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COMMENTATIONES MATHEMATICAE UNIVEBSITATIS CAROLINAE 
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ON SINGLEVALUEDNESS AND (STRONG) UPPER SEMICONTINUITY OF 

MAXIMAL MONOTONE MAPPINGS 

Marian FABIAN, Fraha 

Abstract: Under suitable assumptions on the geometry 
of a dual X* of a real Banach space X it is shown that a 
maximal monotone multivalued mapping T from X to X* with 
int D(T)4= 0 is singlevalued and upper semicontinuous on a 
dense residual subset of int D(T). 
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Introduction. Let X be a real Banach space with a 

topological dual X* , T: X — > 2* a maximal monotone mul­

tivalued mapping whose domain has nonempty interior, i.e., 

int D(T)#-0. Two theorems are the main result of this pa­

per, which we can formulate roughly as follows: 

Theorem A (on singlevaluedncas of T). If the dual X* 

is strictly convex, then the set 

MV(T) m \xe D(T) | T(x) is not a singleton J 

if of the first (Baire's) category in X. 

Theorem B (on (strong) upper semicontinuity of T). Jf 

the dual X* is strictly convex and has the property (H) 
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(i.e., if i*nlc X* converges weak3y*to w ^ X * and 

It w n II —a* II w II f then w n — * w), then there exists a set 

Ccint D(T) dense residual in int 3)(T) such that for eve­

ry X6 C the set T(x) is a singleton and T is upper semi-

continuous at x, i.e., for m€D(T) sufficiently close to 

xf the set T(u) lies in an arbitrary small given (norm) 

neighbourhood of T(x). 

See for details Theorems 2.1 - 2.3, Remarks 2.2 - 2.4 

and the definition formulas (2.1) and (2.2). 

Let us recall that the property of a mapping T: X — > 

— > 2^ to be maximal monotone is independent of which 

equivalent norm is taken in X. Hence, by using the renorm-

ing statement of .Amir and Lindenstrauss £21, we obtain that 

the conclusion of !Hheorem A holds for any WCG Xf especial­

ly, for X reflexive or separable. It follows from the re-

norming statement of John and Zizler [73 that the conclu­

sion of Theorem B is valid for such WCG X which have a WCG 

dual X * (more generally, for those WCG X which have an e-

quivalent Fr^chet differentiable norm, see [83), espeeial3y, 

for X reflexive or such X whose dual X* is separab3e • 

Using the simple fact that a subdifferential of a con­

vex lower semicontihuous function is a monotone multivalued 

mapping, we get, from Theorems A and B, the well-known re­

sults of Asplund [31 concerning the Gateaux and Fr^chet dif­

ferentiability of convex functions, see Remark 2.6. 

The theorem on singlevaluedness of T for X separable 

has been proved by Zarantonello £211 in a geometrical way, 

later, topologically, by Kenderov [121 and Robert [161 and 
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more generally , for X with a strictly convex dual X* by 

Kenderov 110}. Our Theorem 2.1 is a little improvement of 

Kenderov's result [101, where it is supposed D(T) * X. 

The theorem dealing with (strong) upper semicontinui-

ty of T for X with a separable dual X* has been proved by-

Robert [171. 

The present paper was stimulated by the ideas of Ken­

derov L101, by means of which he derives the theorem on sing-

levaluedness of T. In doing so he uses the well-known deep 

fact that T is weakly* upper semicontinuous at each x 6 

e int D(T). However, one can do with the demielosedness of 

T only, which is a simple property of maximal monotone map­

pings. 

In this paper, the ideas of Kenderov L101 are generali­

zed to demiclosed multivalued mappings from a metric space P 

to a dual X* (see Lemmas 1.1 - 1.3) and extended to the 

study of the (strong) continuity of such mappings (see Lem­

ma 1.4), and so we get the topological means to prove Theo­

rems 2.1 - 2.3. 

The method proposed can be also used for the study of 

maximal accretive mappings (see, e.g.,[133 for definition). 

The author would like to express his deepest gratitude 

to Josef Kolorn̂  for advice and many helpful suggestions. 

§ 0. Preliminaries. Let U, V be arbitrary sets. Then 

each nonempty subset T of UxV is called a multivalued map-
V -1 

ping from U to V and we write T: U—> 2 . The set T « 

* {(v,u)€ VxU I (u,v)e TJ is called the inverse multival­

ued mapping to T. Thus T"1: V — » 2U. Obviously, (T"1)""1-- T. 

- 21 -



For each ueU, we set 

T(u) » i veV | (u,v)eT? . 

If the set T(u) consists of one point only, we denote this 

point 1y the symbol T(u), too. The set 

D(T) = \ U € U | T(u)#0 J 

is called the domain of T, the set R(T) = D(T""1), the range 

of T. It is introduced by many authors the graph G(T) of a. 

multivalued mapping T by 

G(T) =- i (u,v)€ U K V I veT(u) ? . 

Obviously, G(T) coincides with T. Therefore we shall not 

distinguish between a multivalued mapping and its graph. 

A subset TcUxV is called a singlevalued mapping, if 

the following implication holds: 

(UjV-̂ ), (u,v2,)€ T-s-̂ v-̂  = v2. 

In this case, we write T; U — • V. 

A subset T-jCTcUxV is called a selection of the mul­

tivalued mapping T, if T., is singlevalued and ©(T^) = D(T). 

Throughout the paper R will denote the set of real num­

bers endowed with the usual topology, X a real normed line­

ar space, X* its topological dual (the norm on X* is dual 

to the norm on X), P a metric space. If A is a subset of P, 

then int A will denote the topological interior of A and cl A 

the closure of A. We recall that a subset Ac P is called re­

sidual in P if the set P\ A is of the first (Baire's) cate­

gory in P. The arrows * — > ", " —** " will denote the strong 

and weak* convergence, respectively. 

A singlevalued mapping f: P—> R U-£ + <»? is called a 

function. The set 
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dom f * { U€ D(f) | f (u)« * OP ? 

is called the effective domain of f• 

A function f is said to be lower stmicontinuoua i f 

V a « R [ t h e set -J ua P I f (u ) i a } is c losed] 

Let T: P — * X* be a ainglevalued mapping from a met­

ric space P to a dual X* and let ucD(T). T is said to be 

deraicontinuous at u if. 

V sequence iv^l c D(T) Cu^—> u —S->T(un)—»-T(u)] , 

X* Let T: P—> 2 be a multivalued mapping from a metric space 

P to a dual X* . T is said t o be demicloaed if 

V u e P f w s X * Vnet \ (u^ .w^ ),cc* A l c T 

[(u^—> u ( A ) , w^—r w ( A ) , sup 4II w^ I | o c « A } < +<»)*+ 

«-*-Mu,w) €T3 . 

X* Let T: X — » 2 be a multivalued mapping from a real 

normed linear space X to its dual X* • T is said to be mono­

tone if (for x* X and x*eX* the symbol < x* ,x > denotes 

the value of the functional x* at x) 

¥(x,x* )cT ¥(y,y* ) e T C< x* - y* ,x - y> > 0 3 , 

and maximal monotone if T is not properly contained in any 

other monotone mapping. 

§ It Lamaaa on continuity of demicloaed mappinga. 

Lemma l.lt Let T: P — > 2r be a damicloaed multiva­

lued mapping fron a metric space P to a dual X* of a norm­

ed linear space Xt 
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Then the funct ion f,-,: F — * R U4 + <*> J def ined by 

( 1 . 1 ) f T ( u ) « inf -C II wll ) w€TCu)} , u € P 

is lower semicontinuous. 

Proof; Let &€ R be arbitrary. We have to show that 

the set 

A * 4 u € P | fT(u)*a ? 

is closed. Let u € cl A and let -iu^ c A be a sequence such 

that u^—*• u. For each n = 1,2,..., we find wn« T(un) such 

that 

f T ( u n ) £ II wn II ^ fT(un) + 1/n. 

Thus 

( 1 . 2 ) || wn II -< a • 1 /n , n = 1 , 2 , . . . 

and so the sequence 4 wn> is bounded, hence w* -praecom­

pact. Therefore there is w€ X* and a subnet \ wn , oe €J1 J 
oc 

of the sequence 4w ? such that 

(1.3) wn —*, w(A). 

And s ince u ^ — * u ( A ) , t o o , and T i s demiclosed , (u,w)€ T. 

From the weak* lower semicontinuity (w* . l . s . c , in abbre­

v i a t i o n ) of the norm on X* , by us ing (1 .2 ) and ( 1 . 3 ) , we 

have 

II w II * l i « i n f II w„ II £ a. 
oc €A n<x. 

Thus f^(u)^ Hwll-ia, i.e., u € A. The closedness of A is 

proved, which completes the proof. Q.E.D. 
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We recall two well-known propositions. 

Proposition 1.1 (C5, 13.43) . If S: P—> Q is a single-

valued mapping from a metric space P to a metric space Qt 

then the set C(S) of all those points at which S is conti­

nuous, is G^ in D(S), i.e., the set NC(S) « D(S)\ C(S) is 

Fr in D(S). 

Proposition 1.2. Let P be a metric space and f: P—-v 

—> R U -i + <x> \ a lower semicontinuous function. Then the 

set C(f) of all those points at which f is continuous, is 

residual in dom f , i.e., the set KC(f) = dom f \C(f) is of 

the first (Baire's) category in dom f. 

Proof: See 14.7.6 and 14.5.2 in 153. 

X* 

Lemma 1.2. Let T: P — > 2 be a demiclosed multiva­

lued mapping from a metric space P to a dual X* of a norm-

ed linear space X. Let the function f™ be defined by (1.1). 

Then the set C(fT) of all those points at which f,-, is 

continuous, is residual G0~ in D(T). 

Proof: It follows immediately from Lemma 1.1 and Pro­

positions 1.1 and 1.2. 

X* 

Let T: P — > 2 be a multivalued mapping. A selection 

TQ of T is said to be lower (with respect to the norm on 

X* ), if 

(1.4) (ufw) 6 T «=* It T0(u) II h II w II . 

Obviously, 

(1.5) |!T0(u>ll« fT(u) f o r u e D ( T ) . 
We shall show that if T is demiclosed, then there exists 
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at least one lower selection of T. Let U6 D(T) be arbitra­

ry. Denote c = inf { II w II | w 6T(u) \ and set 

K = { w€T(u) | II v l i c + 1} . 

Then K is a nonempty bounded and w* -closed subset of X14, 

hence w* -compact. So the norm on X* f which is w*.l.s.c.f 

attains its minimum on K, i.e., there is a w 6 KcT(u) such 

that 11 w II = c. o 

For every singlevalued mapping S: P—>X*" , we intro­

duce the sets 

C (S) ={u€ D(S) | S is demicontinuous at u } , 

HCd(S) « D(S)\Cd(S). 

X* 

Lemma 1.3. Let T: P—* 2 be a demiclosed multiva­

lued mapping from a metric space P to a dual X* of a nora-

ed linear space X, fT the function defined by (1.1). Let 

there exist a unique lower selection T of T. 

Then, if fT is continuous at ueD(T)f T is demiconti­

nuous at u: 
(1.6) C(fT)cC

d(T0), i.e., NC
d(TQ)cNC(fT) 

and tence, the set Cd(T0) i s res idual in D(T). 

Proof: Let ucC( f T ) be a rb i t r a ry . Let i u^ $ be a se­

quence in D(T) such that u —> u . Since (1.5) holds ani 

u c C ( f T ) f 

(1.7) II TQ(un) I I—^t l l 0 (u ) l l f 

hence, the sequence 4TQ(un)^ is bounded. It implies that 

ifirw.any subsequence of 4T (u_)J f we can extract a subnet 

converging weakly* to some w e X * . Then the demiclosedness 
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of T gives that (u,w)« T, hence, by (1.4), II w H £ l| TQ(u) II . 

But w* .l.s.c. of the norm on X* f and (1.7) implies ft w II ̂  

6 ||To(u)|| . Thus II w || * lT0(u)/| . From here, anl from 

the uniqueness of the lower selection of T, we obtain w * 

= T (u). It means that the whole sequence 4TQ(un)l is con­

verging weakly * to T0(u), so that U€C (TQ), which proves 

(1.6). Finally, it follows from (1.6), by Lemma 1.2, that 

the set Cd(TQ) is residual in D(T). Q.E.D. 

Corollary 1.1. Let S: P—+> X* be a demiclosed single-

valued mapping from a metric space P to a dual X1* of a nor-

med linear space X. 

Then the set Cd(S) of all those points at which S is 

demicontinuous, is residual in D(S). 

Lemma 1.4. Let P be a metric space and X a normed li­

near space whose dual X* has the property (H). Let T: P—*> 
X* 

— • 2 be a demiclosed multivalued mapping and let there 

exist a unique lower selection T of T. Let f«, be the func»-

tion defined by (1.1). 
Then T is continuous at u£D(T) iff fm is continuous o J. 

at u: 

(1.8) C(TQ) -= C(fr]I), i.e., NC(TQ) -= NC(fT) 

and hence, the set C(T0) is residual G^ in D(T). 

Proof: Since X* has the property (H), for every w€ X* 

and for every sequence { wn J c X * , .he following equivalen­

ce holds 

( 1 . 9 ) w n — • w<===->(wn—rw and U wn II * \\ w II ) . 
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Let ueD(T) and let i t^ ? be a sequence in D(T) such that 

u
n
—> u. If we set w = -*

0
(u) and w

n
 « T^i^), n = 1,2,... 

in (1.9), we obtain 

T
0
(u

n
)-^T

0
(u)4-==»(T

0
(u

n
)—^T

0
(u) and 11^(^)1 — • 

l!т
0
(u)íi ). 

Therefore (see (1.5)), 

C(T0) = C(fT)0C
d(To). 

But, by Lemma 1.3, we have C(fr],)c C
d(TQ), thus (1.8) holds. 

The rest of the conclusion of the Lemma follows from the 

identity (1.8) by Lemma 1.2. Q.E.D. 

Corollary 1»2. Let P be a metric space, X a normed li­

near space whose dual X* has the property (H). Let S: P—•** 

— > X* be a demiclosed singlevalued mapping. 

Then the set C(S) of all those points at which S is con­

tinuous, is residual G^ in D(S). 

* Corollary 1.3, Let S: P — * X be a demiclosed single-

valued mapping from a metric space P to a reflexive Banach 

space X. Then the set C(S) of all those points at which S 

is continuous, is residual QQT in D(S). 

Proof: It follows immediately from the renorming sta­

tement of Troyanski [20] by Corollary 1.2, where we write 

X* instead of X., 

It should be noted that, in the book of Alexiewicz [1, 

V.2.1.3, there is a similar statement for X separable: 

Let S: P — > X be a singlevalued mapping (with D(S) = 

=- P) from a comple te metric space P to a separable normed 
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linear space X such that 

U-
n 

.><x* ,S(un) > > < x* , S(u) > for every 

x*cZ* , 

where Z* i s such a subset of X* that for every x€ X, 

iixil = sup * < x * t x > | x*£ Z * f !lx*!| h 1?. 

Then the set NC(S) of all those points at which S is 

not continuous, is of the first category in P. 

If S: Y — > X is a singlevalued linear closed (i.e., 

y n—* y and S ( y n ) — * x imply yeD(S) and x =- S(y)) mapping 

from a normed linear space X to a reflexive Banach space X, 

with D(S) of the second category in itself, we receive fro» 

Corollary 1.3 with help of Mazur's theorem that S is conti­

nuous, which is a special case of Banach'3 closed graph 

theorem* 

§ 2. Theorems on singlevaluedness and (strong) upper 

semicontinuity of maximal monotone mappings 

We start by the following simple lemaa: 

Lemma 2.1. A maximal monotone multivalued mapping T: 
if*'*' 

: X—> Z from a normed linear space X to its dual X* is 

demiclosed and has at least one lower selection. 

If, in addition, X* is strictly convex, there is a u-

nique lower selection T of T. 

Proof: Let { (x^ fw^ ), o& c A { be aret in T such 

that 

Xoc—* x(A)> w^ 7 w(A), sup -til ŵ lt \ct € Al<+co . 
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Let ( y , y * ) e T be a rb i t r a ry . From the monotonicity of Tf 

we have 

<woC - y * ,x f lC- y > £ 0 for a l l oc € A , 

and patting to a limit, we get < w - y * , x - y > £ 0. 

Sinet (y fy*)*T was arbitrary, the maximal monotonicity 

ot t givtf (xfw)c T. Thua the demiclosedness of T is pro­

ved and thtrtfort T hat at least one lower selection. 

Further, let X^ be strictly convex. Suppose that for 

tomt x4-0(T)f thtre are w.zc T(x) such that H w II = I z II = 

» c « inf i $ x*H | x*« T(x) ? . Then the convexity of T(x) 

(see, e.g., £4J) givet (w + z)/2aT(x), hence t (w + z)/2ll£ 

£ c. But, on the other hand, I (w + z)/2 If & c/2 + c/2 = c. 

Thua the strict convexity of X* yields w = z. Hence, two 

different lower aelectiona of T cannot exist. Q.E.D, 

.Let M be a nonempty tubatt of a normed linear space X. 

Following Kato t9Jf we introduce the set 

(2.1) dint M « {x€U | el FX(M) =- X? , 

where 

(2.2) FX(M) • i U4 X | 3 i tn } c Rf t n>0, tn4, 0, 

ix • tnu I c M I . 

It thould bt nettd that iat M and the algebraic inte­

rior of M 9v§n trt includtd in dint M. 

Example 2*1. Ivtt H bt t ttparablt Hilbtrt space, 4ejJ 

a total wthtnerMli tytttm in H. Wt ttt 

(2.3) Um in • J6 ti^ I < 41c R, 5 i I t . , 1 * 1?. 
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It is easy to show that the set M is convex closed (hence, 

of the second category in itself) having empty algebraic 

interior, but dint M4»0, even M = cl (dint M). 

X* Lemma 2.2. Let T: X —->2 be a monotone multivalued 

mapping from a normed linear space X to its dual X* and 

let T-. be an arbitrary selection of T. Denote 

SV(T) * \xe D(T) T(x) is a singleton?, 

Mf(T) « D(T)\SVCT). 

Then, if T, is demicontinuous at x€dint D(T), the set 

T(x) is a singleton: 

(2.4) Cd(T1)ndint D(T)cSV(T), i.e., 

M?(T)ndiat D(T)cltCa(T1). 

Proof: Let x€ C^CT-^fldint D(T). Let w be an arbitrary 

element of the set T(x). For every u£Fx(D(T)) and the cor­

responding sequence 4 tn? , tn;> 0, tn\ 0 (see (2.1) and 

(2.2))f from the monotonicity of T, we have 

< T-jCx + tnu) - w, (x + tnu) - x > £ 0 , n » 1,2,..., 

and cancelling it by tn^ 0, 

< T-^x + tnu) - w,m> •£ 0, n = 1,2,... . 

Using the demicontinuity (even the hemicontinuity only) of 

T, we then obtain that 

<T1(x) - w,u > 2 0. 

Since this inequality holds for each u€Fx(D(T)), and 

FX(D(T)) is a dense subset in X, it must be T-Jx) = w. But 
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w was arbitrary element of the set T(x), hence T(x) is a 

singleton, i.e., xcSV(T). Thus the lemma is proved. Q.E.D. 

x* 

Remark 2 . 1 . I f T: X—> 2 i s a maximal monotone mul­

t i v a l u e d mapping from a Banach space X t o X* , w i th i n t D(T)-{= 

#=0, ( 2 . 4 ) can be s t r e n g t h e n e d . The r e s u l t of Rockafe l l a r 

[ 1 8 ] says t h a t SV(T)c i n t D(T) and tha t T i s l o c a l l y boun­

ded a t any p o i n t of i n t D(T). From t h i s arri from ( 2 . 4 ) , we 

can d e r i v e the fo l lowing i d e n t i t y 
C d ( T 1 ) n i n t D(T) = SV(T). 

Theorem 2.1, Let X be a Banach space with a strictly 
X* 

convex dual X* and T: X — > 2 a maximal monotone multiva­
lued mapping. 

Then the set 

MV(T) Odint D(T) = ix€ dint D(T) | T(x) is not a singleton? 

is of the first category in D(T). 

If, moreover, int D(T)4=0t then the set 

SV(T)nint D(T) = -txcint D(T) | T(x) is a singleton? 

ia dense residual in int D(T). 

Broof: The first assertion follows immediately from 

Lemmas 2.2 and 1.3* 

Further, let int D(T)-£ 0. Since the obvious inclusion 

int D(T)cdint D(T) holds, the set MV(T)nint D(T) is of the 

first category in D(T), hence also in X and in the open non­

empty set int D(T). Therefore the set 

SV(T)Oint D(T) = int D(T)"x (MV(T) A int D(T)) 
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is residual in int D(T) and, by Baire's category theorem, 

is dense in int D(T). Q.E.D. 

Remark 2.2. Since SV(T)cint D(T) (see [18}), we can 

write SV(T) instead of SV(T) (1 int D(T) in Theorem 2.1. 

Theorem 2.2. Let X be a Banach space with a dual X* 

which is strictly convex and has the property (H). Let T: 
X* : X—=>2 be a maximal monotone multivalued mapping. 

Then: 

(i) There exists a unique lower selection T of T. 

(ii) For each xc dint D(T) at which T is continuous, T(x) 

is a singleton. 

(iii) The set C(TQ) of all those points at which TQ is con­

tinuous, is residual G^ in D(T), i.e., the set NC(TQ) * 

= D(T)\C(TQ) is of the first category Fs in D(T). 

(iv) If, in addition, int D(T)#=0, the set C(TQ)n int D(T) 

is dense residual G^ in int D(T). 

Proof: (i) is contained in Lemma 2.1.(ii) follows from 

Lemma 2.2 and the obvious inclusion C(T0)c C®(TQ). (iii) is 

obtained by using (i) and Lemma 1.4. (iv) follows fra» (iii) 

and Baire's category theorem. Q.E.D. 

Example 2.2. Let H be a separable Hilbert space, ie*} 

a total orthonormal system in H and McH the set defined by 

(2.3). Define the function <p : H — * HU-C+a>5 as follows 

<5>(x) = 0, if xeM, <j(x) = + co , if x<£ M. 

Obviously, <p is a convex lower semicontinuous function. 

By [193, the subdifferential B<j> of <jp is a maximal mono­

tone multivalued mapping from H to H, with D( &cg ) = M, Hen-
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ce, according to Example 2.1, int D O op ) =0, but 

dint DO<j )$/>$ and cl (dint D(£g? )) * D( d<p ) is of the 

second category in itself. It justifies the extension of 

our reasoning from the class of maximal monotone mappings 

T, with int D(T)#0, to that, with dint D(T)+0. 

If int D(T)4*0, then for the points x€C(TQ)nint D(T), 

we shall deriTe a little more still, namely, that at such 

points x, the mapping T is (strongly) upper semicontinuous. 

We shall use the following lemma. 

X* 
Lemma 2.3* Let T: X — » 2 be a monotone multiTalued 

mapping from a normed linear space X to its dual X* such 

that int D(T)4» 0 and let T-j, T2 be two arbitrary selections 

of T. Denote by CtT-^), C(T2) the sets of all those points 

at which T,, T2 are continuous, respectiTel:y. Then 

(2.5) 0(^)0 int D(T) * C(T2) fl int D(T). 

Proof: In Tiew of the symmetry of the conclusion, it 

suffices to proTe the inclusion c in (2.5). Let xeCfT^f) 

Hint D(T) be arbitrary. Recall that, by Lemma 2.2, T-^x) » 

* T2(x) = T(x). Let ixjjjc D(T) be a sequence such that 

x — • x. Since xcint D(T), we can suppose that -tx^ c 

c int D(T). For each n = 1,2,..., we find Tnc X so that 

(2.6) MT n l l 4 land »T2(xn) - T(x) II - 1/n h 

£ <T2(xn) - T(x),Tn> . 

-farther, for OTery n « 1,2,..., we choose tn€ (0,1/n) so 

that ^ + tnTncD(T). 

The monotonicity of T giTes 
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hence 

< T 2 ( x n ) , V n > i < T < | ( x n + V n ) , v n > , 

which together with (2.6) yields 

llT2(xn) - T(x) II - 1/n.i <T1(xn + tnvn) - *(x)fvn> i 

£ II T1(xn + tnvn) - T(X) II . 

But x^ + t v — * x and X6C(TJ. Therefore the last inequa­

lity gives that II T2(xn) - T(x) II—> 0f i.e., xeC(T2). 

Q.E.D. 

Theorem 2,3. Let X be a Banach space with a dual X* 

which is strictly convex and has the property (H). Let T: 

: X — • 2^ be a maximal monotone multivalued mapping with 

int D(T)+0. 

Then the set of all those xe int D(T) for which the 

set T(x) is a singleton and T is upper semicontinuous at x, 

i.e., given e ^ 0, there exists cT > 0 such that for each 

ueD(T) fulfilling II x - u II «*-> <F f the set T(u) is includ­

ed in the e-neighbourhood of T(x)f is dense residual @</~ in 

int D(T). 

Proof: We set 

C m int DdJflCt^), 

where T, is an arbitrary selection of T. (Thanks to Lemma 

2.3, the set C does not depend on the choice of T-̂ ») % Theo­

rem 2.2 (iv), C is dense residual Q^ in int D(T). We shall 

show that C is that set of Theorem 2.3. Let xeint D(T) be 
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such that T(x) is a singleton and T is upper semicontinuous 

at x. Then we easily get xeC(T), hence xe C. Conversely, 

let x e C be arbitrary. By I.emma 2.2, the set T(x) is a sin­

gleton. We shall be proving that T is upper semicontinuous 

at x. Let us suppose the contrary. Then there exists an £> 

> 0 and a sequence \ ^^n^x^ 3 c T such that u^—-> x and 

(2.7) I! wn - T(x) II £ e , n = 1,2,... . 

We define the selection Tg of T as follows: 

T2
(un) = wn» n = i*2*"** 

T^(u) = an arbitrary element of T(u), for u ̂ -(u^J • 

But since, by Lemma 2.3, x€CcC(T 2), 

wn = T2^ un*—> T2 ( x* = T^x^t 

which is in contradiction with (2.7). It means T is upper 

semicontinuous at x. Q.E.D. 

Remark 2.3» The second part of Theorem 2.1, and Theo­

rem 2.3 are valid for arbitrary monotone multivalued mapp­

ing T: X — * 2 X , with int D(T)±0. 

X* Remark 2.4. Let T: X—> 2 be a maximal monotone 

multivalued mapping from a Banach space X to its dual X* 

such that int D(T)4=0. Then, by Rockafellar's result £18J, 

D(T)ccl (int D(T)), and hence, the set D(T)\ int D(T) is 

nowhere dense in D(T). Therefore the text "in int D(T)M in 

Theorems 2.1 - 2.3 can be replaced by "in D(T)*1 (provided 

that T is maximal monotone). 
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Remark 2.5. A somewhat different method for obtain­

ing the results above, in the special case when X is re­

flexive, is given in [6J# 

Remark 2.6. Let f: X — > R U -L + co \ be a convex low­

er semicontinuous function, with I)(f) = X and int (do?* f)4* 

4- 0. Then, it can be easily seen that the subdifferential 

d f of f is a monotone multivalued mapping. Using E14J, we • ' 

imne diately derive from Theorem 2.1 and Remark 2.3 that if 

X* is strictly convex, then the set of those points at 

which f is G&teaux differentiable, is dense residual in 

int (dom f), which is included in Theorem 2 in [3J. It fol­

lows from Theorem 2.3 and Remark 2.3 by means of Proposi­

tion (ii) in [171 that if X* is strictly convex and has 

the property (H), then the set of those points at which f 

is Fr^chet differentiable, is dense residual G # in 

int (dom f). This result is a little stronger than Theorem 

1 in [33, where it is required for X* to be locally unifor­

mly convex. However, our statement is included in [15J. 

Added in proof. After this paper had been prepared for 

publication, the author received the preprint by P. Kenderov 

and R# Robert: Nouveaux r^sultats generiques sur les ope>s-

teurs monotones dans les espaces de Banach, which will ap­

pear in C.R. Acad. Sci. Paris . Here it it independently 

shown that the conclusion of Theorem B is valid, if X** has 

the property (H), where nets are taken instead of sequences, 

without the assumption of strict convexity of X*. 

From the sketch of the proofs in the quoted work, it is 

obvious that our methods of the oroofs are rather different. 
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