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OOMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

17,1 (1976) 

EXACTNESS OF THE SET-VALUED ODLIM 

J. ADÁMEK, J. REITERMAN, PRAHA 

Abstract: It is well-known that, in the category of 
sets, filtered colimits commute with finite limits; thus, 
if K is a filtered small category then the functor 

colim: Set — * Set is exact (i.e. preserves regular epia 
and finite limits). The converse is proved in the present 
note and other properties of colim are investigated and 

K 
compared with these of colim: Ab —> Ab for the category 

Ab of Abelian groups. 

Key words: Exact co l imi t s , category of s e t s . 
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I . fforpila^JLpjn 

1.1. The exactness of colim for Ab has been inves

t iga ted by Tsbell and Mitchell t2J , £33 • In that case colim 

i s exact i f f i t preserves equalizers and i f f i t preserves 

monies. .For the set-valued colim ( i . e . for colim : Set —*» 

— * S e t ) these proper t ies d i f f e r . We sha l l prove namely the 

following proposit ions (see part I I I ) . 

1.2. (a) colim preserves monies i f f every diagram (x) 
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c c 
*s<r ts \f 

M<" M 

(#) (#*) 

in K is a part of commutative square (# # ) 

(b) colim preserves equalizers iff K has filtered 

components, i.e. iff K fulfils the condition of (a) and 

for every pair f, g of parallel morphisms there is k with 

kf « kg , 

f 

(c) colim i s exact i f f K i s f i l t e r e d , i . e . i f f K 

f u l f i l s the conditions of (a ) , (b) and for every pair A, B 

of K-objects there i s C with Hom(AfC)* 04sHom(B,C) . 

I.3# This characterizat ion i s ra ther simple in compa-
K r i son with the Ab case* Colim: Ab—*»Ab i s exact i f f 

the following category aff K has f i l t e r e d components: ob

j e c t s of aff K are just the objects of K ; morphisms from 

A to B are those elements 52 oc ̂ £^ of the free Abelian 

group over H0Og(A,B) for which US 06 ^ = 1 , see t 3 ] • 

I.4« I t i s easi ly seen that 1) aff K has f i l t e r e d 

components provided that K has, 2) i f aff K has f i l t e 

red components then K fu l f i l s the condition of (a) . Thus, 
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denoting A -=- colim : Ab K— > Ab , S * colim : SetK—*.Set 

we get 

S is exact «=J> S preserves equalizers =.»> .% is ex

act «=•£ S preserves monies 

None of these implications can be reversed. The counterex

amples are easy (according to 1.2, 1.3) except that to the 

second implication: for the category K ox' finite ordinals 

and order preserving injections, A is proved to be exact 

in [33 but the only component of K is not filtered. 

II. Relation to indecomposable functors 

11.1. Colimits in sets are closely related to indecom-
«% ** 

poaability: a functor F: K—*Set i s indecomposable i f when

ever F =» i^v i1.̂  then i \ or i^ i s the constant functor 

to 0 . Notice that F i s indecomposable i f f colim f i s 8 

s ingleton s e t . 

Let us observe that each non-trivial functor Ft K —* 

—> Set can be decomposed into a sum of i t s components, i . e . 

maximal indecomposable subfunctors , F - . 1L F^ • If fJL : 

: j»—*-p' i s a transformation and F - . i i . F* i s a decom

posit ion of F into components then for every i c l there 

i s c ( i ) c J with (M..(il
i)c JfQ^ * We have colim F » I , 

colim F = J , colim (u, » c • From these observations one 
K 

can derive the following properties,of colim: Set — • Set • 

11.2. (a) colim preserves monies iff each non-tri

vial subfunctor of an indecomposable functor F: K—> Set 

is indecomposable, too. 

(b) colim preserves equalizers iff indecomposable 
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functor* from 1 t o Set have alwaya the following "agree

ment property"! for each couple (**>, » : F—•.?' of 

transformations there i s M and xeFffi with ^c^ x = ^ x . 

(c) colim preserves f in i t e products i f f the product 

of two indecomposable functors* from K to Set ia indecom

posable, too* 

II• 3 • The exactness of colim in the Ab case can be 

also characterized analogously C13 • colim: 4b —> Ab i s 

exact i f f the agreement property from (b) holds for a l l cou-

plee of endo-tranaformations of indecomposable functors .f.rom 

K to Set ; equivalently, i f f each endotransformation rt-> : 

: F—+ F of an indecomposable functor Fi K—-*Sot has a 

fixed point ( i . e . x in some #M with f+y* *' * )• 

H I . .Proof 

111.1. lecesmlties in 1.2 follow from II.2 if we take 

into account that 

(a) the eubfunetor F of Hom(M,-) generated by f: 

: M _ * C f g: a—**D must be Indecomposable (then we have 

Z*i C—**1 , g': B — * E with f'f » g'g ), 

(b) the transformations Hom(f,-) , Hom(g,-): 

i H o m d , - ) — * Bom(M,-) muat coincide at some k€Hom(N,C) ; 
K and ail monies are equalizers in Set , 

(c) the product Hoffl(M,-)x Hom(Nf-) muat be non-tri

vial. 

111.2. Sufflclancica* (a) Let Ft K — • Set be an in-

decompoaable functor* To prove that all aubfunctora of F 
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are indecomposable i t suff ices , for given xeFM , y e .FN , 

to find h: M—*Z , k: N—*>Z with Fh(x) » Fk(y) . Fix 

x c m . 

For every object T put HT = 4 t « FT ; there are h: 

: M—*Z , k: T—»Z with Fh(x) =- Fk( t ) } ; we ahall prove 

that H * F • First , H i s a aubfunctor of Ft given t€HT 

and given a morphism >: T—*T, we have h: M—* Z , k: 

: T «---*> Z with Fh(x) » Fk(t) ; aince p, k have a common do

main there exist p' f k' with p'p » k'k • Thia proves 

Fp(t)eHT1 , because P(k'k)(x) » Fp'(Fp(t)) . 

I v h 

Z 

k / \ k ' 

T 

Second, F - H (defined by (.F - H)T -* FT - HT ) i s a sub-

functor of F , as i s easi ly seen. Since F i s indecomposab

l e and F =* Hv(F - H) , either .F =- H or F » i1 - H * The 

l a t t e r cannot occur, aince xeHM • 

(b) Let (&,->>: F—^F' be transformations between 

non-trivial indecomposable functors. Choose m*SK arbitra

r i l y and put x-» f^n2 > y * ^M35 • V%& the previous part 

of the proof there exist h, k: M—i»Z with F'h(x) ~ F'k(y) 

Choose p: Z—*T with ph =-= pk and put t * F(ph)(x) . Then 

("Tt -*F'(ph)(z) - ^'(pk)(z) * **ft . 

(c) i s well known. 
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This concludes the proof* 

IV. A- ffp.r9lT.ary 

IV. 1. Let T be a cocomplete category which has a ful l 

subcategory D isomorphic to Set and closed under colimits 

and f i n i t e l i m i t s . Then we have 

colim: TK—* T i s exact -•—»> K i s f i l t e r e d . 

K* 

Indeed, i f colim: T —>T i s exact so i s colim: 

: D —*>D , the l a t t e r being a r e s t r i c t i o n of the former one* 

As D ~ S e t , K i s f i l t e r ed by 1.2c. 

IV.2. The above corollary applies e .g . to the category 

of 

- topological (resp. uniform) spaces, 

- graphs, 

- unary algebras of a given type 

and t c T for any such T and any small L . 

In a l l of these examples f i l t e r ed colimits commute with f i n i 

te l imi t s (as i s eas i ly seen) so that we have 

colim: T —->5 i s exact <«=--«> K i s f i l t e r e d . 
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