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A NONSTANDARD SET THEORY
Karel CUDA, Praha

Abstract: The paper concerns a first order theory si-
milar to set theory, in which one can do certain nonstan-
dard considerations. Three metatheorems are presented which
enable us to manage the relation between the standard and
nonstandard in a better way. The metatheorems are applied
to some concepts of calculus. From the formal point of view
the theory we work in is a theory of semiset.

Key words: Standard, nonstandard, infinitely small
infinitely large, near, elementary equivalence, ideal ele-
ments, natural extension.
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Introduction. In this paper, we will consider a first
order theory similar to the set theory, in which, however,
one can do certain nonstandard considerations. We believe
this theory is more lucid than the usual nonstandard proee-
dures., It should be feasible to a reader who is not a spe-
cialist in logic, and enable him to understand most of the
so called nonstandard considerations. Intuitively, the theo-
ry is obtained by adding a class (constant) K of all stan-
dard sets (sets which do not need "infinitely small”, "in-
finitely large" for their existence) to the universe of
sets and classes. We also require the existence of natural

numbers outside of K (infinitely large natural numbers),
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The situation is similar to that one of adding the imagina-
ry unit i to real numbers. We require the class K to have
three natural properties and we use these properties for
nonstandard works The principal difference between the set
theory and the nonstandard set theory lies in the allowing
for a subclass of a set which is not a set., Thus, we can
work with "infinitely large naturals™ without being forced
to accept the smallest of them. The principal properties

of classes are preserved. Classes are determined by their
elements and we have the existence of classes defined in a
"reasonable" manner. From the formal point of view the ba-
sic theory is a theory of semisets, but the reader need not
be acquainted with the general theory of semisets, similar-
ly as when working with complex numbers, one does not need
vector analysis. The principal stimulations for the con-
struction of the basic theory, not the concrete version of
axioms, is due to Petr Vop&nka. Recemtly, an analogous
(stronger) theory has appeared in the literature. That one
is closer to nonstandard work in models (see H). The theo-
rems given in the paper are well known and nonstandard
proofs can be found in the literature. The theorems and
proofs are given here to illustrate the usage of the basic
theory and the application of the metatheorems 1,2,3. I did
not find these in the literature. The nonstandard set theo=
ry was presented at the Prague seminar of Set Theory.

§ 1. Axioms

1.01. The fundamental symbols are:
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X,Y,2,.,. capitals from the end of the Roman alphabet de-
signate variables for classes.

X,¥,Z,... lower case letters from the end of the Roman al-
phabet designate variables for sets.

€ , = binary predicative symbols for membership and equa-
lity.

K a class constant.

Other logical symbols and set theoretical symbols.

Remark: In applications, we also use capital Romen let-
ters for sets aceording to the common usage and we alsc use
Greek letters for ordinal numbers.

1,02, Formulas., Formulas are constructed in the usual
way from the atomic formulas xe€ Y etc. We use symbols « ,
g for formulas. We write ¢ (2,7) instead of @ (Xy50ee
eeesXpy¥y,000,Y), meaning: Every free variable from ¢ oe-
curs in x; or YJ- and no bound variable occurs in x; or Yj.
Thus ¥e M, ¥ =7, ¥ = y means that for every i x;e M, x; =
= ¥;» Xj = ¥ Tespectively.

1.03. Metadefinitions: 1) We call standard the elements
in X, nonstandard those ones not in K. We call standard the
concepts and the assertions which do not need K, nonstandard
those onea which do need K. Thus "a is a standard set"” is a
nonstandard assertion.

2) The formulas without class variables are called set
formulas. The formulas without bounded class variables are
said to be normal.

1.0.4, Axioms: All the axioms of Z.F. theory with the

axiom of choice are assumed. For classes, we accept the axi-
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oms of the G.B, theory of classes. In particular: For every

norzal formula ?(x,i’,K) there is a class X, such that
xeX= q:(x,Y,K)

is provable. We designate this class by {x; q(x,zK)f (as

usual),

Attention: Classes defined with the help of K need not ha-

ve a set intersection with every set (as it is the case in

the set theory).

1.05. Definition: Class parts of sets are called semi-
sets., A semiset not being a set is called a proper semiset.
For semisets we use small Greek letters.

1.06. Further we postulate that for K the following
three groups of axioms hold:

I, The axioms of the elementary equivalence (EE),
For a se’ formula (®) we denote by ch('f) the formula ob-
tained from < by the restriction of all the quantifiers
to K. ( QK is not a set formula, but it is normal.)
For every set formula ¢ (¥)
(¥ TeR( @@ = 5@
is an axiom of NST (the basic theory).
II. The axiom of ideal elements (IE).

(VYxeK)(3 y)(Fin(y) & xnKsy).

III. The axiom of the natural extension (NE).
(YXcK)((Ax)(Xex)—> (3xeK)(X = xnK)).

Remarks: 1) EE tell us that every set formula holds
in the "small world® of standard sets K and the "large (ex-
tended) world®” V simultaneously. If we define a set b by &

set formula with only standard parameters then b must be &
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standard set. Any definable relation holds simultaneously
in X and in V., E.g., if we prove that for a set x& K there
is a set ye V with a standard set property <« (y), then the-
re is a standard y with the property :¢(y). The proof of
the existence of such an element in V may be easier (with
the help of the nonstandardness) than the one of the exis-
tence in K.

Attention: We are not allowed to use EE for nonstandard
formulas (that is, formulas having K or a set not in K as
its parameter).

2) 1IE gives us infinitely large natural numbers. Re-
ally: Let x be a (nonstandard) finite set, such that
wn Kcx. A8 « N K is the class of all natural numbers
of the "small world"™ the number of the elements of x must
be (intuitively) infinitely large. We also prove that every
natural number from V - K is bigger than every natural num-
ber from K. We can expect (from the formulation of IE) that
some facts holding for the finite sets mey be used for infi-
nite ones,

3) NE asserts that every semiset consisting only of
standard sets determines a standard set with exactly the
same standard elements. (Note that standard sets may have
nonstandard elements, <« is a standard set, it is defin-
able, by 2) there are infinitely large natural numbers -
nonstandard members of @ ,.) We get a fruitful use of NE if
we realize that relations are sets, too. We can define con-
cepts with standard sense only for standard elements - for

nonstandard ones the concepts are defined cenonically by
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NE. In other words: If we define some concept for the stan-
dard elements only, NE gives us a concept with standard sen-
se (definable by a standard formula). E.g., if we define (in
a nonstandard way) for every standard sequence < an".; of
real numbers, the concept of convergence and determine which
standerd real number a is the limit of {e, % , then these
concepts are naturally extended for nonstandard sequences.
Any standard assertion (the standard definition for example)
holding for the standard sequences amd their limits must
hold for sequences and their limits from the natural exten-
sion, For the work with concepts defined in such a way we
need not have a standard definition (nor the existence of a
standard definition, for that matter).

Sometimes it is useful to work in the so called satu-
rated models. Such a work can be done if we add some axioms
or axioms schemas to our theory (see H).

Prove now that nonstandard natural numbers are bigger
than standard omes,

1.07. Theorem: Let ne Knw , let m<n. We have me K,

Proof: Put 6= { k;jk<m& keK$% . Let x be the natural
extension of 6 , We have (Vke x)(k<n) (we use EE). Put
m = max(x) + 1. ™ is standard (by EE). We have m -~ le x &
%W - lek, thus ® - 1l<m and m<m, Let M<m, We have R ¢ &
(by the definition of 6 ), Wex in a contradiction to & =

= max (x) + 1. Thus @ = m and m is standard.

§ 2. The relation between standard and nonstandard

definitions and assertions. The three metatheo-

rems given in this paragraph, enable us to manage the rela-
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tion between standard and nonstandard in a better way.
2,01, Metatheorem 1 (MT1). ILet ¢ (X,y) be a set for-

mula, let ?e K. The following equivalences may be proved
in NST.
—
@ g EP= @D ¢ @D = @ o5EH

Where Q; is a quantifier (V or 3), Q!; is a quantifier
restricted to K and gK is the formula got from ¢ by the
restriction of all the quantifiers of ¢ to K.

Demonstration: The equivalence of the first and the
third part is exactly EE. We obtain the equivalence of the
second and the third part by applying successively logical
laws (distributivity for quantifiers) on EE.

Remerks: 1) The MT1 states that: For a set formula
with standard parameters it is immaterial if we consider it
in the "standard world" K or if we restrict some guanti-
fiers from the beginning of the formula to K or if we con-
sider it in the “extended world" V.

2) The MT1 gives us a method for proving standard theo-
rems. We restrict quantifiers from the beginning of the for-
mula to K until a chosen existential quantifier. Then we
prove (using the nonstandardness) the existence of the nee-
ded element in the "extended world® V. The MT1 gives the
validity of the theorem. As en example we prove that the non=-
standard condition for a limit implies the standard one. Be-
fore doing it, let us define the notion of nearness.

2,02, Definitions: 1) x20= (VneK)(lxl< -:; )e

A real number x is infinitely small (near to 0) iff the ab-

solute value of x is smaller than any positive standard
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real number,

2) y8x=y-x20, y is near to x.

The concept of nearness has reasonable properties .
with regard to addition and multiplication. Similarly, we
can introduce the concept of nearness for metric and norm-
ed spaces. The introduction of the nearness into uniform
and topological spaces is a little more complicated.

2.03. Assertion: Let {a,% be a standard sejuence
of real numbers and let a be a standard real number. Then

(Vrew - K)(ané a)—»nlinwan =a

Proof: By MT1 it is sufficient to prove that the as-
sumption implies the formula (VmeK)(Iny)(Van>nyl(la, -
- al<1l/m). Now it is sufficient to put n, infinitely lar-
ge and recall the definition of nearness (202) and the fact
that every natural number bigger than an infinitely large
natural number is infinitely large (107).

If we consider the formal record of the definition of
a limit and the left hand side of the proved implication,
we can notice that we have (Vne @ - K) instead of (3 n,)
(Vn>ng). Actually (3ny)(V n>ng) bounds only one free va-
riable, and can be read as "for any enough large natural
number n". Metatheorem 2 expresses the relation between tho-
se two kinds of quantifications.

2.04. Metatheorem 2 (MT2): Let < (H,%X) be a set for-
mula (B € @ R ¥ need not be in K). The following two equi-
valences can be proved in NST:

(VE,e K)(AW>R) g (@) = (3T & K) ¢ (B,F)

(3T, e K)(VRE>0,) ¢ (B = (VB4 K o (@3
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Demonstration: By dquality it is suffieient to prove
only the second equivalence. Let n, be the smallest matural
numbe r having the property (VK>no) @ @,%). (If suck a
natural number does not exist, the equivalence holds.) Now
it is sufficient to realize that th sides of the equive~-
lence are equivalent to the standardness of n,.

As an application of MT2 we find an equivalent for ne-

arness
2.05. Theorem: Let x,y be real numbers, then

xfy=(3new -K)(lx-'-yl<%;)

Proof: xé;nai(VneK)(lx-yl<-,%; ) =
— 1.y M2
= (¥n,e K)(3n>n) (lx=-yl< -;; ) ="(3n ¢ k)

Now we have means strong enough to prove the equivalen-
ces for many standard and nonstandard assertions.

2,06, Theorem: Let {a,} be a standard sequence of
real numbers and let a be a real number. Then

1) lin a , =a=(Vnew =-K)(a£ a)

n -y co
2) a is a limit point of {&;} = (3ne @ -K)
(ap, & a).
Proof: 1) (Vne w -K)(a,2 a)= (Vne w -K)
(VmeK)(la, -al< —:—J )M;Q (VmeKk)(3 n ¢ K)(Vn>n°)

(lag -al< = ' (va)(3n)(Va>n)(la, -ale L),

2) (3new -KN(ap2 a)=(3new -K)(Anew -

“K(lay -8l< L) E2(Vn,eR) (Ve ) (Ins>n)
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)y £ (va)(¥ay) (Ia>n)

(3m>n)(la, -al< L
(3m>m) (lay-al<L )= (¥m)(¥Vn)(3n>n))
(lay, -sl< L),

2,07, Theorem: Let £ be a standard function and M &

standard aet. Then
1) if xeMnK, £ is continuous in x with respect to

= (YyeM)yL x— £(y) & £(x)).
2) £ is continuous on M=(VxeKnM)(VyeM)(x2d y—
— £(x) & £(y))
3) £ is uniformly continuous on M= (V x,ye M)(x < y—
— £(x) & £(y))
Proof: 1) (VyeM}(x2 y— £(x)< £(y)) =
= (VyeM)((Ine w -K)(Ix - y\<—:—£)—> (V me K)

(1£(x) - 2(y) 1 < ;1,_— V= (VYyeM){(VYnew - K)VmeK).

(lx-yle 4 — 2@ - 21 < 5 )'E* (Ymer)

(3n,e K)(Yn>n N (Vyel) (Ix-yl< 2 2 -

St < )M (Y En (Y n>n ) (Vyew (] x - yl<
<%—9 I£(x) - £(y) 1< -,%; )= (Vm)(3n)(VyeM) (| x-

cyl<d S lr@ -t < 5 )

2) (VxeKoam(VyeW((3new-D(lx-yl< i )

— (VD (120 - £(z) )< 1)) = (VxeKnu)(¥YneK)

(Vnew-K(Vyel) (Ix-gleat— l2(x) - £2(3)| <

<A ) ¥ (YxexaM(YmeR)(InyeK)(Vn>ny) (Vyew)

(x-ylet—tzm-2@i<L) B (vxew(vm)
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(An)(YyeW(1x-yl<t— 122 - 2x) 1< L)

3) (Yxyew((Tnew -K(lx-glat)—

— (Ve E)(| 2(x0) - 2(x) < = 1) L2 (YmeR)(@n,eR)

CVn>n°)(Vx,JeM) (lx -y l<7',1—1’ — |f(x) - £(y)) <
< ZHE" (va@nvxyemIx-yl<d iz -
1

-2yl < = ).

2,08, Theorem: ILet {fn'i be a standard sequence of
functions. Let M be a standard set and f a stardard fune-
tion. We have

1) {£,% converges to £ on M pointwise =

= (VxeMnK)(Vnew - K)(£,(x)& £(x)).
2) & fn'§ converges to £ on M uniformly =

(VxeM)(Vnew = K} (£y(x) 2 P(x)).

]

Proof: We use MT1 and MT2 in the same way as in the
proofs of (206) and (207).
Attention: The assumption of standardness of f,x,M,a, { 8%,
{fnzx is substantial, since x= y is not a standard formula
and we use EE in the proof.

It is useful to generalize the notion of infinitely
small,
» 2,09, Definition: Iet R(x,y) be a standard binary set
relation, A y is said to be R-infinitely small (RIS(y))
iff for every standard element x of & (R) we have R(x,y).
(Infinitely large natural numbers are < infinitely small.)

Now, a queation arises which relations have infinite-

ly small elements.

- 657 =



2,10. Theorem: Let R be a standard binary set relat-
ion. The following statements are equivalent:

1) There is an RIS element.

2) For every finite standard subset {x;} of the do-
main of R there is a y such that (¥ i)R(x;,y).

Proof: 1)—>2) trivial,

2) — 1) By EE 2) holds also for nonstandard finite
sets of the domain of R, By IE we have a finite set D such
that D(R)AKED & D (R). let y be the element correspond-
ing to D, y is RIS.

Remark: Relations having the property 2) are called
concurrent in the literature. '

Another natural question arises: Can we find an analo-
gue of ¥T2 concerning the extended notion of infinitely
smell? The saturated models show that we can add the exact
reformulation of MI2 for any standard transitive relation
as a new axiom schema. In our theory we can prove the simi-
lar metatheorem.

2.11. Metatheorem 3 (MT3): Let R be a standard tran-
sitive relation with infinitely small elements. Let
123 (X,7) be a set formula and ¥ be standard. The following
equivalences are provable in NST:

(VE,e )3 ZRE,D) ¢ ()= (3%, HISF)) ¢ (X,7)

(A e K(VERE,,F)) ¢ &= (VE,HS X)) ¢ &)

Demonstration: In view of the duality it is suffi-
cient to prove only the first equivalence. By MT1 the left
hand side of the equivalence is equivalent to the follow-

ing:
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(YEIAFRE, D) ¢ EF)

Let x; be RIS. Put ¥ = x,. Let ¥ be such that R(¥),¥) and

o (?,?); then X is RIS (tramitivity of R). On the other
hand, let there be an ¥ such that RIS(¥) and cp (£,7). The
left hand side of the equivalence holds trivially.

Let us now generalize the notion of nearness. In the
standard way, nearness is described with the help of neigh-
bourhood filters. Thus it is natural to formulate

2.12, Definition: Let T be a standard topological spa-
ce and x a standard point in T. Denote by {U(x){ the
neighbourhood filter of x. Put

@@ = N{UEInK

(The semiset of all points near to x.)

Note that "to be near to™ need not be symmetric but must
be reflexive and transitive.

We are able tc prove an analogue of the theorem 205.

2.13. Theorem: ILet R be the relation of inclusion uov
on the neighbourhood filter of a standard point x of a sten-
dard topological space T. We have:

Yyeux= (3% ,RIS(UW))Xye U)

Proof: <«— trivial
—> Let y e w(x), let D be a finite subset of

the neighbourhood filter < U(x)% such that {U(x)3n KsD e
€4U(x)? . Put U= N{ Ve D; Vay$. U is the required RIS
neighbourhood of x.

In a similar manner we can treat uniform spaces. Using
MT1 and MT3 we can easily get the topological and uniform
analogues of the assertions (206) - (208).
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For some nonstandard formulas, the standard equivalents
are not given by the mentioned metatheorems. In the mentioned
metatheorems the possibility of representation of complicat-
ed standard objects by simpler nonstandard ones is not ob-
tained. Using nonstandardness we can represent e.g. the
“Dirac function" as a continuous nonstandard function (hav-
ing an infinitely small support), neighbourhood filter of a
standard point x by the monad of x. Similarly, for a stém—
dard filter % we formulate the following

2,14, Definition: ILet ¥ be a standard filter on a
standard set M. Put

Ker () = N (Fn K)
(the kernel of 7 )

We can easily prove

2.15. Assertion: Let F be a standard filter on &
standard set M. Then ¥ is themmtural extension of {YeK;
YS M & Y2Ker (F)% .

Thus, filters (parts of O°(M)) can be represented by
kernels (parts of M). The situation is more interesting in
the case of ultrafilters. Let M be a standard set, x an ele-
ment (possibly nonstandard) of M. Put § = {A € P(M); x¢€
€ A& AeK3. § has the following four properties:

1) ke § &« B2AX BeKnP(M)— Be §

22 ke g&Beg——> AnBe §

3) AeEnPM)—> Aef v M=-ke §

4) 0 & g
Thus, we see that the natural extension of § is a stan-

dard ultrafilter on M and x is a member of his kernel. We
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have correspondence between standard ultrafilters on a stan-
dard set M and (possilie rnstandard) members of M, This
correspondence leads to a nonstandard equivalent of the
compactness of topological spaces.

2,16, Theorem: Let T be a standard topological space.
T is compact iff for every point y of T there is a standard
point x of T such that y ¢ w(x).

Proof: Recall the mentioned correspondence between
points of T and standard ultrafilters and the corresponden-
ce between monads and neighbourhood filters of standard
points of T (2.12, 2.14, 2.15). The property in the theorem
is equivalent to: “For any standard ultrafilter F there is
a standard neighbourhood filter {U(x)3} of a standard point
x which is a part of 4 ". By EE we can cancel the words
sfandard and we get an equivalent of compactness.

The theorem shows that the compactness is natural from
the nonstandard point of view and leads e.g. to a very easy
proof of the Tichonov theorem. (See R .)

Notes:

1) A nonstandard theory of measure and Lebesgue inte-
gration was also developed. It differs from the one in (BW).
The main differences are in the following points:

a) The standard measure theoretic theorems are not used.

b) Instead of extending the Lebesgue measure, we define
the Lebesgue measure directly in the nonstandard way.

c) Some principal theorems of measure theory and inte-
gration are proved.

2) By considerations of the presented theory and of the
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nonstandard semiset theory, the following interesting state-
ment was obtained, If ZFC + (existence of inaccessibles) is
consistent, we can consistently use the following assertiom
at nonstandard work. lLet I,J be bounded intervals of real
numbers. let {Iii ’ -\'.Jj ¥ be fine partitions of I,J respec-~
tively. Let the differential intervals I; be of the same
order (that is - (3iy,iy) ( (“'(Iil)/ («,(Iiz)-_'l 0)). Let

F be a semiset (external) one-to-one correspondence between

partitions 4I;}% .{Jj?r such that:
8) (Vi) @(I;)/ w(F(I3))2 1)

b) For the definition of F we use only a (internal) set
and the notion of £ for real numbers.
Then we have @(I)/ w(J) = 1.

. It is possible that the mentioned assertion is provable.
My attempts to prove it or to prove the consistence of its
negation was unsuccessful.

These results will appear elsewhere.
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