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COMMENTATICNES MATHEMATICAE UNIVERSITATIS CAROLINAE

17,3 (1976)

IWIN PRIME PROBIEM IN AN ARITHMETIC WITHOUT INDUCTION

J. MISEK, Praha

Abstract: We prove that the twin prime problem is
undecidable in a first-order ,arithmetic without induc-
tion, stronger than Robinson’'s arithmetic.

Key words: First-order arithmetic without induc-
tion, twin prime problem, undecidable.

AMS: O2HO5, Q2H15, 10NO5 Ref, Z.: 2,666

Introductiom. In this paper we prove that the twin

prime problem is undecidable in certain first-order arith-
metic Ar without induction.

Moreover, our Ar will be stronger than Robinson’s
arithmetic (but weaker than Peano one). We will present

a parametrical construction of a substructure of a fixed

non-standard model YL of Peano arithmetic., As parameters
we will have a submodel of Ar and a non-standard element
of ¥4 . The required models are obtained by an appropri-

ate choice of parameters.

§ 0. Preliminaries

0.0.0, Let L be a first-order langusge with a bina-
ry predicate < . Iet ¢ (x) be a formula of L. We deno-
te by (3x) @(x) the formula (V y)(Ix)(y<x & & (x)),
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where y is not a variable of ¢ . Let €L and & be
structures for L. By ‘¢4 ¢ & (€ < % ) we mean that
€L is a substructure of £ ( YL is an elementary sub-
structure of & ). The language obtained from L by add-
ing all the names & of individuals a of < is denoted
by L(UL). We expand €4 to a structure €4 for L{ <L)
as follows: if g is the name of an individual a of ¢
then ¥ assigns a to a. Let M be a nonempty subset of

¢ (where ¥4 = A is the universe of ¥L ). If there
is a substructure of ¥4 with universe M then it is de-
~signated by <€ /M.

The expression ‘L c & ( €L < £ ) stands for 1)
UWae L (CL<$), 2),if ach and beB, then a<’b,
(¥ is an (elementary) end-extension of %L .) Writing
Y cdr we mean that €& S & and A+B. (fH is a wo-
per end-extension of U .) L < ¥ is defined analogous-—
1y.

0.1.0., The language J of Peano arithmetic P is
{0%,+,¢,<) . Iet % Dbe the standard model of P. For

[ LTI

neN we denote by n the constant term O , where ‘ is
applied n-times,

i,j,k,l,n:,n are variables fof elements of N,

Remark. We work in the logic with equality.

0.1.1. ILet s(i),'i =1,...,5 be symbols such that
8(1) is the binary predicate x| y, 8(2) is the unary pre-
dicate Prm(x), 8(3) is the unery predicate Prm,(x), s(4)
is the binary function e(x,y), and 8(5) is the binary func-

tion r(x,y).
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et ¢y, i =1,2,3,4,5 be the following formulas:
¢, is the formula (3 2)(y = x.2), <, is the formula
ylx—>(y =1vy = x), 3 is Prm(x) & Prm (x + 2),
g, is (x>0&y>i&yz[x&y2+l* x)v((x =0vys1) &z = 0),
g5 is (x>0% ¥>1l & (3w(u = elx,y) & x = y*.2)) v
vi(x=0vy<1)& z = 0).

Remark. By x,{'y we mean 7 (x| y).

Let P designate also the theory obtained from P by
adding the functions x ‘and the symbols s(i) defined by
95, i = 1,...,5.

0.1.2. Throughout the paper, W , <€t,, €%, 72
are non-standard models of P such that

u4m0<<ma4 ‘(IL,‘é‘(IL

and o is a fixed element of A - A;. We use McDowell-
Specker ‘s theorem. (See [13.)

If there is no danger of confusion, we write +,., <
etc. instead of +%’.%’ <% etc.

Let ‘* be “integers over €L ". <«L¥ is an ordered
domain, If a, b are elements of .A¥, - a designates the
inverse element of a, a - b designates & + (-b), and lal
designates absolute v_alue of a. If b| a, we denote by %
the element ¢ with a = b.c. For BEA, we put B ={-a; a ¢
€B} and B¥ =B uUB, If $#S € and Ik x<y —

—> (32)(240&x + 2z = y) then $*= <<CL*/B is a subdo-

main of <CU* .,

§ 1. Arithmetic Ar and some models of it

1.0.0, Ar is a first-order theory with the language
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J. The nonlogical axioms of Ar are the following:

(a) =+0=x . x.0 =0
X+y=y+x Xy =YX
x+(y+2)=(x+y)+2z X. (yoz) =(Xe¥) ez
x+y = (x+y) ) Xy =Xy + 2

X.(y + 2) = Xy + x.2
(b) 1) =~(x x)
2) X<cy&ky<z—> x<z

3) X<yVx = yvy<x

4) x<y'e> z<yvx =y
5) 0<xv0O =x
6) O<x— (A3y)(y’ = x)

7)) x<ye«>»(32z40)(x+ 2z =y)
(¢) x<y&0<usv—»> x + ucy + v&x.ucy.v
() (schema) {d,; neN - 403%,
where J) is the formula (Vx)(3y<x)(3z<B)(x +y.3 + z).
1.0.1. Proposition. The following sentences are prov-
able in Ar:
(1) x30 —> (Iy)(Vz)(y<x&z<x—>222y),
(ii) x<y—> x'<y’,
(iii) x" =y—>x =y,
(iv) x<y—> x%y.
- 1.0.2. Let Ar designate also the theory obtained from
Ar by adding the symbols s(i) defined by <; , i =1,2,3.
l.1.0. Let M, Dbe a model of Ar such that
@, € w, s YU,
Let sed..

We define, for i = 0,1,
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¥, [el= -(ockak +.eotocag +a; keN-103, aj,...
cee,a € M, 8, >0, &€ M;‘, ot

there exists an e€ A, - N such that 8® |1 815000

e l’m# al,
Mi;(8) =My, [8Tuly.

Lemma. Let ael,, i = 0,1. Then there is precisely

eee,S

* *
one keN and 8qyeeeyBy € My, a,>0, a e M such that

a=mkak+ cee + “Jal"' aoo

Proof is obvious.

Notation. For asuli[ sl, i =0,1, we denote by v(a)
the standard mumber k and by 8q1)e00,8, elements of llf,
ag> 0, and a  element of MY such that a = ookak ¥ e
cee + « ag + a,e.

lemma, Hli(s) is the universe of a substructure of
o i=o0,l.

Proof. Iet a, beM;; [s1 . Obvously a’e u,; s,
Let v(a)£v(b). For 0£i<v(a) we have (a + b); = & + b,
for v(a)< i<v(b) we have (a + b); = b;. There is an e €

e |dt* .

€ A, - N such that s l 1 a3, i =1,...,v(a),
e | .
8 | 1 by, 1 = 1,...,v(b). Consequently, a + bellli[s] .

We also have (a.b) =&+§;:_ ab, ; for i> 1 we have

m*
g® | ¥ ‘“%” 8yb, . Thus, a.bely; [81. Similerly
for aeM; and benli[ 8l etc.
1.1.1. We put 'mlim

«amn(s), i=0,1, We
write W, for W, (s), i = 0,1,
1.1.2, Theorem. Let n|s for every ne& N. Then

M (&) Ar, i=0,1.
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Proof, We have %L, ¥ . Only the axioms (b6),
(b7) and the schema (d) are not general closures of open
formlas'and, consequently it suffices to prove that mli
is & model of these axioms. Obviously %%, ¢ (b6). We
will prove L,;k= (b7). Let a,beM;;Ls] and a<b. Thus
v(a)£v(b). If v(a) = v(b), put j = max 1i; ay+b; ¥. If
by = a-‘<0, the.n we have “’J(b.i - aj) + eeo + (by - a)s
I St B P B P

- Y+ oc‘]-l.j.max {lbi - ail 51 =05000y jJ=-1%=< 0.

Thus bj - ay> O. On the other hand, if v(a)< v(b) then

obviously b - meMy; [ 81 . Thus 9, = (b7). It remains

to prove the aschema (d). let neN, n>0, aeM,;[8]1, k =

= v(a), There are ¥ e M}, B e 1 such that 048 <n and
P

ao s n.&o + aon

a a,
Put b = ook.—T'::’;- + 00 + ¢, 71—- 'i'o. There exists

* [- 74
en esh, - N such that 8® |7 o, % & M*ema

-
wWE o,
oo | M4 24 5=, k. Consequently, beu;Lsl.

Bvidently & = n.b + ?o. Hence 'mli = or'n. )

1.2.0, Let M & || , aeM. We say that a is decom-
posable in M if there are b, ce€ M such that & = b.c.

1.2.1. lemma. ILet acMy30s], & e41-1,13, v(a)z2,
Then a is decomposable in My;[s], i = 0,1,

Proof, &, =1, let d, eeA - N, e<d, &M}, a; =
~ _d+e
?

= ai.s

i=1,.005k, k=v(a)e Let x, =y, =1, xy =
= 8% and Fi41© 8441 yi.se if 04i<k - 1 and ’k—i =

- &t
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. Y u¥* ;= - = &1
Obva.‘ously, -,J—Egml, i=1,..00k - 1. Thus, y = .,“_&.1.4_

4o.0t 1€ u.li[s], x = c_x,.se + leuli_[sl. We have (x.y)o =1,
e
(x.y)i =y * s® Fia1 T8 = ¥3.qe8 F yi-l'se =a; for § =
= 1l,..0,k = 1 and (x.y)k = g® V-1 = 8- Consequently, g =
= x,y. Analogously for a, = -1,
1.2,2., Lemma, Let ac€ Mli[B], beli, i=o0,1.
. * .
(1) If @-tlib Elg then gl P_\sj’ J=O,...
eeeyv(a)e
‘s yy
(ii) If b|s end Wiwb|e then W .- Db | &
Proof. (i) If a = b.c and celllil'. 81, then 8 = b'ci'
i=0,1,...,v(a).
. » aL * .
(ii) We have S € Ay and hence = e My, i=1,.,,

. @,
eeeyv(a). Since -39 € M;_", the statement follows.

§ 2. The consistency of Ar with (2 x)Pra(x) and
with (3 x)Prm(x) & 1 (3 x)Prm,(x)
The models in question are mlo(s) with Q’ll =

1
2.0.0. Theorem, Aru{- (3 x)Prm(x)? is consistent.
Proof. Let LeA, - M, 8 = Ll . We prove that @Lm =

= mlo(s) (with @, = ;) is the required model., First,

s€A  and for every standard n we have n | s. Thus,
W, (s)k= Ar follows by 1.1.2.
let acM, [sl, v(a)22, If a, = % 1, then
mlo"" Prm(a) follows from 1.2.1. If &, = O then evi-
dently 9, &= Prm(a). If a,§40,41,-1%, then lajle
€M, and la | Im’w a (this follows from la | ‘ s and
(ii) of 1.2.2). Consequently, ae Mlols]md v(a) 22 implies
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W, = a<x — 1 Pro(x).

Now, we will prove the consistency of Ar with

(5 x)Prm(x) & 1 3 x)Prmy (x) .«

2.1,0. As it is well known,

(i) P+Prm(p)%p|x.y—>p| xvp|y,
(ii) P+ Pm(p)&p,{’z&z‘»px.y——)z\y.

2,1.1., ILet pelﬁo - N be prime, Ler - Mo and
s = r(Ll,p).

(For the definition of r see 0.1.1.)
lemma, If deM_ and a>1, then r(a,p)|s.
Proof. We first prove that ce Mo and p /t' ¢ implies
¢ | 8. This follows from (ii) of 2.1,0 using ¢| L! and L! =
- pe(L!,p).a.
We have r(d,p)<d, hence r(d,p)e M, and p*r(d,p).
Consequently, r(d,p)| s.
As a consequence we obtain immediately!
Corollary. For every standard n, n| s.
2.1.2, et WM, = U,.
991, (s)t= &r follows from 1.1.2 by Corollary from 2.1.1.

Theorem, (1) mlo(s)b(éx)m(x),
(2) WMy (s) = 71 (I x)Pray(x).

Proof. (1) (a) Let a = eckak +aeM Lal, a €M,
aoelo, Prn(ao) and ao"’“k' We prove that a is mot decompo-
sable in M, [sl. If a = x.y and x, ye M; [ s8], then k22,
vix) + v(y) = k and Xye¥, = 8

o Let lxol =1, ly,| = a,.

If j<v(y) and ao\yi, i = 0,400y, then aol Y41 follows
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from O = 8541 =m+’§.= 341 X e¥ne

from 8y = xv(x)'yv(y)' which is a contradiction.

Thus a | & follows

(b) If ee A, - N, then we have Prn ®10 (¥s® + pl.
Proof. 8% + p is not decomposable in M, Lelby
21
(2). Let 1<b, beM and b l 10 ecks_e + p. Thus b | s® and
b|p and, consequently, b = P. Finally, p|s follows from
p I 8°, which is a contradiction.

Clearly, a€&M, [ sl implies x V(a)+1 ge

+ p>a, which
finished the proof of (1).
We will prove (2). Let a€l, Lsl, v(a)Zz2, .
(a) If & = O, then - Prm %10 (a) follows from s® m”"a‘
for some ec A, - N.
(®) If le | =1, then N prn P10 (a) follows by 1.2.1.
(e) If laol >1, and r(lajl,p)#1, then - Prm Blao (a).
Proof. r (layl,p) | & follows from r(la,l,p)e M by
using lemma in 2.1.1. Thus r{la,l,p) Wgo a follows from
(ii) of 1l.2.2.
(@) Let layl>1, r(lal,p) = 1. Let t be such that la | =
= pt.
(1) If a ,>1, then'r(|a,l,p)#+1 and 1 Prm 10 (a +2)
follows from (c).
(@2) If &, = -2, then (a+ 2), =0 and 71 Prm @10 (a + 2)
follows from (a).
(43) If a = -3, then |(a +2) | =1 and
< Prm P10 (4 + 2) follows from (b).
(a4) If a,<-3, then | (a + 2).0\ > 1. Let r('\ao + 2),p) =1,
Then there exists a © with la, +21= pq. Thus la,| -

~ -~
t. (pt-t

-laj+2l=2=p - 1), which is a contradiction.

- 551 -



Thus r(fa  + 2(,p)%1 and - Prm BLao (a + 2) follows
from (e¢).

Consequently, - Prm, P10 (a) follows from (a),(b),
(e),(a).

Let acM, [s8l, v(a)z2, Since ﬂlols§<x —_
~— 1 Prm,(x), the proof is completed,

v
§ 3. The consistency of Ar with (3 x)Prm,(x)
3.0.0, At first we are going to construct a model

W,. let PBe A; - A, be prime, LeA, - Nand s = Ll .

Pat ¥' = 43 .a; + a,; 8,>0, 8,€4,, a ¢ A7 and there is
an ec Ay ~ N with e'l 8 ¥,
and
- *
Hl =Mvu AO.
Lemma, If a€M’, then there is exactly one & €A, and
* =
a e A7 s‘uch that a = 3.2y + &, and a;>0.
Proof is obvious.
. Notation. For aeM’, we denote a,, &, the elements
’ * =
of A’{ such that & >0, a eA and a = R.a) + a,.
Lemma, M; is the universe of a substructure of U ,.
3.0.1, Put 9, = o, /M.
Lemna, (0) G, © W1, < €L,
(1) % = ar,
(2) there is a ceM’ such that %) }="Prm,(c).
Proof: (0) obvious. (1) can be proved similarly as
Theorem 1.1.2. (2): First, we shall prove the following
statements:

(a) aeM and neN imply n| a, and % 1¢ N, (Obvious.)
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(b) If aeM’, b€A , then D | & ani b| &, follows from
b lm" a.

(¢) If &, beM’, a.b = BZu+ vand ved®, a), djed,,
then a;b, + b;a, = 0. (Indeed, we have [S.a)b; + a;b, +
+bja, = .. Tus (| &by + bja, and &b + bja, = 0
follows from a;. | b | + bye lagl=<f3 o)

(@) Ifa= {sa.u +v, aeM’, u, v>0 and u, vEA,, then a
is not decomposable in M, (Let x, ye M” and x.y = a. Hence
v = xy, and, consequently sign(x ) = sign(y,).

If x,, y1€ A,, then X3, + yx, = 0 follows from (e).
Thus x,, y €A, implies sign(x )# signly ), a contradic-
tion. _

We have (B.u = @.xlyl + Xy, ¥y X,e If xl¢ A, and
sign(x ) = 1, then, obviously, ué A,, a contradiction. We
shall prove that u¢ A, follows from x1¢ A, and sign(x)) =
= -1, We have Xy « |75l < x3. , y3. Ix 1< y,. > . Thus

Polxy +y)>x. Lyl + 3.1 x 1, and consequently

: x
u> xlyl - (xl + yl) = (11. %ﬂ- - xl) + (yl. % - yl) >
. x '
>x +y, € & . (2] 34,21 x; and —ii-> 2, %1>2follova

from (a).) The statement (d) is proved.
let ecA - N, u= @2a° + 8% - 1. Ve prove
Prmzm" (u). Note that us is not decomposable in M (this
follows from (d) and s eA ). If a>1, ach and
'Qllbaalu, then a | 3 .8° and a|8® - 1. @ is prine,
thus & | 8® follows by using (ii) of 2.1.0, a contradiction.
We have Prm m‘l (u). Case u + 2 can be proved like the ca-

se u, Clearly, ue Ao and u is the required element c.
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3.1.0. Let @, s be as in 3.0.0. We have
mll(e)h Ar,

Theorem. W, (s) = 3 x)Prm, (x) .
Proof. (a) Let a€My;Lsl, v(a) =k, a4y = =a _,
243 WY

=...= 8, =0, Prm 1 (a)) and & ,{' 1 a, . Then
Prm Wy (a).

We shall first prove that a is not decomposalle in
M, [sl,
Contrarywise, assume that a = x.y and x, yeM;, [ sl. Then
XY, = &, and v(x) + v(y) = k. Let 1 x| =1, Iyl =2

o*
[21A4 s nLx X
Thus &/ l 1 ¥oe Let j<v(y) and a l 1 ¥3, i =0,1,...

n

o'oogj- l yj+1l ‘MED“? %n._.,lyn\ follows *from 0

=""*’n2=5'+4 X ¥y, and consequently a, l ¥j47+ Thus
im* i, 1= 0,...,v(y). We have a, = Xy (x) *Ty(y)*
Consequently, &, l &, a contradiction.
Let beM;, b>1 and b lm'" a, Then b l &, and
b Im” a,. Thus b = a_, a contradiction.

. V7 A
(b) ILet eeA, - N, pe My - A  with Prm, 1 (p) (by
using (2) of 3.0.1). p ,{'#’"1 8% and p + 2 ," 7ty s® fol-

lows from s%¢ A, Let c(k) =« kg® o+ p, ke N and k=1,

Prm, W (e(x)) follows from a. Clearly, if aeM;[s1,
then ac< ¢(v(a) + 1), and hence the proof is completed.

References

£11 J.L. BELL and A.B. SLOMSON: Models and ultraproducts,
BHPC 1969.

{21 A. MOSKOWSKI: Sentences undecidable in formalized
arithmetic, NHPC 1952,

- 554 -



{31 J.R., SHOENFIELD: Mathematic logic, Addison-Wesley
1967.

Matematicky ustav
Kaflova universita
Sokolovskd 83, 18600 Praha 8

feskoslovensko

(Oblatum 6.4. 1976)

- 555 =



		webmaster@dml.cz
	2012-04-28T00:21:28+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




