko

(Oblatum 2.6. 1975)

