Commentationes Mathematicae Universitatis Caroline

Esther Podolak
A note on the existence of more than one solution for asymptotically linear equations

Commentationes Mathematicae Universitatis Carolinae, Vol. 18 (1977), No. 1, 59--64
Persistent URL: http://dml.cz/dmlcz/105748

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

$$
18,1(1977)
$$

A NOTE ON THE EXISTENCE OF MORE THAN ONE SOUUTION FOR ASYMPTOTICALLY LINEAR EQUATIONS
E. PODOLAK, Princet on

Abstract: Consider the nonlinear operator equation $I u+N(u)=I$ with nonlinearity satisfying $\mathbf{P}_{0} N\left(x_{0}\right) \longrightarrow 0$ as $\left\|x_{0}\right\| \rightarrow \infty$ for x_{0} in Ker L, P_{0} being the projection onto Coker L. Under additiomal hypotheses we show that this equation has the property that for $\left\|P_{0} I\right\|$ sufficiently small, it has at least two solutions.

Key words: Fredholm, semilinear alternative problems, degree, Leray-Schauder degree, homotopy.

AMS: 47H15 Ref. Z.: 7.978.5

Introduction. Consider the nonlinear operator equation
(A) $\quad L u+N(u)=P$
where L is a linear Fredholm map of index zero between Banach spaces X and Y and N is a compact uniformly bounded map of X into Y. Using the notation $X_{0}=\operatorname{Ker} L, P_{0}=$ projection onto Coker L, we decompose each x in X into $x_{0}+x_{1}$ where $X \neq X_{0} \oplus$ $\oplus X_{1}$ and X_{1} is some complement of X_{0} in X. We assume
(H.I) Given $E>0$ and $k \geq 0$ there exists $\rho>0$ such that if $\left\|x_{1}\right\| \leq k$ and $\left\|x_{0}\right\| \geq \rho,\left\|P_{0} N\left(x_{0}+x_{1}\right)\right\|<\varepsilon$. In addition, suppose Ker L is one-dimensional and
(H.2) For any M, there exists a number R_{0} such that if $\left\|x_{1}\right\| \leq M$ and $\left\|x_{0}\right\| \geq R_{0} P_{0} N\left(x_{0}+x_{1}\right)$ and $P_{0} N\left(-x_{0}+x_{1}\right)$ are of opposite signs.

Then the followin result is known:
Theorem. Assuming (H.1) and (H.2), the equation (A) has a solution for each f in the range of L. Furthermore there is a number c depending on $P_{1} P$, where $P_{1}=I-P_{0}$ is the projection onto the range of L, such that for $\left\|P_{0} f\right\|<c\left(P_{1} f\right)$ (A) has a solution.

Examples of boundary-value problems where essentially this abstract result is used can be found in references [1], [2], and [3].

The generalization of this theorem to the case where dim Ker $L>1$ is easily seen. Let $\left\{x_{0 i}\right\} \quad i=1, \ldots, n$ be a fixed basis of unit vectors spanning Ker L and let an arbitrary element of Ker L be denoted by $a \cdot x_{0}$ where $a=\left(a_{1}, \ldots, a_{n}\right)$ $x_{0}=\left(x_{01}, \ldots, x_{o n}\right)$ and $a \cdot x_{0}=a_{1} x_{01}+\ldots+a_{n} x_{o n}$. Instead of (H.2) assume
(H.3) For any M there exists a number R_{0} such that
$\left\|x_{1}\right\| \leqslant M$ and $|a| \geq R_{0} i m p l y P_{0} N\left(a \cdot x_{0}+x_{1}\right) \neq 0$
and letting $\phi(a)=P_{0} N\left(a \cdot x_{0}\right)$ be regarded as a map of R^{n} into R^{n}, assume for $R \geq R_{0}$
(H.4) $\operatorname{deg}\left(\phi, 0, D_{R}^{n}\right) \neq 0$ where D_{R}^{n} is the ball of radius R in R^{n} and deg is the standard Brouwer degree.

Clearly for the case of a one-dimensional kernel, (H.3) and (H.4) are equivalent to (H.2). The result now reads as follows:

Theorem. Let L and N be as above with N satisfying (H.1), (H.3), and (H.4). Then for each f, there is a number $c\left(P_{1} f\right)$ such that for $\left\|P_{o f} f\right\| c\left(P_{1} f\right)$, (A) has a solution.

A variant of this result has been proved and used by Mawhin in the study of periodic solutions of ordinary vector differential equations. (See [4] and [5]).

In this note we extend the results mentioned above by showing that for $\left\|P_{0} f\right\|$ sufficiently small and $\neq 0$, (A) has in fact at least two solutions.

Section 1. Here we formally state and prove our main result.

Theorem 1. Suppose N satisfies (H.1), (H.3), and (H.4). Then for each f, there exists a number $c\left(P_{I} f\right)$ such that for $0<\left\|P_{0} f\right\|<c\left(P_{1} f\right)$, equation (A) has at least two solutions. Here $c\left(P_{1} P\right)$ is the same constant needed in the previously mentioned work.

To prove Theorem 1, using the standard method for semiJ.inear alternative problems, we rewrite (A) as
(1) $\quad F\left(x_{1}, a\right)=0$
where $F: X_{1} \times R^{n} \rightarrow X_{1} \times R^{n}$ is given by
(2) $F\left(x_{1}, a\right)=\left(x_{1}+L^{-1} P_{1}\left[N\left(a \cdot x_{0}+x_{1}\right)-f\right]\right.$,

$$
\left.P_{0} N\left(a \cdot x_{0}+x_{1}\right)-P_{0} f\right)
$$

Here P_{1} is the projection onto $L\left(X_{1}\right)$ and $L: X_{1} \rightarrow L\left(X_{1}\right)$ has an inverse which we have denoted as L^{-1}.
Let $D_{k}=\left\{\left(x_{1}, a\right):\left\|x_{1}\right\|+|a| \leqslant k\right\}$ and let S_{k} be its boundary. Then we have
-Lemma 1. There exist constants c and k such that if $\left\|P_{0} f\right\|<c, \operatorname{deg}_{L S}\left(F,(0,0), D_{k}\right) \neq 0$, where $\operatorname{deg}_{L S}$ is the LeraySchauder degree. Furthermore these constants depend on $\mathrm{P}_{1} \mathrm{f}$.

Proof. Let
(3) $H\left(x_{1}, a, t\right)=\left(x_{1}+t L^{-1} P_{1}\left[N\left(a \cdot x_{0}+x_{1}\right)-f\right]\right.$,

$$
\left.P_{0} N\left(a \cdot x_{0}+t x_{1}\right)-P_{0} f\right)
$$

We claim that there exist constants, c, k such that if $\left\|P_{0} f\right\|<c, H\left(x_{1}, a, t\right) \neq 0$ on S_{k}. This is easily seen since if the first component of H is zero, by (3),
(4) $\left\|x_{1}\right\| \leqslant\left\|L^{-1} P_{1}\right\|\left[\sup _{x \in X}\|N(x)\|+\left\|P_{1} \mathbb{f}\right\|\right] \equiv M$ and thus by hypothesis, there exists R_{0} such that $P_{0} N\left(a \cdot x_{0}+x_{1}\right) \neq 0$ for $\left\|x_{1}\right\| \leqslant M$ and $|a| \geq R_{0}$ so that on the bounded set $\left\{\left(x_{1}, a\right):\left\|x_{1}\right\| \leq M, R_{0} \leq|a| \leq R_{0}+M\right\}$ there is some constant $\alpha>0$ such that $\| P_{0} N\left(a \cdot x_{0}+\right.$ $\left.+x_{1}\right) \|>\propto$. Thus picking $c=\propto$, if $\left\|P_{0} P\right\|<c$ and $k=M+R_{0}$ we have $H\left(x_{1}, a, t\right) \neq 0$. This gives us that $H\left(x_{1}, a, 0\right)$ is homotopic to $H\left(x_{1}, a, 1\right)$ on S_{k}. But $H\left(x_{1}, a, 1\right)=$ $=F\left(x_{1}, a\right)$ and
(5) $H\left(x_{1}, a, 0\right)=\left(x_{1}, P_{0} N\left(a \cdot x_{0}\right)-P_{0} f\right)$
so that

$$
\begin{aligned}
& \operatorname{deg}_{I S}\left(F,(0,0), D_{k}\right)=\operatorname{deg}\left(P_{0} N\left(a \cdot x_{0}\right)-P_{0} f, 0, D_{k}^{n}\right) \\
= & \operatorname{deg}\left(\phi, 0, D_{k}^{n}\right) \neq 0 \text { by hypothesis (H.4). }
\end{aligned}
$$

It is easily seen from (4) and the subsequent inequalities that c and k depend on $P_{1} P$.

Lemma 2. If $P_{0} f \neq 0$, there is a k_{1} depending on $P_{0} f$
such that $\operatorname{deg}_{I_{S}}\left(F,(0,0), D_{k_{1}}\right)=0$.
Proof. Let $k_{1}=M+\rho$ where M is given by equation (4) and ρ is given by hypothesis (H.1) with $\varepsilon=$ $=\left\|P_{0} f\right\|$.
Thus on $\mathrm{S}_{\mathrm{K}_{1}}$
$G\left(x_{1}, a, t\right)=\left(x_{1}+t L^{-1} P_{1}\left[N\left(a \cdot x_{0}+x_{1}\right)-p\right]\right.$,
$\left.t P_{0}\left(a \cdot x_{0}+x_{1}\right)-P_{0} f\right)$
is a non-vanishing homotopy be tween $F\left(x_{1}, a\right)$ and $G\left(x_{1}, a, 0\right)=$ $=\left(x_{1},-P_{0} f\right)$. But clearly $\operatorname{deg}_{I S}\left(G,(0,0), D_{k_{1}}\right)=0$
since G is not surjective. Thus $\operatorname{deg}_{L S}\left(F,(0,0), D_{k_{1}}\right)=0$.
Finally we have
Proof of Theorem 1. Given f, suppose $\left\|P_{0} f\right\|<c$, where c is given in Lemma 1. Then there exists k such that $\operatorname{deg}_{\text {LS }}\left(F,(0,0), D_{k}\right) \neq 0$. But by Lemma 2 , there is a k_{1} such that $\operatorname{deg}_{L S}\left(F,(0,0), D_{k_{1}}\right)=0$. Therefore there must be a zero of F between S_{k} and $S_{k_{1}}$. Thus we conclude that for $\left\|P_{0} \mathbb{f}\right\|<$ $<c, F$ must have at least two zeros.

Remark. Note that if $P_{0} P=0$, the proof of Lemma 2 breaks down, and in fact Prof. Fuxik has pointed out to me that the boundary-value problem with $P=0$

$$
\begin{gathered}
-u^{\prime \prime}-u+u\left(1+u^{2}\right)^{-1}=0 \\
u(0)=u(w)=0
\end{gathered}
$$

satisfying (H.1) and (H.2), is uniquely solvable.
I would like to express my thanks to Prof. Fucik for the current formulation of typothesis (H.1).

References

[1] S. FUX̌fK: Further remark on a theorem by E.M. Landesman and A.C. Lazer, Comment. Math. Univ. Carolinae 15(1974), 259-271.
[2] S. FUXik: Nonlinear equations with noninvertible linear part, Czech. Math. J. $24(1974$), 467-495.
[3] E.N. DANCER: On the Dirichlet problem for weakly nonlinear elliptic partial differential equations (to appear).
[4] J. MAWHIN: The solvability of some operator equations with a quasi-bounded nonlinearity in normed spaces, J. Math. Anal. Appl. 45(1974), 455-467.
[5] J. MAWHIN: Periodic solutions of some vector retarded functional differential equations, J. Math. Anal. Appl. 45(1974), 588-603.

Princeton University and Bar-Ilan University
(Oblatum 19.8.1976)

