Commentationes Mathematicae Universitatis Caroline

Roger Emanuel Kaufman
 A nonlinear operator in potential theory

Commentationes Mathematicae Universitatis Carolinae, Vol. 17 (1976), No. 4, 731--735

Persistent URL: http://dml.cz/dmlcz/105733

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATIUAE UNIVERSITATIS CAROIINAE

$$
17,4 \text { (1976) }
$$

A NONLINEAR OPERATOR IN POTENTIAL THEORY
R. KAUFMAN, Urbana

[^0]1. Let T be the nonlinear operator defined by $T(u)=$ $=\left(\Delta+c^{2}\right) u+p(u)$, where Δ is the Iaplacean in the unit disk $D: x^{2}+y^{2}<1, p$ is continuous on $(-\infty, \infty)$, and $p(u)=o(|u|), \lim |p(u)|=+\infty$, as $|u| \rightarrow \infty \quad$. The domain of the operator Δ is the space of all u, continuous on D. vanishing on ∂D, whose Laplacean (in the sense of distributions) belongs to $L^{2}(D)$; Green's formula confirms that these functions u are H8lder-continuous. Moreover $-c^{2}$ is the amallest eigenvalue of this operator, and Δ is a closed, negative-definite operator.

Theorem. For each $r>2$ and each M, the set defined by the inequality $\|T(u)\|_{T} \leq M$ is compact in the Banach s pace $C^{1}\left(D^{-}\right)$, and the range of T meets $I^{T}(D)$ in a closed subset of $L^{r}(D)$.

The range contains $L^{r}(D)$ if and only if
$p(+\infty) \cdot p(-\infty)<0$.
This theorem was suggested by a remarkable paper of Ambrosetti and Prodi [1] in which a similar use is made of the first eigenvalue of the operator Δ.
2. The operator $\Delta+a^{2}$ is singular precisely when $a>0$ is a zero of some Bessel function J_{k}, and the eigenfunction for c^{2} is $f_{0}=J_{0}(c r) ; \rho_{\sigma}>0$ within D, and the normal derivative of f_{0} is negative on $a D_{\text {. (See }}[2, p$. 373].) (Tables show that $c \cong 2.40$ and the next zero is $\cong 3.83$.)

Green's formula, with zero boundary data, $f(z)=(2 \pi)^{-1} \iint(\Delta f)\left(z^{\prime}\right) G\left(z, z^{\circ}\right) d x^{\prime} d y^{\prime}$
shows that if $\Delta P \in I^{r}, 2<r<\infty$, then $f \in C^{l}\left(D^{-}\right)$, and the first partial derivatives of f are Holder-continuous in exponent $1-2 / r$;this is proved by means of H8lder's inequality and the potential-theoretic lemmas presented in [3, p. 198]. When $1<\mathbf{r}<\mathbf{2}$ similar consideration yields H8lder-continuity of f.

To prove the first statement in the theorem we take a sequence u_{n}, in the domain of Δ, such that $\left\|T\left(v_{n}\right)\right\|_{r} \leqslant M$. Supposing that $m_{n}=\left\|u_{n}\right\|_{\infty}$ tends to infinity, we proceed to obtain a contradiction. We write $u_{n}=a_{n} f_{0}+\nabla_{n}$, where ∇_{n} is orthogonal to f_{0} in $L^{2}(D)$, and a_{n} ia a real number. Since $p(u)=o(|u|)$ as $|u| \longrightarrow+\infty$, we see that $\left(\Delta+c^{2}\right)_{v_{n}}=o\left(m_{n}\right)$ uniformily, and therefore
in L^{2}. By the discreteness of the spectrum of Δ, we see that $\left(\Delta+c^{2}\right) v_{n}$ and $\Delta \nabla_{n}$ are of the same magnitude in L^{2}, whence $\nabla_{n}=o\left(m_{n}\right)$ uniformly. We now observe the identities

$$
\Delta \nabla_{n}=\left(\Delta+c^{2}\right) \nabla_{n}-c^{2} \nabla_{n}=T\left(u_{n}\right)-p\left(u_{n}\right)+c^{2} \nabla_{n},
$$

and deduce that $\Delta \nabla_{n}=O\left(m_{n}\right)$ in $L^{r}\left(D^{2}\right)$. Therefore $\nabla_{n}=$ $=O\left(m_{n}\right)$ in the Banach space $C^{l}\left(D^{-}\right)$, whence $\nabla_{n}(z)=$ $=O\left(m_{n}\right)(1-|z|)$. We have also $a_{n} \simeq \pm m_{n}$, so that $u_{n}=$ $=a_{n} f_{0}+\nabla_{n}$ has no zeroes for large n, in view of the inequality $f_{0}(z) \geq a(1-|z|)$ valid for some $a>0$.

If, for example, $\mathrm{a}_{\mathrm{n}}>0$ and $\mathrm{p}(+\infty)=+\infty$, then $p\left(u_{n}\right)$ tends everywhere to $+\infty$, while $p\left(u_{n}\right) \geq-C$. But $\left(\Delta+c^{2}\right) u_{n}$ is orthogonal to f_{0}, so $\iint p\left(u_{n}\right) f_{0}(z) d x d y=$ $=O(1)$, while $f_{0}>0$. This contradiction shows that m_{n} must remain bounded.

Now, by steps similar to the above, we find that $a_{n}=O(1)$, so $\left\|\Delta \nabla_{n}\right\|_{r}=O(1)$, and then the functions u_{n} are bounded, with uniformly Holder-continuous partial derivatives, in exponent $1-2 / r$.

To prove the closure of the range of T in $\mathrm{I}^{\mathbf{r}}$, suppose $\lim T\left(u_{n}\right)=g$ in L^{r}; we can then select a subsequence u_{j}, converging to u_{0} in $C^{I}\left(D^{-}\right)$. Now $\Delta u_{j}=T\left(u_{j}\right)$ -$-c^{2} u_{j}-p\left(u_{j}\right)$ and Green's formula shows that $\Delta u_{0}=g-$ $-c^{2} u_{0}-p\left(u_{0}\right)$, or $T\left(u_{0}\right)=g$.
3. Suppose now that $p(u) \geq-C$ for all u; then $\left(T(u), f_{0}\right) \geq-C^{\prime}$, so that the range of T contains λf_{0} onv
when $\quad \lambda \leq \lambda_{0}$.
To comple te the proof, we suppose that $p(+\infty)=+\infty$ and $p(-\infty)=-\infty$ and prove that $T(u)=g$ is solvable for every g in $L^{r}, r>2$. First we solve a perturbed equation $T(u)+\varepsilon u=g$, for small $\varepsilon>0$. We write this in the Porm

$$
\left(\Delta+c^{2}+\varepsilon\right) u=g-p(u)
$$

and observe that $\Delta+c^{2}+\varepsilon$ admits a bounded completely continuous inverse in I^{2}, for small ε. Iet us define

$$
A_{\varepsilon}(u)=\left(\Delta+c^{2}+\varepsilon\right)^{-1}(g-p(u))
$$

k_{ε} is continuous because $g \in L^{2}$ and $p(u)=o(|u|)$, and compact, because $\left(\Delta+c^{2}+\varepsilon\right)^{-1}$ is compact. On the ball $\|\mathfrak{u}\|_{2} \leqslant N$, we have $\left\|\mathbb{A}_{\varepsilon}(u)\right\|_{2}=o(N)$ so that A_{ε} is a compact mapping of some ball into itself and admits a fixpoint by Schauder's theorem, i.e. a solution of the perturbed equation. To obtain a solution to the original equatiom, we prove that the solutions of the equations $\left(\Delta+c^{2}+\varepsilon\right) u+p(u)=g$ remain bounded as $\varepsilon \longrightarrow 0+$. We write $u=a_{\varepsilon} f_{0}+\nabla_{\varepsilon}$, and suppose that $\|u\|_{\infty}$ becomes unbounded. Then $\left\|\nabla_{\varepsilon}\right\|_{2}=o(1)\|u\|_{\infty}$, and we observe that

$$
\Delta \nabla_{\varepsilon}=g-p(u)-c^{2} \nabla_{\varepsilon}-\varepsilon a_{\varepsilon} f_{0^{*}}
$$

Thus $\left\|\nabla_{\varepsilon}\right\|_{\infty}=o(1)\|u\|_{\infty}$, and finally $\nabla_{\varepsilon}=o(1)\|u\|_{\infty}$ in $C^{I}\left(D^{-}\right)$. Hence u maintains the same sign, and $\varepsilon u+p(u)$ tends to $+\infty$ (or $-\infty$) remaining bounded below (above), so that the inner produce ($T_{\varepsilon} u, P_{0}$) becomes infinite. This completes the proof in the case $p(+\infty)>0, p(-\infty)<0$. In
the event that $p(+\infty)<0, p(-\infty)>0$ we employ the perturbed operator $T(u)-\varepsilon u$.
4. An extension. The main theorem remains true im part for each $r>1$, but to verify this we must consider the inverse of the operator $\Delta+c^{2}$ on the appropriate subspace of L^{r}. It seems likely that an existence theorem remains true when $r=1$, provided p is bounded; the analysis would be difficult since the solutions a are unboundea.
References
[1] A. AMBROSETTI and G. PRODI: On the inversion of some differentiable mappings with singularities between Banach spaces, Annali di Mat. Pura ed Appl. (4) 93 (1972), 231-246.
[2] P.W. BERG and J.L. McGREGOR:Elementary Partial Differential Equations, San Francisco, 1966.
[3] G. HELIUIG: Partial Differential Equations, New York, 1964.

University of Illinois
at Urbana-Champaign
Urbana, Illinois 61801
U.S.A.
(Obla tum 3.8. 1976)

[^0]: Abstract: A property of the first eigenvalue of the operator Δ leads to the solvability of a nonlinear equation whose main part is a singular linear equation.

 Key words: First eigenvalue, Holder-continuity, fixed point.

 AMS: 35J05, 47H15, 46E15 Ref. Z.: 7.955.81

