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COMMENTATIOKES MATHEMATICiffi TOIVEBSITATIS CAROLINAE 

17,4 (1976) 

CONCERNING SPECTRAL CHARACTERIZATIONS OP THE RADICAL IN 

BANACH ALGEBRAS 

Jaroslav 2.EMÍNEK, Praha 

Abstract: An element r of a Banach algebra A belongs 
to the radical of A if ant only if 1(1 + q)r 1̂  * 0 for all 

q quas i-nilpotent in A. 

Key words: Spectral radius, the radical of a Banach 
algebra. 

AMS: 46H05 Ref. 2.: 7.976.11 

We consider an arbitrary Banach algebra A over the com

plex field. For x in A, let 6* (x) be the spectrum (taken 

in the unitization of A if A has no unit) and Ixlg the 

spectral radius of the element x. Denote by N the set of 

quas i-nilpotent elements in A, i.e. N -=«Cx€A: 1x1^ - 0$ , 

and ly rad A the (Jacobson) radical of A. It is well-known 

that N^rad A, but this inclusion can often be proper. A 

characterization of algebras in which N « rad A is given in 

til (the set N is to be invariant under sums or, which is 

equivalent, under products). Thus although the radical is 

not - in general - simply the set of all quasi-nilpotents, 

it can nevertheless be characterized in terms of the spec

tral radius. 

One such characterization [21 is based on the observa-
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tion that 6*(a + r) * ^ (a) for all a€ Af re rad A. We 

have shown in £21 that "if, conversely, 6*(a + r) « & (a) 

for all ae A ant some re A, then it must be re rad A* In 

factt the following theorem has appeared first in 121 alt

hough it was implicitly contained already in [11* 

Theorem 1, Let A be a Banaeh algebra * Suppose r€A is 

such that I a + r 1^ = 0 for all a€ N* Then re rad A« 

Another criterion has been known from early times of 

Banaeh algebras: if r€ A is such that I xr l# * 0 for all 

xfiA, then r€ rad A« How, Theorem 1 suggests that it should 

be possible to .restrict the range of x's in this multipli

cative criterion to some smaller subset of A being in some 

relation to the set N* We have remarked in [21 that it is 

not sufficients for trivial reasons, to require the condi

tion simply for all x€ N* However, it turns out that the 

appropriate restriction is to the elements of the form 

x =- 1 + a with a€ H. Indeed, the following result is a con

sequence of Theorem 1* 

Theorem 2, Let A be m Banaeh algebra* Suppose re A is 

such that I (1 * a)r 1$ - 0 for all aeK. Then r<s rad A. 

Proof* We show that I at + r tg = 0 for all ac N; then 

the conclusion will follow hy Ikeorem 1* Hence take an a€ H* 

It is enough to prove that, say, -1 does not belong to 

6* (a + r)« But we have the decomposition 

1 + a + r =- Q + a H l + E l - (1 + al^alr } 

where the element 

C 1 - (I + affair 

is quaei-nilpotent by assumption* It follows that the ele-
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ment 1 + a + rf being represented as a product of two inver-

tible elements, is invertibla as well. This completes the 

proof. 

We obtain similar corollaries as in f 23. Let us men

tion two of them. 

Corollary 1. If K is a Banaeh space operator such 

that I (1 * Q)H 1̂  -» 0 for all Q quasi-nilpotent, then 

R a 0. 

Corollary 2. The closed operator algebra generated 

by all the quasi-nilpotent operators on a Banaeh spaee is 

semi-simple. 
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