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COMMENTATIONES MTHEMATICAE OTIVEBSITATIS CAROLINAE 

17,4 (1976) 

A NONLINEAR OPERATOR IN POTENTIAL THEORY 

R. KAUFMAN, Xfchmxm 

Abstract; A property of the first eigenvalue of the 
operator A leads to the solvability of a nonlinear equa
tion whose main part is a singular linear equation* 

Key words: First eigenvalue, HSlder-continuity, fix
ed polnx. 

AMS: 35<J®5, 47H15, 46E15 Ref. Z.t 7.955.81 

1» .Let T be the nonlinear operator defined by T(u) =-

* ( A -* c )u * p(u), where A is the Laplacean in the unit 
P 2 

disk D: x + y -<- lf p is continuous on (- oo , co ) s and 

p(u) = o( | u I ), lim I p(u) I « «*• oo , as 1ml —*• oo 

The domain of the operator A is the space of all u, con

tinuous on D, vanishing on d D, whose Laplace an (in the 

sense of distributions) belongs to TT(D)*9 Green's formula 

confirms that these functions u are H51der-continuous« Mo-
2 reover -c is the smallest eigenvalue of this operator, and 

A is a closed, negative-definite operator* 

Theorem. For each r>2 and each M, the set defined by 

the inequality II T(u) 1| y £ M is compact in the Banach s pace 

C (D~), and the range of T meets Lr(D) in a closed subset 

of Lr(D). 

The range contains Lr(D) if and only if 
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p(+o> ) . p(-oo )<:0. 

This theorem was suggested by a remarkable paper of 

Ambrose tti and Prodi [11 in which a si mi 3a r use is made of 

t n e fi*st eigenvalue of the operator A • 

2. The operator A + & is aingu3ar precisely when 

&>0 is a zero of some Bessel function J^, and the eigen-
2 

function for c is fQ = JQ(cr); f^>0 within D, and the 

normal deriTatiTe of fQ is negatiTe on 3D. (See L2, p# 

3733») (Tables show that c 3f 2,40 and the next zero is 

3 3*83.) 

Green's formula, with zero boundary data, 

f(z) = {Z^)'1 Jf (Af)(z ' ) G(z,z')dx'dy' 

shows that if A f € Lr, 2-*r-s co , then fc C CD""), and 

the first partial deriratiTes of f are HSlder-continuous 

in exponent 1 - 2/r $this is proTed by Beans of HOlder 's 

inequality and the potential-theoretic lemmas presented 

in C3, p# 1981. When l < r < 2 similar consideration 

yielda HSlder-continuity of f» 

To prore the first statement in the theorem we take 

a sequence u^, in the domain of A , such that 

II Tdi^) l-p̂ M*. Supposing that HL^ - II u a 11̂  tends to in

finity, we proceed to obtain a contradiction. We write 
2 

^n s Si^O * Tn> wliere v n *
s orthogonal to fQ in L (D), and 

fi^ita real number. Since p(u) = o(l ml ) as |u|—> + oo} 

we see that ( A + c )Ta « oCrn̂ ) uniformly, and therefore 
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2 in L . % the discreteness of the spectrum of A , we 

see that ( A + c )Ta amd A Ta are of the same magnitude 

in L , whence Ta « OOIL̂ ) uniformly. We now obserTe the 

identities 

Av a « CA + C 2 ) T B - c \ -- TCu^) - plx±) + c2Ta, 

and deduce that A T a = oCrn̂ ) in Lr(lT). Therefore T a * 

a odttj in the Banach space C (D"), whence Ta(z) « 

a OCB^) (1 - I z I ). We haTe also aa--* - n^, so that u a * 

* &iP® + vn nas — zeroea for l»^g© a, in Tiew of the in

equality fQ(z)>a(l - I al) Talid for some a>0» 

If, for example, «n> © and p(+ oo) s • oo , then 

p(u^) tends eTerywhere to + oo , while p(u^)> -C. But 

(A + c '^ *s orthogonal to fQ, so ff p(ua)f0(z)dxdj * 

* 0(1), while fQ> 0. This contradiction shows that w^ must 

remain bounded. 

Now, by steps similar to the aboTe, we find that 

aa = 0(1), so II li \ II r * 0(1), and then the functions v^ 

are bounded, with uniformly HClder-continuous partial de-

riTattiTes, in exponent 1 - 2/r. 

To proTe the closure of the range of T in Lr, suppo

se lim Tdi^) = g in Lr; we can then select a subsequence 

Uj, conrerging to UQ in C (D~). Now A U J - ^^up ~ 

- c Uj - p(u^) and Green's formula shows that Au Q « g -

- c 2 ^ - P C U Q ) , or TCUQ) » g. 

3» Suppose now that p(m)>_-C for all uj then 

(T(u),fQ)--t - C % so that the range of T contains AfQ. on̂ y 
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when A -» A Q . 

To complete the proof, we suppose that p(+ co ) * + co 

anfl p(~ oo ) » -oo and prove that T(u) =- g i s solvable for 

every g in L r , r > 2 . F i r s t we solve a perturbed equation 

T(u) + e u = g, for small e > 0» We write th i s in the 

form 

(A + c2 +e)u = g - p(u) 

2 
and observe that A + c + e admits a bounded completely 

2 continuous inverse in L , for small e . Let us define 

A e(u) * (A + c
2 U ) * 1 (g - p(u)). 

2 
Ag is continuous because ge L and p(u) = o( I u I ), and 

2 —1 compact, because (A + c + £ ) i s compact. On the ball 

11 m II2^-H, we have IIA g (u) II ̂
 s o(N) so that kz is a com

pact mapping of some ball into itself and admits a fixpoint 

by Schauder's theorem, i.e. a solution of the perturbed 

equation. To obtain a solution to the original equation, 

we prove that the solutions of the equations 

( A + c + s )u + p(u) - g remain bounded as e — > 0+. We 

write u = ag fQ + v£ , and suppose that II u II becomes 

unbounded. Then Hvg l^-oCDllull^ , and we observe that 

2 Avg = g - p(u) - C Vg - 8 l g fQ. 

Thus ftv^l^ =- o(l) ftutt^ , and finally vg .* o(l) ttull^ 

im C (B~). Hence u maintains the same sign, and €u + p(u) 

tends to + oo (or - <x> ) remaining bounded below (above), 

so that the inner produce (T^ u, fQ) becomes infinite. This 

completes the proof in the case p(+oo)>*0, p(-«x>)<0. In 
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the event that p(* a> )<0, p(«~ ot> ) >>0 we employ the per

turbed operator T(u) - eu. 

4. An extension. The main theorem remains true i» 

part for each r^l, feut to verify this we must consider 
o 

the inverse of the operator A * c on the appropriate 

sufespace of L r . I t seems l ikely tha t an existence theorem 

remains true when r = 1, provided p* i s bounded, the ana

lys is would fee diff icul t since the solutions u are unboun

ded* 
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