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COMMENTATIOKES MAШБMàTIGAE ÜNIVEfíSÎTATIS Ш Ю Ш - A E 

0.7,2 (1976) 

TЯE SPECTRAL RAБU OF ÂЖ OFEHåTOH AHD ITS ШOШШS 

Vlastimil PTÂK, Pr&ha 

Abstract; The author proves am inequality connecting 
the spectral radius of a limear operator in a; Hilbert spa
ce of finite dimension and the spectral characteristics of 
its modulus, the positive definite factor of its polar de-
composition. 

gear Wordst Limear operator, Hilbert space, spectral 
radius, polar decomposition. 

AMSs 15A18, 15A42, 15M0, 47B15 fief.2.: 2.732 

2.972.54 

It is the purpose of the present remark to investigate 

the connection between spectral properties of a limear ope

rator and its modulus, the positive definite factor in the 

polar decomposition. 

The basic result is am inequality connecting the spec

tral radii of a positive definite, operator P and of the ope

rator OT where U is am arbitrary unitary operator (Lemma 

(2,1) of the present remark). As am emsy consequence we ob

tain the maim result (Theorem (3,1)). 

For each positive definite M and each unitary U 

m-1 ...1 

(llT1.^1) a lltf-al inl* * I Ml,. 

This result has some interesting corollaries. 
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1. .Definition and notation* If al****»am a r e P 0 8^^® 

numbers, we denote by <Ka^y«* •>
a
m) their geometric mean 

l,***,am s la2***am 

In the whole paper H will be a Hilbert space of dimension n* 

If A. is a linear operator on H we denote b^ & (A) its spec

trum, by I A|^ its spectral radius and by I A., its norm 

(as an operator on H) hence I A| * ( | A*A|g> ) ' m 

How suppose that A is an invertible operator on H# Kfaen 
1/2 

A* A and AA* are 1>otfa positive definite; denote by (A.*A) 
1/2 

and (AA* ) x / respectively their positive definite square 

roots* Siere exist two unitary operators U and V such that 

A =- 1CA*A)1/2 "« (AA* )1/2T 

1/2 

and both these decompositions are unique* Hence (A* A)"^ 

could be called the left modulus of A and (AA*) 1 / 2 the 

right modulus of A# Speaking about the modulus of an opera

tor we should specify which of the two possible definitions 

we have in mind* the operator A being invertible, the opera

tors A* A and AA* have the same spectrum since AA* * 

« A (A* A)A~ • It follows that there is no ambiguity if we 

are dealing with spectral properties of the two moduli* X» 

particular, the following two definitions are meaningful* 

We shall denote by max M(A) the maximal eigenvalue of 

(A* A ) 1 / 2 or, equivalently, of (AA* ) 1 / 2 * It follows that 

max H(A) = I (A* A}1/2\e * t(AA* ) 1 / 2 \ € . We shall denote by 

min M(A) the minimal eigenvalue of (A* A ) 1 / 2 or of (AA* ) 1 * / 2 . 

It follows that min M(A) *- I (A* kT1/2\& ~ 1 * 

« K A A ^ r 1 7 2 ^ - 1 . 
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2. Preliminaries. Hhe results of the present paper 

are based on the following fundamental proposition. 

(2,1) Let D be an n-dimensional diagonal matrix with posi

tive diagonal entries ^i*^* ••**<*&* Denote by % the set 

of all unitary matrices of order n. then 

min i\ VB\& | XT e <2M « GCd-p...,^) 

Let T be positive definite. Then min -{lOTI^ $ U"&%1 equ

als the geometric mean of the eigenvalues of T. 

Proof. If T is positive definite, there exists a uni

tary T and a diagonal matrix D such that T * VDV* . Since 

lUT.£ * I UVOT*^ * IV^uTDl^ it suffices to prove the 

first assertion. 

Denote by m the minimum on the left hand side. Clearly, for 

each M e % we have / 

ITOl^fcldet TOI37* * I det U det B I 1/a * | det D | lA-* 

» GCd-j,...^). 

It follows that m>G(dlf ...,6^). 

On the other hand, consider the matrix V defined by the 

relations 

vi i+1 9 1 f03r i * 1t2$***fn ~ 1 

n,l 

v * 0 for all remaining pairs of indices pf <a 

Since V is a permutation matrix, we have V & H • It is not 

difficult to show that (VD)n is a diagonal matrix, in fact 

that 

(VD)n » hi 
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where h * d^dg..^ « CHd^,...,©^)11. Since tTDlg. .6 ' 

£ I (¥D)ml1/n, we have 

m^|VBi€i4|(TO>
n|1/k * h 1 / m • OCa^,...,^). 

Together with the preceding inequality this established 

the lemma. 

The following simple lemma is valid even in infinite 

dimensional Hilbert spaces. 

(2S2) Let H he a Hilbert space., T a bounded linear opera

tor on H. Then 

1° for arbitrary unitary ©peratora 1 and ¥ 

11T¥ I « t T I 

2° let M be the left ©r right modulus of Tf them 

.Proof. The first assertion is obvious. T® prove the 

second assertiom, we recall that 

l ( f # f ) l / 2 ^ «,i(M*)l/2iff 

so that we may restrict ©urselvesHo the case ©f the left 

modulus. ©iere exists a partial isometry U such that T « 

a U(T* T ) 1 / 2 and ¥* T * <T* T ) 1 / 2 , Heme© 

ITI^ » lU(**« 1 / a i^ ,«tM{f*»« 1 / f t l « |(T*T)1/2| » 

and the proof is ©omplete... 

(2,3) Let H be a Hilbert space ©f dimension n. Let A be a 

linear operator on. H* Then. 

\k\€ 2 (max M{A))lA(minl(A))n~1/il 

Proof. If min MCA) s 0, the inequality is trivially 
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satisfied. If mim M(A) >0, the operator A* A is invertible 

hence A is invertible. We may therefore limit ourselves 

to the case of an invertible A. Let B be the matrix of A 

in an orthonormal basis of H. Since B is imvertible there 

exists a unitary matrix U such that B « tf(B*B) ' $ since 
1/2 

(B*B) ' is positive definite, there exists a unitary W 

such that (B^B) 1' * 7.W* where D is a diagonal matrix of 

the form 

- [\) 
Clearly we may assume that d-̂ 2: d2£ ...^da>0» We |iave then 

lAlg« I Big* tWOT*|g • l?*OTDys©(d1,...>dB) £ 

£G(dlfdn,...,dn) - d ^ * * ^
1 ^ . Since dĵ  * max M(A) and 

dn « mia M(A)t this completes the proof. 

3«. fbe main result. 

(3.1) Theorem, Let H be a Hilbert space of dimension n. 

Let M be a positive definite operator on H« Then, for each 

unitary U on H, the following inequalities hold. 

( I M- 1^" 1)^ 1 7^^^) 1^^ \m\*d 1M1* 

Proof. First of all, 

1 UK If 6 I .tail - I Ml * Uttf • 

The second inequality is a consequence of (2,3) and the fact 

that the minimal eigenvalue of M equals I M~ lg ~ * 

(3.2) Corollary* Let H be a Hilbert space of dimensioa n. 

If M is a positive definite operator on H and 0 and ¥ are 
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unitary then the following inequality holds. 

( K u H r 1 ! -1)tt-1A( (TJM.|)1/n £ \m\g - IVMl 

Proof. ©lis time, we use the following equalities 

I icIt » mi » I ml 

lUl* « lUMl , 

HT-%" 1 = lMT1! -1 * UUM)"1! - 1 

(3.3) Corollary . , Est A be a linear operator on the n-di-

mensional Hilbert space H. If A is invertible then 

U l l / n c u - l , -l}n-l/n * U | ^ £ lA [ 

Proof. This is an immediate consequence of the main 

theorem and of the following equalities. 

mif * mi «-OTl * Ul 
[VT\ » I IT1! * IM"1^^! = U"1! 

As an immediate consequence, we have the following in

equality obtained recently by N.J. Young in the course of 

his investigations of the critical exponent of n-dimensio-

nal Hilbert space. The result of Young represents a conside

rable improvement of an inequality proved previously by Da

niel and Palmer. 

(3.4) Let A be an invertible linear operator on an n-dimen-

sional Hilbert space. Then 

U l e lAl^lA- 1! n~1 

H e f e r e n c e s 

t l ] mmEZ J.W., PAUEB T.W.: On 6f(T)t | S ( and 11-T11 , 
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Linear Algebra and its Applications 2(1969) 9 

381-386« 

[2] XOOTG Ň*J«s Analytic programmes in matrix algebras 

(in print). 
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