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COMMErøATIOKES MATHEilATICAE ÜNIVERSITATIS CAROLINAE 

17,2 (1976) 

FREE UNIFORM MEASüRES ON SUB-INVERSION-CLOЗED SPACES 

Jan PACHLj Praћa 

Abstract: Any free uniform measure on any sub-inver
sion-closed uniform space is represented by a -Radon measure 
with a compact support in the completion of the space. 

Relation of free uniform, <5* -additive and order-bounded 
measures is discussed. 

Key fords: Pree uniform measures, order-bounded and 6"-
additive functionals, sub-inversion-closed uniform spaces, 
separable Riesz measures, Riesz measures. 

AMS: Primary 28A30 Ref. 2.: 7*518.126 

Secondary 54E15,60B05 

§> 1. Introduction. The notion
 w
free uniform measure" 

on a uniform spac% Cl .3 s[33, [153 provides a common generali

zation for both the notions "Riesz measure" and "separable 

Riesz measure" (see § 7 below). 

It is the aim of this paper to show that the theorem 

about representation of these measures" by means of certain 

Radon measures - proved by Hewitt (til], Th. 17) for Riesz 

measures and by Haydon [103 for separable Riesz measures -

holds for free uniform measures on any sub-inversion-closed 

uniform space (Theorem 4.3 be low) • 

In §§ 5,6 I discuss the connections of free uniform me

asures with order-bounded and fS -additive functionals on the 

space of uniform functions. 
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Terminology and notation. Basic topics on uniform spa

ces may be found in the Isbell's book [12] but here we shall 

work rather with pseudo-metrics than with coverings. All to

pologies and uniformities are assumed to be Hausdorff. 

For a compact topological space C, a Radon measure on 

C is a (signed) regular Borel measure on C. All Radon measu

re® on C are in one-to-one correspondence with all norm-con- . 

tinuous linear functionals on the Banach space of real-va?-

lued functions oa C (117], II - § 2, Ex. 3). 

In the whole paper R denotes the reals; X denotes an 

arbitrary (Hausdorff) uniform space. X is the completion of 

X. ® (X) is the system of all bounded uniformly continuous 

pseudometrics on X* U(X) is the linear lattice of all uni

form ( = uniformly continuous) real-valued functions on X, 

endowed with the topology of pointwise convergence on X. 

A set Se U(X) is called U.E.-set iff it is equiuniform 

( -= uniformly eojuicomtinuous) and pointwise bounded. A line-

air form p* on the space U(X) is called free uniform measure 

iff it is eomtimious on each U.E.- set in the topology of 

pointwise convergence* The reader is referred to £15] for ba

sic properties of the space WtL^iX) of free uniform measures 

on X. Here I shall only add that a set ScU(X) is U.E. if 

and only if its unique eJBtension S to X is a U.E.-set* Hence 

the space V£^(X) and ^y(X) are canoni.cal.ly isomorphic. 

The Banach space of bounded uniform functions on X will 

be denoted U.(X) (the norm is given by J f I =- sup i|f(x)| I xe 

e X j ) . Continuous linear forms on the spacesU-^tX) are call

ed measures on X . Here I shallj call "measure on X" also a 
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l i n e a r form on the space U(X) whose r e s t r i c t i on to U-^X) 

i s measure. Thus QA* : U(X)—> R i s a measure iff jti i s l i 

near and I|(t6li * sup HfL{ty\ | f£Ub(X}fe I f It 4* 1J is 

f i n i t e . I t is easy to see that each free uniform measure i s 

ac tual ly a measure• 

If "i^ctl^A * s a n e t °^ 3?®a--""Valued functions on X in

dexed by elements of a directed set A then the symbol f̂ *̂  0 

means that lim f̂  * 0 pointwise ( i . e . lim f^ (x) * 0 for 
eC€ A 

any x e X ) and f ^ e f - .for ec .6 (h . 

§ 2 . Sub-inTersion-closed uniform spaces. A subset C 

of uniform space X i s a Coz-set i f f there exis ts a function 

f c U(X) such that C - -fxeXJ f (x)> Oj . A real-Talued func

t i o n g on X i s a Coz-function iff the preimage of any open 

subset of R under g i s a Coz-set in X* 

A space X i s called inTersion-closed iff eTery real-Ta-

ltied Coz-function on X i s uniform. The following theorem wi l l 

not be used below; i t i s included here just for the reader 's 

or ienta t ion . The condition (b) explains the name "inrersion-

closed" while the condition (c) suggests that th i s class of 

uniform spaces should be important in the theory of *5-addi-

t iTe measures. 

Theorem. For a uniform space X the three conditions 

a re equivalent: 

(a) X i s inTersion-closed; 

(b) i f feU(X) and f (x)* 0 for each x£X then •— * 
f 

€ U(X),-

(c) if fn e Ufe(X) for n » 1,2,... and fB^0 then the 
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set {f | n s 1,2,. ..,jf is equiuniform. 

Proof will not be repeated here. Implication (a)«=-^(c) 

was proved by Preiss and Zahradnik £193* The other implica

tions are proved in Frolik's papers L6J,L73 where also other 

characterizations of inversion-closed spaces are given. 

The following property will be used below: any uniform 

real-valued function on a subspace of an inversion-closed 

space can be extended to a uniform function on the whole spa

ce [8] (this follows from the fact that a Coz-function defi

ned on complement of a Coz-set can be extended to a Coz-f unc

tion on the whole space ). 

A uniform space will be called sub-invers ion-closed iff 

it is uniformly isomorphic with a subspace of an inversion-

closed space (this class of spaces was pointed out to me by 

Zdenek 5rolik) . 

Every inversion-closed space is sub-invers ion-closed • Clear

ly every precoapact space is sub-inversion-closed. Moreover, 

it can be deduced from ([12], 711.9) that every locally fine 

space is sub-inversion-closed. 

§ 3. Supports of uniform measures. Although we shall 

work only with free uniform measures all results in this pa

ragraph hold for all uniform measures (with the same proo£a) + 

3.1. Notation. If f£ @(X) put <f(y) * (1 - g> (x,?))* 

for x,y£ X; obviously f* e \(X), $* 2: 0. For any fe rP(X) 

and any ft e W^(X) put SC^,^ ) = -f xsrX | there exists a 

function ge^(X) such that 

0 . s g 6 f x and fL(g)4*0}. 
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Clearty, if j>1 6 g>2 then ^ 2 ^ a.^ 3(̂ 0., jê ) 3 

O Sip, ? 2 ) . Put S (ft) « ? r^(j() S(^,? ). 

Remark. Consider the associated Radon measure (tt on 

the Samuel compactification X of the space X [5]. It is ea

sy to see that S((U-) = Xnsupp^u, < 

3.2. Proposition. Let (U, e ^ f ( X ) , f e P (X), f € U(X) 

and f(x) = 0 for any xeS(^ct9p ). Then ^(f) = 0. 

Proof. As f = f+ - f" one can assume f>0« As (U>(f) = 

= lim /tc(f A n) one can assume f is bounded. Thus without any 
*a—>-» *• 

loss of generality we shall assume that 0^ f -=r 1. 

For any finite set FcX\S(^,tf>) put f™ -* f A (max <p* ). 
xcF 

Order finite subsets of XNS(^,p) by inclusion. Then lim f«= 

= f pointwise, the set -tf-pi F finite c X\ S((L%f>) } is U.E.»f 

and hence /tt(f) = lim ^(f--,). But for any finite set 
F 

FcX\S({U.,^> ) one can write fF * ^r
fsx where f^e U(X) and 

0*1^ 4 <£>* for xeF. 

Consequently ^(fp) = 0 for any finite set Fc X\ S(fc9f) 

and rtt(f) = 0 , 

Q..E.D. 

3«3* Proposition. For any (tL e #?tj*(X) we have S(^a) = 
= r\ S(fi9p ); consequently the set'S(^) is closed. 

? " A 

Proof. If xeX\S((CC,^) and £> (y,x) -*- — then y If 

# S(^,2^>).. Hence S(fi,̂ > ) D S(f̂ ,2cj> ). 

The following lemma shows that the set S(AA*) supports 

the measure (i> if the sets S(p,^ ) are not "too large**. 

This helps to prove Theorem 4.2 below. 

3.4* Lemma. Let X be a complete uniform space, let 

(tc € /33tF(X). Suppose that for any ® e 9 (X) there exists 
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& finite number of sets IlfcX, i == l,2,...,n(<p ), such that 

£>-diam B|JS 6 for i » l,2,...,n(^> ), and S ( ^ , ^ )c XJ^ l|. 

Then the set S(^) is compact and the following holds: if 

f€U(X) and f(x) s 0 for each x c S ( ^ ) then <tx(f) =- 0. 

Proof. I. The set S(fo) is precompact, hence it is com

pact according to 3.3* 

II. Suppose that f € U(X) and f(x) = 0 for x € S ( ^ ) , 

Choose any g, .-» 0. I claim that there exists a pseudometric 

<p e 3MX) such that |f(x)t< £. for any xeS((tx,£>) (the 

claim is proved below). Put g -= (f - &) - (f ~ £ ) : one 

has4 If - g II <* £, and g(x) = 0 for any x£ S(̂ tx,̂ > ). 

Hence I ̂ (f) I £ 1 ̂  (g) J + I f^(t - g)• | * £ II ̂ oj . 

As e > 0 was arbitrary, the conclusion follows. 

III. It remains to prove the claim stated above. Suppo

se it does not hold, i.e. there exists an e >- 0 such that 

s£ = S((tc9p )n -£xe X | I f(x) I & e, $ +» p + for each £> € 

€ p (X). Then -£ SL| <p £- # (X) } is a base of a filter and 

there exists an ultrafilter & containing it. Now assump

tion in Lemma implies that for any g> e (P (X) there is an 

i(£> ) such that nf, *n ixeXl ) f(x) I 2- e ? e 5" . Henc ? 

¥ is a Cauchy filter and H i F f F e f f s"ixo^» clearly 

(f(x0)l * e . 

On the other hand, xQe S(^) and f (xQ) = 0. 

This is the desired contradiction. 

§ 4. Free uniform measures on sub-inversion-closed spaeea« 

fhe following property of sub-inversion-closed spaces is 

exactly what we need in the proof of Theorem 4.2 below. 
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4.1* Lemma. Given a sub-inversion-closed space X, a 

pseudometric g> £ IP (X) and a countable set Ic X such that 

0 (x,y)>3 for x,y£ Y, x4=y . Suppose further that for each 

ye X we are given a function f € U(X) and a real number K 

such that Q^ t £ K . p 1\ Then the function: S L f is uni-
y y ? <#.« y y 

form on X» 

Proof. Find an inversion-closed space Z such that X is 

a subspace of Z. f 's and g> may be extended over Z: find 
f^e U(Z) and f e p (Z) such that f^ extends f for any ye Y, 

%Y y %v 

1& extends £> , and Q-̂ '.r.V-£ <p* y. K. for y<s Y (this certain

ly can be done: if necessary, take ( f A X . *^y) instead of 
«y y 

Then 2EL fw i s a Coz-function on an inve r s ion-c losed 

Sp.c. 3, .JoeYi , ^ » « i,„ , « « . « « SL , i. 
7 ^ - e y y 

uniform on X, 

Q.E.D. 

4»2» Theorem. Let X be a complete sub- inve r s ion-c losed 

uniform space and l e t (U. e ^ ^ ( X ) . ©len t h e r e e x i s t s a compact 

s e t ,CcX and m Hadon measure m on C such t h a t (U-(f) ~ J fdm 

f o r any f e U(X). 

Proof. Put C - S ( ^ ) . 

I. At first observe that the condition stated in 3*4 

holds. Indeed, if it does not then there exists a pseudomet

ric g> e & (X) «such that the set S(^,£> ) is not covered by 

any finite number of sets of <p -diameter .6 6. Hence one can 

inductively construct an infinite countable set Y « i y2,»T2**# 

..»icS(^,y) such that a> (j.,y* )>3 for k 4- ,£ . For any 

Ji - 1,2,... there "exists a functions g- e U(X) such that 

- 297 -



@6gA 6 G ^ and d^^Z ^4»0. Choose real numbers Kg f 

JL « 1,2,..., such that 1 X^ *(^Cg4 ) l ^ i \^ l Kk*( C 4 t% )l 

and put fg * % .g^ > f *^SJ^ fZ • 

Lemma 4.1 implies that the set ijSA f%c\ ^ ~ 1,2,...? 

is U.E., hence rt^(f) = lim {t(.S& . f^). 

On the other handy for Ji = 1,2,... we have 

I r ^ f
k >i 2 I** •(-*«*>. - ^ i v ^ l ^ ' 

a contradiction. 

II. Thus 3.4 applies and we have ru*(f) = 0 whenever 

f(x) = 0 for each xeC. 

For any f eU(X) denote f its restriction to C: if f, ge 

€ U(X) and ? = 'g then AiXf) = <^(g), hence the formula 

ft(f) - f^(t) defines a continuous linear form on the Basnach 

space U,(C) = the Banach space of all continuous functions 

on C. Consequent^ ft is represented by a Radon measure m 

on C, Q.E.D. 

4.3. Reformula tion. If X is any uniform space, denote 

by 1fflQ(X) the space of "Radon measures with a compact sup

port in Xmi(ti& tUL^X) iff there exists a compact set Cc X 

and a Radon measure m on C such that (U*(f) = C fdm for any 

function ffiU(X). 

Now if X is any sub-inversion-closed space then the com-

pletiom X of X is sub-inversion-closed as well and according 

to 4.2 we have «t?(X) 3f Vt^fX) = MQ(X). 

§ 5. Order-bounded functionals. * 

^t -(X) will denote the space of order-bounded linear 

functionals on the space U(X). Thus (ttc ̂ 0 b (
x ) i:flf f o r a ny 

- 298 -



f cU(X), #L is bounded on the set -CgeU(X) | j g | £ f ? . It 

is well-known ([173, V-l.l, 1.4) that ^ c 3&b(X) if and 

only if ^ is a difference of two positive linear functio-

nals on U(X), If this is so then ret, = <o. - (tt,"* where 

^ ( f ) at sup { ^(g) | g€U(X) & O^g^ff forfeU(X), f^ 

20 . 

It is readily seen that any element of <$t ̂ (X} is a 

measure in the sense of § 1. 

5.1. Proposition. If (tee K^{X) is order-bounded then 

the linear functional (U (defined by ^cu (f) - sup i <a(g) \ 0± 

£g£f it. geU(X)J for feU(X), f > 0) belongs to the space 

^ ( X ) . 

Proof. See (C33, T.l). 

5*2* Corollary. For any uniform space X, the inclusion 

^ F ( X ) c WtohU) holds if and only if the space M^U) is 

spanned by its positive cone. 

Remark. If R denotes the real line with the usual uni

formity then the space ##p(Jt) is not included in ISfc _(]&) 

([15], 3.3). 

On the other hand, for sub-inversion-closed spaces we 

have the following result: 

5.3• Proposition. Let X be a sub-inversion-closed uni

form space.. Then M^(X) c /Wt0^{X) and the space W^iX) is 

spanned by its' positive cone. 

Proof. fflt^iX) Sf WlQ{X) according to 4.3 and WQ(X) c 

C ^ o b ^ ~ ^ 0 b ^
X * obviously. Tbm 5.2 applies. 
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§ 6. ^ -add i t ive functionals on U(X) 

Denote by ffltggiX) the l inear space of those l inear 

functionals ^ on the space U(X) that sa t is fy the following 

condition: 

If f n e U(X) for n * 1 ,2 , . • • and f^±0 then l i n ^(tn) = 0* 

6.1* Lemma* Let X be any uniform space, l e t ^ae /33S^£,(X)* 

Then: 

a) for any geU(X) i t holds /tt.(g) - lim ii-(gAn) 
i /n. —> o> * 

b) <u> i s a measure • 

Proof* a) i s obvious• 

As for b), assume t l p t gi, i s not a measure in the sense of 

§ 1, i#e. (U, i s not norm-continuous: for n = 1,2, . •• t h e r e 

exist functions g^e Ub(X) such that 11 gn II £ 1 and ^ ( g n ) > 2 • 
+ — 

®̂ % = % ~ % o n e c a n a s s u m 0 °~ &n~ ̂ 5 * f t i l i s i s t h e c a s e 

£2» 4 -JL. 4 
then the function g * JS —£ * i s uniform, S . - 7 ^ g^*^ & 
a^ $_£, + C D and<a{ *g —-- g n ) ^ N> a contradict ion. 

6.2• Proposition* For any uniform space X we have 

l 9 t r e ( X ) e « t o b ( » . 

Proof* Assume ^4«9JJ^(X)N ^ ^ ( X ) . 03ien there e x 

i s t s a function f £TJ(X) such that <a. i s not bounded on t h e 

set -£g£U(X) j t g\ & f | • Using the decomposition g - g*" -~ 

- g and 6.1 (a) one sees tha t ft i s not bounded on the s e t 

igeU b (X) J o .4g-4f! . 

Construct inductively functions g<e tL(X), n * 0 , 1 , • . . , 

such that g 0 = 0 and 0,4 g^4t, I fcig^) I :> 2 II ̂  J) . 

. 1 g ^ l + » for n = 1,2, . .* . 

P u t hn = % v C * ^ - 1 fl A f } f o r n = 1>2» • • • • 
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Then h n€ Ub<X) and (f - h^i^O . , 

On the other hand, we sha l l see that I (-^(h^) I >• n for 

n - 1 , 2 , . . . - t h i s w i l l be the contradict ion. 

In fac t , one has (JL (h^) + ^ ( g ^ A II g^-^ U ) * <^%) + 

+ <u<( I g n - 1 fl A f ) , hence i p (h^) I .> i <ti (gn) | - 2 I ̂  | •.. 

. |[ gj^ijl > n as claimed. 

The proposition i s proved. 

For the converse inclusion, we must r e s t r i c t ourselves; 

even the class of sub-inversion-closed spaces i s too r i ch . 

However, for inversion-closed spaces i t is truej in fact , the 

proof i s well-known (tZlf 3 .1 .D* 

6 .3 . Proposition. I f a space X i s inversion-closed then 

m o b ( x ) c /M<SS(X)» 
Proof. I t suffices to show that /U. & tftilgg (X) whenever 

/U.& U(X)* and <a. > 0 - l e t i t be the case. Choose fnVO 

and e* > 0. 

The sequence of Coz-sets -CxcXJ f (x)-* £ ? , n « 1 ,2 , . . . , 
dp I . 

covers X. Hence the sum f « i S i (£~ -* £ > i s f i n i t e . 
4fym a n 

Consider any a,b e E , a < b : 

then 4 x f i X | f ( x ) - > a ? » ^ 3 4 f x e X l ^ < | ( f ^ x ) - e ) + > a j i s 

ai Coz-set and < xe X | f ( x ) < b ! -j®^ xfiX | %(x) < £ A 

^Jl ( fn ( x ) - 0 + - < b l - ^ < x«x|^tt>^.e A J ^ eyx) -
- E) < b } is a Coz-set as well. 

Thus f is a Coz-function on an inversion-closed space 

and f 6U(X)„ Consequently lip. <u*('# - £)+) - 0 and as 

(Ĉ (fn> ̂  £ • (UL(1) + ^ t f
n -£)

+) and i :> 0 was arbitrary, 

we get lim /a(f ) * 0, Q.E.D. 
n 
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6.4. Let me SUM up for the l a t e r use ; 

!Bheorem. Tor any inversion-closed space X we have 

"mQd) £ ^y(x) c mQh(x) « wt#&xx)» 
&•$• SSS§£^* T n e inclusion 7$tg,(X) c 3 $ ^ (X) for i n 

version-closed spaces can be proved d i r ec t ly by the method of 

the proof of 4.2 in ll519 using Iheorem from § 2 above* 

• § *-*• Riesg and separable RLesz measures 

Let tis begin with the following le.ma-. 

7*1» leama (cf . [92 ? § 5 ) . Let X he a uniform space atxoh 

that countable uniform covers form a basis of i t s uniform c o 

vers , fhen <$L$${X) c /$l^iX)» 

Proof. Let {U* e /$tggiX)» Then (U.~ fc - (it."" and stan~ 

dard argument shows that gu , ^""e ^ ^ ^ ( X ) ; hence we can 

and shal l assume that ^ 2: O. Let *i %sche&. be & net such t h a t 

the set -£ ̂  j dC e A? is 0 . 1 . aid lim f^ » 0 pointwise# One 

must prove that lim $L (f^ ). = 0. 
1^xt &*, =

 A-*up ! fAf for any. oc e Aj the se t {g^ \oce -&J 

i s U»E. and g_ ** 0. 

I t follows froa the assumption that there exis ts a c o u n t 

able set B e l such tha t 

( * ) V £->.•<.*• V « X 3 dcD VoC e A j g0C(x) -f g ^ (d)V< 
< e . 

.-% diagonal iiethod one.finds an increasing sequence 

oC (n) .of indices such that lia **/.*> id) s 0 for any del). 

low {;*. ) • ispMes that g. /«)> 0 fo"r n — * 03 and 

lia ("'̂ flcCn)̂  = ® because ^ is 0* -additive. 

Hence li» j f^lt^ ) t £ lim ^C I f^i) -= 0, Q.E.D. 

- 302 -



Now we are going to see howe the results of preceding 

paragraphs yield known facts for the space of Riesz measures, 

resp* separable Riesz 'measures (denoted M^ , resp« E by 

French authors and Mc, resp* MgC by Kirk)* 
s 

Besides free uniform measures we shall need here so cal

led uniform measures (see e«g* t4l,tl5])« Below I use the ca

nonical one-to-one map rx* IftL^iX) — > ^--TCX)! its proper

ties are described in tl5]« 

7«2* Notation* Given a Hausdorff completely regular to

pological space T, consider two uniformities on the underly

ing set: t~T is the fine uniform space associated with T (t̂ T 

is the finest uniformity agreeing with the topology of T) f cT 

denotes the uniform space protectively generated by all real-

valued functions continuous on T (cT has the coarsest unifor

mity such that all functions continuous on T are uniform)* 

One has U(t^T) « U(cT) - the space of real-valued func

tions continuous on T, and consequently both the uniform spa

ces t~T and cT are inversion-closed* 

The elements of the space 'Wt^(tJH) are called separab

le measures on T (see e.g. tl8]># The elements of the space 

^ ^ ( t ^ ) = tdl^icTl are called Riesz measures on T by Ber-

ruyer and Ivol t21* 

7*3 • Riesz measures* IJet me notice that cT is just the 

Hewitt realcompactification of the space T; 6.4 and 7*1 yield 

the equalities 

mob(cT) = «fc6fc<c*> - mFCcT) tf mc(^T) (see [2], 3.1 

and [11], T* 14, 1?K 

7*4. As for the space t^T we get the following result: 

- 3CO -



Proposit ion. Let T be any Hausdorff completely regular 

space. Then 

a) [103 We have ^ C t ^ T ) a? MQ{yz); 

b) (L133, 9»4) Free uniform measures on the space t
f
T 

are just the separable Hies2 measures on T. 

More exactly: Consider the canonical one-to-one maps in 

the commuting diagram 

^rj(t
f
T) ^^v(cT) 

r
t

f
T 

г
cT 

^ ( t ^ T ) *» 3#
F
(cT) 

(horizontal arrows are induced by the identity map tJI' — > 

— > c T ) . 

Identify the spaces ^-j(t
f
T), ^,(t

f
T) and ^ ( c T ) with 

linear subspaces of /3M-j(cT) by means of these maps. Then 

^^(t^T) * ^-jt^T) A #3i
F
(cT). 

Proof, a) follows from 4.3. 

b) Obviously '3#
F
(t

f
T) c ^^(t^T) A W ^ c T ) . Conver

sely, if (Ĉ « W ^ y ) A ^
F
( c T ) then pee WtvitfT) 

and finite li» pC(-M) v (f A M)) exists for any f <s XJ(cT) » 

= tJ(t
f
T),- (£15J, 4.5) implies that pt e /W>¥(ttT). 
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