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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

17,2 (1976) 

METRIC-FINE, PROXBIALIil PINE, AND LOCAL3Z FINE UNIFORM 

SPACES 

Michael D* RICE, Fairfax 

Abstract: The following main result is established 
in the paper* A metric-fine (measurable) proximally fine 
space is locally fine if and only if the space is proxl-
mally fine and each uniformly locally finite cozero (Bai-
re) cover is a uniform cover if and only if each hyperco-
zero(hyperBaire) set is a cozero (Baire) set* 

Key Words:and Phrases; Metric-fine, measurable pro~ 
ximally fine, cozero-fine, Baire-fine, locally fine uni
form spaces; uniformly locally finite uniform cover; coze
ro set, Baire set, hypercozero set, hyperBaire set. 

AMS: Primary 54E15, 54 C50 Ref. 2.: 3.962 

Secondary 54H05 

This paper originated in the attempt to establish that 

metric-fine proximal3y fine spaces were locally fine. This 

question has since been answered in the negative by the au

thor ([R]<>). (A negative answer to this question is also 

implicit in tFr]^ > in view of the correction by [P].) The 

main contributions of the present work are Theorem 2«,1? 

which shows that .the condition hypercozero=cozero guaran

tees the locally fine property for metric-fine proximally 

fine spaces and Theorem 2.2* 
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In general , the notation employed i s found in tffl-e 

and CI] , and i s consistent with the terms used in [ l r ] , o . 

uX denotes a uniform space. If u and v are uniformities, 

u/v i s the quasi-uniformity having covers of the form 

4V ft XL*?\ as a bas i s , where «tV \ 6 v, iU^l e u, for each s . 

uX i s locally fine i f u/u + u* ' * u and loca l ly sub-M-fine 

i f u(eu * u, where eu has the basis of countable u-covera. A 
f function uX -=+> vX i s UHJC i f f/tJ i s uniformly continuous 

for each member of Wm J c u. 

Theorem 1 .1 : These statements are equivalent. 

( i ) uX i s metrics-fine and each bounded ULUC functiort 

i s uniformly continuous. (uX i s local ly e-fine metric-fine 

in the sense of tFrl2») 

( i i ) uX i s metric-fine and hypercoz (uX) = coz (uXK 

( i l l ) Bach el -uniform.^ discre te cozero cover i s a u n i 

form cover* 

(iv) uX i s locally sub-M-fine and each uniformly l o 

cality countable cozero cover i s a uniform cover. 

Proof: The equivalence of ( i ) - ( i i i ) has been e s t ab 

lished in CRIK and UMg > Theorem 3 , while (iv) follows 

ftroa ( i ) using [.Frln > Theorem 3 , and the def ini t ion of l o 

cally e-fine. We sketch a proof of ( i ) —* (iv) that also e n 

ables us to establ ish 2 .2 . Let ieoz f^f be a uniformly l o 

cally countable cozero cover with respect to tf0(e ) , whe

r e m is uniformly continuous. Let <U - U 1i ^$ IL^ ~ 
= ^ 8 i 1 8 * % i t k® a $ -uniformly discrete uniform r e f i 

nement of *JL (&/4 ) f with %* d iscre te with respect to 

fm* ( t j ) , f^- uniformly continuous, t^ < & • For 
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sg S . , define the cozero se t s T. . * {xi ^ ( x . U - .) * £.4/8} 

and the countable family C 4«{cos f*: coz f+AVfl £i¥0}* Write 
8.1 XP v S j 1 

Ca,i = *Ss,i: j * H j ^ ^ j6 N define -2,i *-J,i n VB,i* 

then the cozero family <T^ i: seSiJ is uniformly discrete 

for each j , so by (ii) Q$ « U-iT*} .: ae S. ? is a cozero 
X 5 , J. x 

s e t . Define B^ s ix: p (x,Us ±) > ^ j / 1 6 for a l l s*f S.^ and 

l e t 1t± M c ; ? : :jcN} U t B^i . By ( i i i ) f y . £ U . Define 

H± - U i U s i : s c S ^ and se t JL± « ^ i / H . • N o t e t h a t *^i 

i s a uniform cover of H^. F i n a l s , Ii. A *&.£< tcoz f+J/o > 

hence -(coz f+J e n/eu -= u since uX i s metr ic-f ine. 

Assume tha t (iv) is s a t i s f i ed . Then each countable cozero 

cover i s uniform aid uX i s local ly sub-M-fine, so uX is met

r i c - f i n e (CR35). Let X -£->[0, l ] be a UHJC function with r e s 

pect to % - iU s $ f where % i s a uniformly locally f in i t e . 

cozero cover (which may be assumed since uX is metr ic-f ine) . 

If 4 ^ 1 i s a f i n i t e open cover of £ 0 , 1 ] , then iXSQ (\ 

H t~ (H«)| i s a uniformly locally f i n i t e cozero cover that 

r e f ines i f (H-H » hence by (iv) f i s uniformly continuous 

and ( i ) i s es tabl ished. 

Theorem 1.2: Assume that uX has a tasis of f i n i t e d i 

mensional uniform covers. Then each countable (resp. f in i t e ) 

cozero cover i s a uniform cover and hypercoz (uX) = coz (uX) 

i f and only i f each uniformly loca l ly countable (resp. uni

formly local ly bounded) cozero cover i s a uniform cover. 

Proof: Using the notation in 1.1 and the .feet (Hlf 

4.25) that each uniform cover has a uniform refinement which 

i s the f i n i t e union of uniformly d iscre te families, we may 
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assume % - U % ^9 where i ranges over a finite set. The 

proof of 1.1 now proceeds unaltered to the conclusion that 

«t coz f. i is a* uniform cover, since it is uniform on each 

member of the finite uniform cover i ^ i • 

Note (i): The uniformly locally bounded assumption in 

1.2 cannot be replaced by uniformly locally finite. The re

feree points out that if fi is the usual metric on R and 

is the fine uniformity on R, then t̂  v poc satisfies the 

conditions in 1.2 for uniformly locally finite, but each such 

cover is not uniform (since ec^t^v poo )• 

Note (ii): Theorems 1.1 and 1.2 remain valid (using 

the preceding proofs) if one replaces coz (uX) by Baire ((uX) 

and metric-fine by measurable • 

Theorem 2.1: These statements are equivalent, 

(i) uX is cozero-fine and locally fine 

(ii) uX is cozero-fine and hyper coz (uX) = coz (uX) 

(iii) uX is proximally fine and each uniformly local

ly finite cozero cover is a uniform cover. 

•Proof: Using 1.1 and the fact that cozero-fine is equi

valent to metric-fine and proximally fine CLH1-, , 5.3 or 

[Frig , Theorem 5), one easily establishes the implications 

(i)—> Cii)'—>(iii)i Assume that (iii) is satisfied. Let 
f * 

-jtX — * K be a cozero function to the metric space M. Since 
uX is proximally fine, f is uniformly continuous once it is 

«-»*t 
shown that f 4 H. J c u for each finite open cover -CH^J of 

M* But each H.e coz (M), so f~ -IH^} is a finite cozero co

ver; hence f 4H.^ c u by (iii). Thus uX is cozero-fine a_nd 
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has a basis of point-finite uniform covers* 

To show that uX is locally fine, it suffices to show 

that p(u- ') = pu, for uX is proximally fine and u^ is a 

uniformity since uX has a point-finite basis. Choose % e 

& p(u(1)). There exists V « iVaf\ l^ J £ u ( 1 ) and a finite 

cover 4H.} such that V <* i H. J -< % . Define S0 . » 
X X S, X 

= U * U | : V s r t t ^ c H i J and set <gQ =-tSQ ±} . Each ¥Q i s 

a f i n i t e uniform cover (since 4,V+i < *$ s ) | hence W -

= 4.V n S„ .} e pu/u and W«z % . Since uX i s metric-fine 
S S , X 

we may assume that -CV } is a uniformly locally finite coze-

ro cover, so by Ciii) Hf , and hence % , is a uniform co

ver and p(u* ') = pu. 

Theorem 2.2; These statements are equivalent. 

(i) uX is Baire-fine and locally fine. 

(ii) uX is Baire-fine and hyperBaire (uX) = Baire (uX). 

(iii) uX is proximally fine and each uniformly local

ly finite Baire cover is a uniform cover. 

(iv) uX is proximally fine and each 6" -uniformly lo

cally finite Baire cover is a uniform cover. 

Proof: The equivalence of (i) - (iii) may be establish

ed using the comments following 1.2 and the proof technique 

of 2.1. To establish (i)—**(iv), let %- U <% ± be a Baire 

( = cozero) cover, where 11 ± is uniformly locally finite 

with respect to V±e u. Define B. = U -i H e % *} • Then one 

easily shows that B- is a cozero set since uX .is locally fi

ne (if U « coz(fu), then B i « coz (f), where f « 2 2 % ) • Al

so ^±/nt --s a uniform cover of B. (for its restriction to 
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each member of W± has a finite Baire refinement and uX 

is measurable and locally fine). Hence uX measurable imp

lies % * 4Bin U: U e %±1 e u/eu « u. 

The reader should compare (i) and (ii) of 2.2 with 

Theorem 3 of [5rl». It has been mentioned that there exist 

Baire-fine spaces that are not locally fine (CR^ 3)* laa 

fact, the smallest measurable uniformity u satisfying hyper-

Baire (uX) = Baire (uX) which contains the product unifor-

mity of X =- B ^ , where B is uniformly discrete and t B I * 

* *«*«., is not locally fine (tlrlg * P# 246). On the other 

hand, (£R12 , 2.6) establishes that if the smallest measur

able uniformity u containing a metric uniformity satisfies 

hyper Baire (uX) = Baire (uX), then uX is locally fine. 
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