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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLIHAE 

18,1 (1977) 

ON COMPACT SPACES WHICH ARE UNIONS OF CERTAIN COLLECTIONS 

OF SUBSPACES OF SPECIAL TYPE, II. 

A.V. AHHANGEL'SKII, MOSCOW 

Abstract: This article is a natural continuation to 
the previous one, published under the same title. One of the 
main results is the following theorem: if X is a compact and 
X = UiX-: i = l,...,k] where each X. is a space with uni
form base then X is sequential and, for each Ac X, c£(A) = 
seqc^-c(A), where seqcXQ(A) = A. and seqc^£.(A) = seqc 

CseqcX^ -.(A)) for k21. Another result: if X is a compact 

which is the union of 6z S -± of metrizable subspaces then 
either X is finite or there exists a non-trivial converging 
sequence in X. We also formulate some open problems and des
cribe an example. 

Key words and expressions: Sequential space, tightness, 
uniform base, network. 

AMS: 54A25, 54D30 Ref. 2.: 3.961 

0. Notations and conventions. We use the same notati

ons and conventions as in the previous article ll]. In addi

tion, for keN =4.0,1,2,...} and AcX, where X is a space, 

we define: seqcXQ(A) = A and seqcX ̂ +1(A) = seqcX (seqc^(A). 

1. Theorem. Let ke N+ » 4l,2,... \ , k2r2, and X » 

= U-t X^: i = l,...,k}, where X is an .K Q-compact and, for 

each i = l,...,k, X^ satisfies the following conditions: 

a) if AcX i and I k \ & & then the closure of A in Xi is 



a Fr^chet-Urysohn space with a countable network; b) t|r(X.),z. 

^ <£ , and c) X^ e %^ . Then the space X is sequential 

and, for each Ac X, cZ (A) = seqc£ K«iCA). 

Proof, For k = 2 our assertion coincides with Theorem 

II.8 in 11). Assume that it is true for all kcN such that 

2£k.£r, for some rcK , r>2, and let us prove the theorem 

for k = r + 1. Let Ac X and xe ci (A). By Theorem 1.12 of 

[1], t(X) £ -K0 . Thus there exists A*c A such that \ k* I £ 

£ jfiQ and xcc,£(A*). Put A? = A * n Xi. Clearly, xc ci{kf¥) 

for some i* e -t 1,... ,r + 1 } • The space X* = cZ (A^) is an 

>*0-compact. If x c X ^ then a) implies that x£seqc£ (̂ i*)* 

Then it follows that xc seqc£ (A)c seqc^^-^CA) and the ar

gument in this case is complete. 

Let x^Xj.* . We fix \ e <1,.., r + 1$ for which x€Xf. Then 

1*+ --• I*t us fix a countable network rf* in the closure B.* 

of the set Â * in the space X^ such that x^c£(P) for every 

P € *3r* . As x^ B.* , this is possible in view of a). We al

so fix a countable family ^ of open sets in X* such that 

(n#;)nX|'--4xi. This is possible in view of b). Put G » 

= ( 0^)n(n K X*\eX(P): P € r* ? • Clearly G is a G<-r-

set in X* and xeG. Hence there exists a closed set F in X* 

such that xeFcG and ^(F,X*) £ tf (see C2],I33). Let 

us fix a base 55 • * i ^ n
: n € N ? o f p in X* such that ^ n + i

c 

c %n for all ncN +. Observe that B±* H ( (\ i X*S cZ (P): 

: P « y * J ) » 0 and ^ (1 X* « Bi<t . Hence ( n i X *\ c Z (P): 

: P € y*\ 1 ( 1 ^ -= 0. It follows that G n X ^ • 0 and F n x ^ * 

-8f. A a P c (iy , we have: Ffi Xj • {x$ . We claim that x c 

€ cZ (S) where S » FftseqcX (A.-*). Assume the contrary and 



f i x a neighborhood V of x in X such that cJt (V) f l c i (S ) s 0. 

For every nc N+ the set ^n0^ i« open in X* and x e 1ln()V* 

From xc cX (A**) i t follows that %mf) vn A.^ + 0. We choose 

xn c 11 nCl Vn .^* and put C M x ^ : n6 N+J f C* * c £ (C)\ C. 

Clearly Fo CJL (C)\ C# 0. As Cc V and cZ (V)n cX (S) * 0, we 

have: cX(C)Hc .e (S) » 0. Thus the space c£(C) i s not sequ

ential - otherwise at least one point of the set cZ (C)\ C 

would be contained in S. It follows that I cZ (C) 1 > K Q . 

Hence C*4 ix\ . We f i x z e C * \ { x f and a neighborhood W ©f 

z in c i (C) such that cZ (W)+x. Then C' « CflW i s an in f i 

nite set and F' « eZ (C')c X^ U (F\-ixf) c Ui X±: i e { l f . . . 

. . . , r + 1 J N i T j J (as ( F \ 4 x ? ) n x ^ = 0 ) . Thus F' * 

= U i X i n F ' : i 6 - i l , . . . , r + 1 $ N i t ft, where X-flF' sat isfy 

the conditions a),b) and c) and F i s an «x0«-compact. 3y the 

inductive hypothesis, F' i s sequential. The set C' i s not 

closed in F' as zceZ ( C ' ) \ C ' . Hence z ' s seqc*6 (C') for so

me z'e cZ (C')\C\ As C i s discrete, z'c c £ ( C ) \ C c F . I t 

follows that z#6 c^(A*< t)riFcS - in contradiction with z'e 

6 c ^ ( C ' ) c c ^ ( C ) c c £ ( V ) c X * \ cZ (S). We have proved by 

the argument that x 6 c X ( S ) . 

From FOX^ » 0 i t follows that F « U-t X^n F: i 6 - l l t . . . 

. . . , r 4- 1 3r\ 4. i*S}. As S c F , by the inductive hypothesis we 

have: cZ (S) * s e q c ^ r - 1 ( S ) . But Sc seqc£ (A?*). Thus 

seqc-€ r(A^)D seqc .X r - 1(S) * c -£ (S )ax . Hence s e q c ^ r ( A ) a x . 

As x i s any point of the set eZ (A) we f inally obtain: 

seqc>6r(A) = eZ (A). Theorem 1 i s proved. 

2« Corollar.y. If X i s an y?0-compact and X i s the uni

on of a f in i te collection of spaces with uniform bases then 
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X is sequential. 

Proof. We just obserre that all the conditions of Theo

rem 1 are satisfied. 

Of course one cannot expect that eTery compact space 

which is the union; of an infinite collection of metrizable 

spaces should be sequential. But we can prove the following 

curious assertion. 

3. Theorem. If X is an infinite compact and X = U-iX^ : 

• ct **- & -i % where each X^ is metrizable then there exists 

in X a non-trivial converging sequence. 

Proof. Clearly we may assume that every X^ is discre

te. Suppose that eTery converging sequence in X is trivial. 

By transfinite recursion we shall define a compact F^c 

c X for each oc < ^ in such & way that the following con

ditions will be satisfied: 1) if oC#< cc"*-: ->fy then F̂ ,, c 

c F^, 52) I F^ I *> .K0 for every oC < -j-fy , and 3) if ©c'< 

-< <*,"-< -K>j > then X^, f) F̂ ,, = 0. 

Put F * X. Suppose that di*< ^ and that for each oc < 

-- oc* a compact F^ is already defined im such a way that 

the conditions l)f2)f3) for all these oc are satisfied. We 

put 4^*= H-tF^ : oC < oC*j.Let us show that t (ĵ l S -#0 . 

Let I (j)̂ * I <= -*0 . Then, by 2) f t F^N 4^* 1 £ j * Q for all 

oc <- oC* . It follows that cC* is a limit ordinal. Let us fix 

a sequence 4**^ 2 neN } of ordinals converging to oc* such 

that oc , < et „ -«- oc* whenever n< nw. It follows from 

1) that $>£# * 0 i F^ : n€ N+j . 

As F. \ <b * is infinite for each ne N .we can choose 



x n e ^oc ^ ^ce* *0T every n £ ^ *n sucn a w ay that x^, 4* 

4- XL.// when n'^n M, n', n"£ N . If ^ is any open neighbor

hood of the set 6.* in X we can find n* e N such that 

F, c t . As X is a compact, this follows from 1). Then 

x m 6 % tor every m a n * .It follows that the set Y* * 

- {x : xe N } U <$> # is closed in X. Hence it is also a. 

compact. As I 4>^ I < -K0 , I Y* I = -K0 . Then Y* contains a 

non-trivial converging sequence - contradiction. Therefore 

I4>cc* I * *o • 

If oC* is a limit ordinal then from (Ĵ * c F^ and 

from 3) it follows that X ^ A (j^* = 0 for all cc -e: oc*. Then 

we put F^* = <J> ̂  .Let us suppose now that «c* has an imme

diate predecessor oc* - 1. Then 3) implies that X ^ 0 <b * = t> 

for all oc < cc* - 1. 

Let us distinguish the following two cases: 
a> l X«*-1 ° <t>oc* ' < " * o -> and b> • Xoc*-4 H ^ ^ ^ o * 
If a) holds then the theorem II.8 of til implies that 

4> * \ X ̂  ̂  is not discrete (otherwise there would exist a 

non-trivial converging sequence in 4^* )• Thus we can fix 

a non-isolated point y* in 4L*^ X ̂  . .Now we choose a ne

ighborhood 41* of y* in 4^* such that cJL ( It*) fl 

^Xcc,*-4 ^ ^<JC* * = ^# Tnen c^ (̂ *5 is an infinite compact 

and, obviously, cZ (<-X*)H}^#L1 = 0. From cX ( U*) c 4^* it 

follows also that cX CU*)0X^ = 0 for each oc «r oc* - 1. We 

put F^* = cZ (%*). The condition 3) is clearly satisfied for 

Foc* * 

Let us consider now the case b). We have: 

1 X«**-1 n *«* » - *o • *-- V = cX <£*_< n ̂  X 
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\(X M fl <{> * ). As X̂ .* 4 is discrete and the set X ^ ^ f] 

(\ $ * is infinite, it follows that F^* f) (X^^^ fl (p^* ) = 

=- 0. But F^*c ^ . Hence F ^ fl - ^ 4 « 0 and F ^ 0 X^ = 0 

for each <* < at* - 1« Finally, the set F^* cannot be fini

te - otherwise the infinite compact c^CX^^ ^ f) 4>cc* ) would 

be the union of two discrete spaces - %(&** fl (j^* and 1^* 

By II.8 of [ 1], that would provide us with an infinite con

verging sequence. Hence I F^* I £ J&0 . The construction of 

the transfinite sequence 4 F^ : oc •* J/%^ ? of compacts in X 

satisfying the conditions 1),2) and 3) is complete. Put F* » 

• 0 4 F^ : oc -c 4Ĉ  5 . From 1) and 2) it follows that F*4* 0. 

On the other hand, 3) implies that F* 0 X^ = 0 for each 

oc «< ̂  . As X » U 4 X ^ ; C36 < 4<,j J and F*c X it follows 

that F* = 0. The contradiction we arrived at means that the

re exists a non-trivial converging sequence in X. Theorem 3 

is proved. 

*• Corollary. It is consistent to assert that every in-

finite compact X such that \ X\ £ 2 ° contains a non-trivi

al converging sequence. 

Proof. We assume (CH). Then X e JA* and the conclu-

sion follows from Theorem 3( a simple direct proof of 4 is 

also possible). 

5* £r obi ems. Let X be a compact, X € JL^ and c(X)^ 

£ v , where x **-tf0 . la it true then that d(X) & <x or 

that JTw(X).6 t ? Must X contain then a dense subspace Y 

such that w(Y) .it ? 

Let X be a compact and X =- X-,U Xp where each X. , i = 1,2, 
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satisfies the following condition: for every Ac X. such that 

1 A I £ &0 the closure of A in X^ is a space with a count

able base. Is it true then that for every countable AcX 

w(c-2 (A)) £ &0 ? Is this true under the additional assum

ption that ^ (Xi)£ #Q for each i = 1,2 ? 

On the other hand we have the following example. 

6« Example. Let <$> be the space of all ordinals not 

exceeding the first uncountable ordinal ^ . The weight bf 

<j> is equal to -K̂  . Hence there exists a compact <J> such * 

that $ » $ U N4*, <J> 0 N+ a 0, c.e (N+) » $ and all the 

points of N are isolated in <)> • We put X = N U ( <}> \ 4-K. } ) 

and Y = i ^ ? . The space X is separable as c£(N ) z> <j> \ i #. I . 

Further ^ (y, $ ) £ -K0 for every y 6 <$> \ 4-K̂  ? . From $ = 

= H-i$\-Ln^: neN +? it follows that ?(,(<|>,$>) -* 

£ if ($, $ ) .£ .K0 (as ()> is a compact). By the transiti

vity of character in compacts (see £2]) we conclude that 

% (y,?>) f= «#0 , for each y e 4>\-C^? . Thus \ (y,X ) ̂  -rt0 

for y € >̂ \ •{ ̂r J . But XN(<|> \ 4 ^ ? ) = N* and all points 

of N are isolated in X. Hence ^(y,X)^4<0 for all y€X„ In 

other words, X is separable and first countable. The single-

ton Y also satisfies these conditions. We have: <f> » XUX, 

where t (<$>)> t (<J>)> .# . . Thus we have constructed a compact 

of uncountable tightness which is the union of two separable 

first countable spaces (one of which is open and another clo

sed in this compact). 

We shall conclude this article with the following pro

blem, related to the problem 11.13 of [1]. 
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7'• Problem. Let X be a compact and X * XJU X.-, where 

both X, and X~ are metrizable. Is it true that the compact X 

is strongly ir^chet in the sense of P. Simon and D. Preiss? 

(see 151). 

Remark. In L H we have asked whether every compact sa

tisfying the conditions of Problem 7 must be Eberlein comp

act? (see [11, 11.13). Of course the positive answer to this 

question would imply the positive answer to Problem 7 - by 

the result of P. Simon and D. Preiss in [51. Hence the nega

tive solution of Problem 7 would provide us with the .negati

ve answer to 11.13. 
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