Commentationes Mathematicae Universitatis Caroline

Miroslav Krbec

On L^{p}-estimates for solutions of elliptic boundary value problems

Commentationes Mathematicae Universitatis Carolinae, Vol. 17 (1976), No. 2, 363--375

Persistent URL: http://dml.cz/dmlcz/105701

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
17,2 (1976)

ON IP -ESTIMATES FOR SOLUTIONS OF ELIIPTIC BOUNDARY VAIUE

PROBLRMS

Miroslav KRBEC, Praha

Abstract: The purpose of this paper is to generalize the known regularity results concerning the Dirichlet problem for line ar elliptic partial differential equations of order 2m with L^{∞}-coefficients to the case of general boundary value problem in variational formulation. A regularity theorem in Sobolev spaces $\left.W_{p}^{(} \Omega\right)$ is proved for p. near to 2.

Key words: Sobolev spaces, complementary conditions, properly elliptic operators, a priori estimates, regularity.

AMS: Primary $35 J 40$
Ref. Ž.: 7.955 .213
Secondary 35DIO
I. Introductions In the papers [3], [5], the authors obtained regularity theorems for weak solutions of the Dirichlet problem for linear elliptic partial differential divergence equations with bounded and measurable coefficients. These results are an extension of the known classical existence and unicity theorems in Sobolev spaces $W_{2}^{m}(\Omega)$, where Ω is a bounded domain in N-space $\mathbb{B}^{\mathbb{N}}$, on spaces $w_{p}^{m}(\Omega)$, where p is near to 2 ($m=1$ in [3] and marbitrary integer in [5]). For p large enough there are counterexamples (see, e.g.[3]). In this paper there will be proved a regularity theorem of the mentioned type for general boun-
dary value problem in variational form. At first there is obtained a suitable a priori estimate for functions in $W_{p}^{m}(\Omega)$ which represents certain bounded linear forms on $W_{p}^{m}(\Omega)\left(p \geq 2\right.$ and $\left.p^{\prime}=p /(p-1)\right)$ - "right hand side of equations". These estimates are then applied to general b.v.p. according to the method used in [5]. The precise statement of the problem and the main result are in Section 3.

I am obliged to J. Stara and S. Fucik for their valuable suggestions and kind assistance.

Notation. The symbol Ω means in all this paper a bounded domain in $E^{N}(N \geq 2)$ with regular boundary $\partial \Omega$ in the sense of [2]. Points of E^{N} will be denoted by $\mathrm{x}=\left(\mathrm{x}_{1}, \ldots\right.$ $\left.\ldots, x_{N}\right)$. If $\propto=\left(\alpha_{1}, \ldots, \alpha_{N}\right)$, then the operator D^{α} is defined in a usual way, i.e.

$$
D^{\alpha}=\frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \ldots \partial x_{N}^{\alpha_{N}}}
$$

where $|\propto|=\alpha_{1}+\ldots+\alpha_{N}$ is the length of α.
All the following functioral spaces are real. Let piln, $s \geq 1$ and set $p^{\circ}=p /(p-1)$. Let us introduce in $c^{\infty}(\bar{\Omega})$ the norm

$$
\|\mu\|_{\Delta, p}=\left(\int_{\Omega} \sum_{|\alpha| \leq s}\left|D^{\alpha} \mu\right|^{p} d x\right)^{1 / p}
$$

The completion of $c \infty(\bar{\Omega})$ with respect to this norm is the Sobolev space $w_{p}^{s}(\Omega)$. The space $w_{p}^{s-1 / p}(\partial \Omega)$, resp. $w_{p}^{-s-1 / p}(\partial \Omega)$ is defined as a completion of $C^{\infty}(\partial \Omega)$ with respect to the norm

$$
\|u\|_{\Delta-1 / p, p}=\inf _{v \in C^{\infty}(\bar{\Omega})}\|v\|_{\Delta, \uparrow},
$$

resp.

The norms in spaces $I^{p}(\Omega)$ and $L^{p}(\partial \Omega)$ will be dented by $\|\cdot\|_{0, p}$.

The word "operator" means "linear partial differential operator". Different constants are sometimes denoted by the same symbol.
2. Apriori estimates. Let

$$
A=\sum_{|\alpha|,|\beta| \leq m}(-1)^{|\alpha|} D^{\alpha}\left(a_{\alpha \beta}(x) D^{\beta}\right)
$$

where $a_{\alpha \beta} \in C^{\infty}(\bar{\Omega})$ and $m \geq 1$ is a fixed integer. Denote by $P(x,$.$) the characteristic polynomial of A. Suppose that$ A is elliptic in $\bar{\Omega}$. Then A is properly elliptic in $\bar{\Omega}$ (see, e.g. [2]), i.e. for each $x \in \bar{\Omega}$ and linearly independent vectors $\xi, \xi^{\prime} \in \mathbb{E}^{N}$, the equation $P\left(x, \xi+t \xi^{\prime}\right)=$ $=0$, where t is complex variable, has no real roots and just half of its roots (including multiplicity) has positive imogirary part. Denote these roots by $t_{1}\left(x, \xi, \xi^{\prime}\right), \ldots$. $\ldots, t_{m}\left(x, \xi, \xi^{\prime}\right)$ and define the polynomial

$$
M\left(x, \xi, \xi^{\prime}, t\right)=\left(t-t_{1}\left(x, \xi, \xi^{\prime}\right)\right) \cdot \ldots \cdot\left(t-t_{m}\left(x, \xi, \xi^{\prime}\right)\right) .
$$

Definition 2.1. Any finite set of operators on $\partial \Omega$ is called a normal set on $\partial \Omega$ if orders of these operators are different and $\partial \Omega$ is non-characteristic for each of them.

Any system of k operators on $\partial \Omega$ is said to be a Di-
richlet set of order k if it is a normal set on $\partial \Omega$ and orders of these operators are less than k.

Definition 2.2. Let $\left\{\mathrm{H}_{\mathrm{j}}\right\}_{\mathrm{j}=0}^{\mathrm{k}-1}$ be any system of operators on $\partial \Omega$ with characteristic polynomials $\left.\left\{Q_{j}(x),\right)\right\}_{j=0}^{k-1}$. The system $\left\{H_{j}\right\}_{j=0}^{k-1}$ is said to satisfy the complementary conditions with respect to \mathbb{A} on $\partial \Omega$ (or to cover A on $\partial \Omega$, if for each $x \in \partial \Omega$ and $\xi, \xi^{\prime} \in E^{N}$ $\backslash\{0\}$ such that ξ is tangent and ξ^{\prime} is normal to $\partial \Omega$ at the point x, the polynomials $\left\{Q_{j}\left(x, \xi+t \xi^{\prime}\right)\right\}_{j=0}^{k-1}$ in the complex variable t are linearly independent mod the polynomial $M\left(x, \xi, \xi^{\prime}, t\right)$.

Let $\left\{B_{j}\right\}_{j=0}^{2 m-1}$ be a Dirichlet set of order $2 m$ on $\partial \Omega$. Suppose that coefficients of B_{j} are in $C^{\infty}(\partial \Omega)$ and denote by m_{j} the order of B_{j}. Then there exists a unique syatem $\left\{B_{j}^{\prime}\right\}_{j=0}^{2 m-1}$ of operators on $\partial \Omega$ which is a Dirichlet one of order 2 m on $\partial \Omega$ so that coefficients of B_{j}^{j} are in $C^{\infty}(\partial \Omega)$, the order of B_{j}^{\prime} is $2 m-1-m_{j}$ and the equality $\int_{\Omega} v A u d x=\int_{\Omega} \mu A^{\prime} v d x+\int_{\partial \Omega} \sum_{j=0}^{2 m-1} B_{j} \mu B_{j}^{\prime} v d S$,
where A^{*} is the formal adjoint of A, holds for each $u, V \in$ \& $C^{\infty}(\bar{\Omega})$ (see [2]). Denote

$$
\begin{aligned}
& U=\left\{\nabla \in C^{\infty}(\bar{\Omega}) ; B_{j} \nabla=0 \text { on } \partial \Omega, 0 \leqslant j \leqslant m-1\right\}, \\
& U^{*}=\left\{\nabla \in C^{\infty}(\bar{\Omega}) ; B_{j}^{\prime} \nabla=0 \text { on } \partial \Omega, m \leqslant j \leqslant 2 m-1\right\} .
\end{aligned}
$$

Theorem 2.1. Iet $A^{-1}(0) \cap U=\{0\}$ and suppose that $\left\{B_{j}\right\}_{j=0}^{m-1}$ satisfy the complementary conditions with respect to A on $\partial \Omega$. Then for each $p>1$ there exists $c_{p}>0$ so that the inequality
 hold s for each $u \in C^{\infty}(\bar{\Omega})$.

Proof of this theorem can be found in [6].
Remark 2.1. Under assumptions of Theorem 2.1 for each $p>1$ there is $c_{p}>0$ such that the inequality (2.1) $\|\mu\|_{m, p} \leq c_{p}\left({\underset{\sim}{v i p}}_{\|v\|_{m, p^{\circ}}=1} \int_{\Omega} v A \mu d x+\sum_{j=0}^{m-1}\left\|B_{j} \mu\right\|_{m-m_{j}-1 / r, R_{2}}\right)$ where

$$
\begin{aligned}
V^{\prime}=\left\{v \in C^{\infty}(\bar{\Omega}) ; B_{j}^{\prime} v=0 \text { on } \partial \Omega \text { for } j\right. \text { such that } \\
\left.m \leq j \leq 2 m-1, m_{j} \geq m\right\}
\end{aligned}
$$

hold s for each $u \in C^{\infty}(\bar{\Omega})$.
Proof. Obviously $U^{\prime} \subset V^{\prime}$. Let $U_{p^{\prime}}^{\prime}$, resp. $V_{p^{\prime}}^{\prime}$, be the closure of U^{\prime}, resp. V^{\prime}, in $W_{p}^{m}(\Omega)$ and $\forall \in V_{p, n}^{\prime} \cap C^{\infty}(\Omega)$. Then there is a function $w \in C^{\infty}(\bar{\Omega})$ such that w belongs to the closure of $D(\Omega)$ in $W_{p_{0}}^{m}(\Omega)$ and $V-w \in U^{\circ}$ (see; e.g. [7]). As $D(\Omega) \subset U$, we have $v=(v-w)+w \in U_{p}^{0}$. Thus $V_{p}^{\prime}, \in U_{p}^{\prime}$, and (2.1) follows.
3. A regularity theoreme At first let us fix notation. Let

$$
\begin{aligned}
& A=\sum_{|\alpha|,|\beta| \leq m}(-1)^{|\alpha|} D^{\alpha}\left(a_{\alpha \beta}(x) D^{\beta}\right) \\
& \tilde{A}=\sum_{|\alpha|,|\beta| \leq m}(-1)^{|\alpha|} D^{\alpha}\left(\sigma_{\alpha \beta \beta}^{\sim} D^{\beta}\right)
\end{aligned}
$$

where $a_{\alpha, \beta} \in L^{\infty}(\Omega)$ and $\delta_{\alpha \beta \beta}$ is the Kronecker symbol. De-- note by B and \widetilde{B} the corresponding bilinear forms on
$w_{p}^{m}(\Omega) \times w_{p}^{m},(\Omega)$, i.e.

$$
\begin{aligned}
& B(u, v)=\int_{\Omega} \sum_{|\alpha|, 1 \beta \mid \leq m} a_{\alpha \beta} D^{\alpha} v D^{\beta} u d x, \\
& \widetilde{B}(u, v)=\int_{\Omega} \sum_{|\alpha 1,|\beta| \leq m} \delta_{\alpha \beta}^{\sim} D^{\alpha} v D^{\beta} u d x .
\end{aligned}
$$

Let $\left\{B_{j}\right\}^{3}{ }_{j=0}-1$ be a Dirichlet set of order m on $\partial \Omega$ of operators with coefficients in $C^{\infty}(\partial \Omega)$. Denote by m_{j} the order of B_{j}. Let us fix some integer $r \in\langle 0, m-1\rangle$ and set

$$
V=\left\{\nabla \in C^{\infty}(\bar{\Omega}) ; B_{j} \nabla=0 \text { on } \partial \Omega, 0 \leqslant j \leqslant r-1\right\} \text {. }
$$

By ∇_{p} denote the closure of V in $w_{p}^{m}(\Omega)$. There exists a unique normal set on $\partial \Omega$ of operators $\left\{F_{j}\right\}^{\frac{m-1}{j}=0}$ with coefficients in $\mathrm{C}^{\infty}(\partial \Omega)$ so that the order of F_{j} is $2 \mathrm{~m}-1-m_{j}$ and the equality

$$
\widetilde{B}(u, v)=\int_{\Omega} v \widetilde{A} \mu d x+\int_{\partial \Omega} \sum_{j=0}^{m-1} B_{j} v F_{j} u d S
$$

hold s for each $u, \nabla \in C^{\infty}(\bar{\Omega})$.
Definition 3.1. Let $p \geq 2, f_{\alpha} \in I^{p}(\Omega)$ far $|\propto| \leqslant m$, $u_{0} \in W_{p}^{m}(\Omega), g_{j} \in I^{p}(\partial \Omega)$ for $r \leqslant j \leqslant m-1$.

A function $u \in W_{p}^{m}(\Omega)$ is said to be a solution of the variational problem

$$
\begin{equation*}
u-u_{0} \in V_{p} \tag{3.1}
\end{equation*}
$$

$(3.1)_{b} \quad B(u, v)=\int_{\Omega} \sum_{\mid<l \leqslant m} f_{\alpha} D^{\alpha} \nabla d x+\int_{\partial \Omega} \sum_{j=r}^{m-1} g_{j} B_{j} v d S$,
if (3.1) a is satisfied and (3.1) b holds for each $V \in V_{p^{\prime}}$.
Lemma 3.1. Let $q>2$. Then there exists $c_{q}>0$ so that
for each $p \in\langle 2, q\rangle, f_{\propto} \in I^{p}(\Omega),|\propto| \leqslant m$, there is a unique solution $u_{p} \in W_{p}^{m}(\Omega)$ of the variational problem (3.2) $\quad\left\{\begin{array}{l}u \in V_{p}, \\ \widetilde{B}(u, v)=\int_{\Omega} \sum_{|\propto| \leqslant m}^{1} f_{\propto} D^{\alpha} v d x,\end{array}\right.$
and

$$
\begin{equation*}
\left\|u_{p}\right\|_{m, p} \leqslant c_{q}^{1-2 / p}\left(\sum_{|\alpha| \leqslant m}\left\|f_{\alpha}\right\|{ }_{0, p}^{p}\right)^{1 / p} . \tag{3.3}
\end{equation*}
$$

Proof. Let $p \in\langle 2, q\rangle$ and $f_{\propto} \in I^{P}(\Omega)$. For $|\propto| \leq m$ let $\left\{f_{\infty}^{(n)}\right\} \subset \partial(\Omega)$ be such a sequence that $f_{\infty}^{(n)} \longrightarrow f_{\infty}$ in $I^{p}(\Omega)$. The bilinear form B is coercive in V and therefore the operators $B_{0}, \ldots, B_{r-1}, F_{r}, \ldots, F_{m-1}$ cover \widetilde{A} on $\partial \Omega$ (see, e.g.[4]; this holds for more wide class of bilinear forms and boundary operators and a proof different of the one in [4] can be given (to appear)). For each $n \in N$ let $u^{(n)} \in C^{\infty}(\bar{\Omega})$ be the unique solution of the classical b.v.p.

$$
\begin{aligned}
\widetilde{A}_{u} u^{(n)} & =\sum_{|\alpha| \leq m}(-1)^{|\alpha|} f_{\alpha}^{(n)} \text { on } \Omega, \\
B_{j} u^{(n)} & =0 \text { on } \partial \Omega, 0 \leq j \leq r-1, \\
F_{j} u^{(n)}=0 & \text { on } \partial \Omega, r \leq j \leq m-1 .
\end{aligned}
$$

Then $u^{(n)}$ is a solution of (3.2), where $f_{\infty}^{(n)}$ is written in place of f_{∞}. As A is formally selfadjoint, we have

$$
\begin{gathered}
\int_{\Omega} v \tilde{A} \mu d x=\int_{\Omega} u \widetilde{A} v d x+\int_{\partial \Omega} \sum_{j=0}^{m-1}\left(B_{j} u F_{j} v-B_{j} v F_{j} u\right) d S, \\
\mu, v \in C^{\infty}(\bar{\Omega}) .
\end{gathered}
$$

By Theorem 2.1 and Remark 2.1 there is $c_{p}>0$ such that

$$
\begin{aligned}
\left\|\mu^{(n)}\right\|_{m, \uparrow} & \leq c_{p} \sup _{\|v\|_{m, p}=1} \int_{\Omega} v \tilde{A} \mu d x \leq \\
& \leq c_{p}\left(\sum_{|\alpha|=m}\left\|f_{\infty}^{(n)}\right\|_{0, p}^{12}\right)^{1 / \uparrow} .
\end{aligned}
$$

Thus $\left\{u^{(n)}\right\}$ is a Cauchy sequence in $w_{p}^{m}(\Omega)$. Denote $u_{p}=$ $=\lim u^{(n)}$ in $w_{p}^{m}(\Omega)$. Then u_{p} is the unique solution of (3.2) and
$\left\|\mu_{\nless 2}\right\|_{m, \uparrow} \leq c_{\uparrow}\left(\sum_{|\alpha| \leqslant m}\left\|f_{\alpha}\right\|_{0, \uparrow}^{p}\right)^{1 / \uparrow}$.
The constant c_{2} can be taken equal to 1. Now, let us interpolate between 2 and q according to Riesz-Thorin's theorem (see, e.g.[8]) and (3.3) follows.

Lemma .3.2. Let $q>2$. Then there exists $c_{q}>0$ so that for each $p \in\langle 2, q\rangle, g_{j} \in L^{p}(\partial \Omega), r \leqslant j \leqslant m-1$, there is a unique solution $u_{p} \in w_{p}^{m}(\Omega)$ of the variational problem
$u \in \nabla_{p}$,

$$
\tilde{B}(u, v)=\int_{\partial \Omega} \sum_{j=r}^{m-1} g_{j} B_{j} v d s
$$

and

$$
\left\|u_{p}\right\|_{m, p} \leqslant c_{q}\left(\sum_{j=r}^{m-1}\left\|g_{j}\right\|_{o, p}^{p}\right)^{1 / p}
$$

The proof is similar to the one of Lemma 3.1 and is omitted. Note only that there is used the fact that $I^{P}(\partial \Omega) e$ $c W_{p}^{-s-1 / p}(\partial \Omega)$ with continuous injection for $s \geq 1$, integer.

Corollary 3.1. Let $q>2$. Then there exists $c_{q}>0$ so that for each $p \in\langle 2, q\rangle, f_{\propto} \in I^{p}(\Omega),|\propto| \leq m$, and $g_{j} \in$ $\epsilon I^{p}(\partial \Omega), r \leqslant j \leqslant 母-1$, there is a unique solution $u_{p} \in \mathbb{w}_{p}^{m}(\Omega)$
of the variational problem

$$
\begin{aligned}
& u \in V_{p}, \\
& \widetilde{B}(\mu, v)=\int_{\Omega} \sum_{|\alpha| \leqslant m} f_{\propto} D^{\alpha} v d x+\int_{\partial \Omega} \sum_{j=\Omega}^{m-1} g_{j} B_{j} v d S
\end{aligned}
$$

and

$$
\left\|\mu_{p}\right\|_{m, \uparrow} \leqslant c_{q}^{1-2 / \uparrow}\left(\sum_{|\alpha| \leq m}\left\|f_{\infty}\right\|_{0, \uparrow}^{1, ~}\right)^{1 / n}+c_{q}\left(\sum_{j=\pi}^{m-1}\left\|g_{j}\right\|_{0,1}^{12}\right)^{1 / \uparrow}
$$

Remark 3.1. Using the same proof method, one can prove the following assertion: If $a_{\alpha \beta} \in C^{\infty}(\bar{\Omega})$ and A is formalfy selfadjoint and V-elliptic (i.e. $A=A^{\prime}$ and there is $c>0$ such that $B(\nabla, \nabla) \geq c\|v\|_{m, 2}^{2}$ for $\left.v \in \nabla\right)$, then for each $q>2$ there is $c_{q}>0$ such that for each $p \in\langle 2, q\rangle, P_{\propto} \in I P(\Omega)$, $|\propto| \leq m$, and $g_{j} \in L^{p}(\partial \Omega), r \leq j \leq m-1$, there is a unique solution $a_{p} \in w_{p}^{m}(\Omega)$ of $(3.1)_{a},(3.1)_{b}$ with $u_{0}=0$ and

$$
\left\|\mu_{p}\right\|_{m, k} \leq c_{q}\left[\left(\sum_{|\alpha| \leq m}\left\|f_{\alpha}\right\|_{0, p}^{p}\right)^{1 / \eta}+\left(\sum_{j=j}^{m-1}\left\|g_{j}\right\|_{0, p}^{1 / 2}\right)^{1 / \eta}\right] .
$$

Theorem 3.1. Let $a_{\alpha \beta} \in L^{\infty}(\Omega)$ and $a_{\alpha \beta}=a_{\beta \alpha}$ for $|\alpha|,|\beta| \leq m$ and

$$
\text { (3.4) } c_{1}|\xi|^{2} \leqslant \sum_{|\alpha|,|\beta| \leqslant m} a_{\alpha \beta}(x) \xi_{\alpha} \xi_{\beta} \leqslant c_{2}|\xi|^{2}
$$

uniformly in Ω for some $0<c_{1}<c_{2}$. Then there exists $P>2$ so that for each $p \in\langle 2, P)$ there is $c(p)>0$ such that for each $f_{\propto} \in I^{p}(\Omega),|\propto| \leqslant m, u_{0} \in \mathbb{M}_{p}^{m}(\Omega)$, and $g_{j} \in I^{p}(\partial \Omega)$, $r \leqslant j \leq m-1$, there is a unique solution $u_{p} \in \mathbb{w}_{g}^{m}(\Omega)$ of (3.1) $)_{a}$, $(3.1)_{b}$ and
(3.5) $\left\|\mu_{\nmid 2}\right\|_{m, \uparrow} \leq c(\nmid)\left(\sum_{|\alpha| \leq m}\left\|f_{\alpha}\right\|_{0, \uparrow}+\right.$

$$
\left.+\sum_{j=0}^{r-1}\left\|B_{j} \mu_{0}\right\|_{m-m_{j}-1 / p, \uparrow}+\sum_{j=r}^{m-1}\left\|g_{j}\right\|_{0,12}\right) .
$$

Proof. At first suppose that $a_{\alpha \beta} \in C^{\infty}(\bar{\Omega})$ and $u_{0}=$ $=0$. Let $q\rangle 2$ be arbitrary, $p \in\langle 2, q\rangle, f_{\infty} \in L^{P}(\Omega), g_{j} \in$ $\epsilon I^{p}(\partial \Omega)$. Then by Remark 3.1 there is a unique solution u of $(3.1)_{a},(3.1)_{b}$, which belongs to $w_{p}^{m}(\Omega)$. The equality

$$
\begin{aligned}
\widetilde{B}(\mu, v) & =\int_{\Omega} \sum_{|\alpha| \leq m}\left(\sum_{|\beta| \leq m}\left(o_{\alpha \beta}^{\sim}-c_{2}^{-1} a_{\alpha \beta}\right) D^{\beta} \mu\right) D_{v}^{\alpha} d x \\
& +c_{2}^{-1} \int_{\Omega} \sum_{|\alpha| \leq m} f_{\alpha} D^{\alpha} v d x+c_{2}^{-1} \int_{\partial \Omega} \sum_{j=r}^{m-1} g_{j} B_{j} v d S
\end{aligned}
$$

is satisfied for each $\nabla \in V_{p}$, If c_{3} is the number of all \propto, for which $|\propto| \leqslant m$, then

$$
\begin{aligned}
& \left(\int_{\Omega} \sum_{|\alpha| \leq m}\left|\sum_{|\beta| \in m}\left(\sigma_{\alpha \beta}-c_{q}^{-1} a_{\alpha \beta \beta}\right) D_{\mu}^{\beta}\right|^{12} d x\right)^{1 / 2}=
\end{aligned}
$$

$$
\begin{aligned}
& \leq \operatorname{sen} 2 \int_{\Omega}\left(\sum_{\left|\alpha 1_{1}\right| \beta \mid \leqslant m}\left(\delta_{\alpha \beta}-c_{2}^{-1} a_{\alpha \beta}\right) h_{\alpha} h_{\beta}\right)^{1 / 2}\left(\sum_{|\alpha|,|\beta| \leqslant m}\left(\delta_{\alpha \beta}-c_{2}^{-1} a_{\alpha \beta}\right) D_{\mu \alpha}^{\alpha} D D^{\beta}\right)^{1 / 2} d x \leq \\
& \leq\left(1-c_{1} c_{2}^{-1}\right) \sup \int_{\Omega}\left(\sum_{|\alpha| \leqslant m} \sin _{\alpha}^{2}\right)^{1 / 2} \cdot\left(\sum_{|\alpha| \leq m}\left(D^{\alpha} \mu\right)^{2}\right)^{1 / 2} d x \leq \\
& \leq\left(1-c_{1} c_{2}^{-1}\right) \sup \left(\int_{\Omega}\left(\sum_{|\alpha| \leq m} k_{\alpha}^{2}\right)^{p^{\prime} / 2} d x\right)^{1 / p^{\prime}} \text {. } \\
& \text { - }\left(\int_{\Omega}\left(\sum_{|\alpha| \leq m}\left(D^{\alpha} \mu\right)^{2}\right)^{p / 2} d x\right)^{1 / 2} \leqslant \\
& \leq\left(1-c_{1} c_{2}^{-1}\right) c_{3}^{\frac{1}{2}\left(1-\frac{2}{12}\right)}\|u\|_{m, \neq} .
\end{aligned}
$$

By Corollary 3.1 there is $c_{q}>0$ such that

$$
\|u\|_{m, p} \leqslant c_{q}^{1-2 / p} c_{2}^{-1} \sum_{\mid \propto 1 \leqslant m}\left\|f_{o c}\right\|_{0, p}+c_{q} c_{2}^{-1} \sum_{j=r}^{m-1}\left\|g_{j}\right\|_{0,1}
$$

$$
+\left(1-c_{1} c_{2}^{-1}\right)\left(c_{2} c_{3}^{1 / 2}\right)^{1-2 / \imath}\|u\|_{m, p}
$$

Therefore for $p \in\langle 2, q\rangle$ satisfying

$$
\left(1-c_{1} c_{2}^{-1}\right)\left(c_{2} c_{3}^{1 / 2}\right)^{1-2 / 1}<1,
$$

which is equivalent to

$$
\begin{equation*}
\Re<P(q)=\frac{\log c_{q}^{2} c_{3}}{\log \left[c_{q} c_{3}^{1 / 2}\left(1-c_{1} c_{2}^{-1}\right)\right]} \tag{3.6}
\end{equation*}
$$

we have
(3.7) $\|\mu\|_{m, \uparrow} \leq c(\eta, q)\left(\sum_{|\alpha| \leqslant m}\left\|f_{\infty}\right\|_{0, \eta}+\sum_{j=r}^{m=1}\left\|g_{j}\right\|_{0, \eta}\right)$, where $c(p, q)>0$ does not depend on f_{α} and g_{j}.

Suppose now that $a_{\alpha \beta} \in L^{\infty}(\Omega)$. For $|\alpha|,|\beta| \leq m$ let $\left\{a_{\alpha \beta}^{(n)}\right\} \subset C^{\infty}(\Omega)$ be such a sequence that (3.4) holds with $a_{\alpha \beta}^{(n)}$ in place of $a_{\alpha \beta}$ and $a_{\alpha \beta}^{(n)} \rightarrow a_{\alpha \beta}$ in measure on Ω. Let $\left\{u^{(n)}\right\} \subset w_{p}^{m}(\Omega)$ be the sequence of corresponding solutions. By (3.7) we can suppose without loss of generality that $\left\{u^{(n)}\right\}$ is weakz convergent in $w_{p}^{m}(\Omega)$ to some function $\tilde{u} \in w_{p}^{m}(\Omega)$, whenever p satisfies (3.6). Then \tilde{u} is the unique solution of $(3.1)_{a},(3.1)_{b}$ and $(3,7)$ holds for \widetilde{u}, as well.

Finally, let $0 \neq u_{0} \in \mathbb{W}_{p}^{m}(\Omega)$ and suppose that p satisfies (3.6). Further, suppose (without loss of generality - see, e.g. [7]) that
(3.8) $\left\|\mu_{0}\right\|_{m, p} \leqslant c(\imath) \sum_{j=0}^{n-1}\left\|B_{j} \mu_{0}\right\|_{m-m_{j}-1 / \imath, \imath}$,
where $c(p)$ depends only on p and Ω. By the above considerations there is a unique solution $w_{p} \in W_{p}^{m}(\Omega)$ of (3.1) $)_{a}$,
(3.1) ${ }_{b}$ with homogeneous boundary condition (3.1) a and with $f_{\alpha}-\sum_{|\beta| \leqslant m} a_{\alpha \beta} D^{\beta} u_{0}$ in place of $f_{\alpha} \quad$ in $(3.1)_{b}$ and
(3.9) $\left\|w_{p}\right\|_{m, \uparrow} \leq c(p, q)\left(\sum_{|\alpha| \leqslant m}\left\|f_{\infty}\right\|_{0, \uparrow}+\right.$

$$
\begin{aligned}
& +c_{2} c(p) \sum_{j=0}^{r-1}\left\|B_{j} \mu_{0}\right\|_{m-m_{j}-1 / \imath, \eta}+ \\
& +\sum_{j=x}^{m-1}\left\|g_{j}\right\|_{0, \eta} .
\end{aligned}
$$

The function $u_{p}=w_{p}+u_{o}$ is the unique solution of (3.1) ${ }_{a}$, $(3.1)_{b}$ and (3.5) follows from (3.8) and (3.9). Obviously, it suffices to set

$$
P=\sup _{q>2} \min (q, P(q))
$$

The theorem is proved.

Remark 3.2. The condition (3.4) can be weaker for some special problems. For instance, if $\left\{B_{j}\right\} \underset{j=0}{\substack{-1}}$ is a Dirichlet set of order r on $\partial \Omega$, then it suffices to suppose that $a_{\alpha \beta \beta}=a_{\beta \alpha}$ only for $r \leqslant|\propto|,|\beta| \leqslant m$ and that

$$
c_{1}|\xi|^{2} \leq \sum_{r \leqslant|\alpha|,|\beta| \leqslant m} a_{\alpha \beta}(x) \xi_{\infty} \xi_{\beta} \leqslant c_{2}|\xi|^{2}
$$

uniformly on Ω.
Remark 3.3. The conditions on $\partial \Omega$ and coefficients of $\left\{B_{j}\right\} \underset{j=0}{m-1}$ need not be so strong as they are supposed in Theorem 3.1. Analysing methods of proofs, we see that validity of used a priori estimates and an existence of classical solutions of the considered classical boundary value problems are sufficient. The weakened conditions on the exis-
tence of classical solutions are described in [1] and one can verify that proofs of a priori estimates in [6] (which are based on [1]) remain valid under those conditions, too.

References

[1] S. AGMON, A. DOUGIIS and I. NIRENBERG: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math. 12 (1959), 623-727.
[2] J.L. LIONS and E. MAGENES: Problèmes aux limites non homogenes et applications, Lunod, Paris, 1968.
[3] N.G. MEYERS: An I^{p}-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa 17(1963), 189-206.
[4] J. NEČAS: Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967.
[5] J. NEČAS: Sur la régularité des solutions variationnelles des équations elliptiques non-linéaires d'ordre $2 k$ en deux dimensions, Ann. Scuola Norm. Sup. Pisa 21(1967), 427-457.
[6] M. SCHECHTER: Coerciveness in L^{p}, Trans. Amer. Nath. Soc. 107(1963), 10-29.
[7] L.N. SLOBODËCKIJ: Estimates in I^{p} of solutions of $\in 1-$ liptic systems (Russian), Dokl. Akad. Nauk SSSR 123(1958), 616-619.
[8] A. ZYGMUND: Trigonometrical series, Cambridge, 1959.

```
Matematicko-fyzikalnf fakulta
Karlova universita
Sokolovská 83, 18600 Praha 8
Ceskoslovensko
```

 (Oblatum 26.2. 1976)