Commentationes Mathematicae Universitatis Carolinae

Jaroslav Zemánek
 Concerning spectral characterizations of the radical in Banach algebras

Commentationes Mathematicae Universitatis Carolinae, Vol. 17 (1976), No. 4, 689--691
Persistent URL: http://dml.cz/dmlcz/105729

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICRE UNIVERSITATIS CAROIINAE
17,4 (1976)

CONCERNING SPECTRAL CHARACTERIZATIONS OF THE RADICAI IN BANACH AIGEBRAS

Jaroslav ZEMANEK, Praha

Abstract: An element r of a Banach algebra A belongs to the radical of A if and only if $|(1+q) r|_{\sigma}=0$ for all

 q quasi-nilpotent in A.Key words: Spectral radius, the radical of a Banach algebra.

AMS : 46 HO 5 Ref. Ž.: 7.976.11

We consider an arbitrary Banachalgebra A over the complex field. For x in A, let $\sigma(x)$ be the spectrum (taken in the unitization of A if A has no unit) and $|x|_{G}$ the spectral radius of the element x. Denote by N the set of quasi-nilpotent elements in A, i.e. $N=\left\{x \in A:|x|_{\sigma}=0\right\}$, and by rad A the (Jacobson) radical of A. It is well-known that $N 工 r a d A$, but this inclusion can often be proper. A characterization of algebras in which $N=\operatorname{rad} A$ is given in [1] (the set N is to be invariant under sums or, which is equivalent, under products). Thus although the radical is not - in general - simply the set of all quasi-nilpotents, it can nevertheless be characterized in terms of the spectral radius.

One such characterization [2] is based on the observa-
tion that $\sigma(a+r)=\sigma(a)$ for all $a \in A, r \in$ rad A. We have show in [2] that if, conversely, $\sigma(a+r)=\sigma(a)$ for all $a \in \mathbb{A}$ and some $r \in \mathbb{A}$, then it must $r \in r a d A$. In fact, the following theorem has appeared first in [2] although it was implicitly contained already in [1].

Theorem 1. Let A be Banach elgebra. Suppose $r \in A$ is such that $|a+r|_{\sigma}=0$ for $a l l a \in N$. Then $r \in$ rad A.

Another criterion has been known from early tines of Banach algebras: if $r \in \mathbb{A}$ is such that $|\underset{\sim}{ }|_{\sigma}=0$ for $a 11$ $x \in \mathbb{A}$, then rerad A. Now, Theorem 1 suggeats that it should be possible to restrict the range of $x^{\prime} s$ in this multiplicative criterion to some smaller subset of A being in some re ation to the set N. We have remarked in [2] that it is not sufficient, for trivial reasons, to require the condition simply for all $x \in N$. However, it turns out that the appropriate restriction is to the elements of the form $x=1+a$ with $a \in N$. Indeed, the following result is a consequence of Theorem 1.

Theorem 2. Let A be Banach algebra. Suppose $r \in A$ is such that $|(1+a) r|_{\sigma}=0$ for all $a \in \mathbb{N}$. Then $r \in \operatorname{rad} A$.

Proof. We show that $|a+r|_{\sigma}=0$ for all $a \in N$; then the conclusion will follow by Theoren l. Hence take an $a \in N$. It is enough to prove that, say, -I does not belong to $\sigma(a+r)$. But we have the decomposition

$$
1+a+r=(1+a)\left\{1+\left[1-(1+a)^{-1}\right] r\right\}
$$

where the element

$$
\left[1-(1+a)^{-1} a\right] r
$$

is quasi-nilpotent by assumption. It follows that the ele-
ment $1+a+r$, being represented as a product of two invertible elements, is invertible as well. This comple tes the proof.

We obtain similar corollaries as in [2]. Let us mention two of ther.

Corollary 1. If R is a Banach space operator auch that $|(I+Q) R|_{\sigma}=0$ for all Q quasi-nilpotent, then $R=0$.

Corollary 2. The closed operator algebra generated by all the quasi-nilpotent operators on a Banach space is semi-simple.

References

[1] Z. SZODKOWSKI, W. WOJTYASKI, J. ZEMANEK: A note on quasinilpotent elements of a Banach algebra, Bull. Acad. Polon. Sci.,Sér. Sci. Math. Astronom. Phys., to appear.
[2] J. ZEMANEK: A note on the radical of a Banach algebra, to appear.

Watematicky Ustav CSAV
Z̈jiña 25, 11567 Praha 1
Ceskoslovensko
(Oblatum 3.8. 1976)

