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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

18,1(1977) 

ON IDEALS AND QUOTIENTS OF HERMIT IAN ALGEBRAS 

Nasanbujangijn NAMSRAJ, Ulan Bator and Praha 

Abstract: We prove that a #-algebra Ji is hermitiati 
if aad oaly if a closed two-sided ideal I and the quotient 
A /I are hermit ian. 
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Let A be a complex Banach * -algebra possibly without 

unit. The spectral radius and PtaTe's function of the element 

ac A will be denoted respectively by I a t̂  and p(a). Here 

by defiaitioa p(a) * la* ml^1 . The set of selfadjoiat ela-

ments ef A (i.e. such that a!* = a) is denoted by H(A). Let I 

be a selfadjoiat closed ideal ia A. Our purpose ia this note 

is to prove the next theorem: 

The algebra A ishermitiaa if and only if I aad A/I are 

hermit ian. 

Ia the case of isometric involution this result has been 

recently obtained by H. Leptin tl]. 

The recent PtAk's contribution to the theory ef hermi-

tian algebras t3] make it possible to prove the result in 

its full generality without any continuity assumption concer

ning the involution. 
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For the proof of the main theorem we need the follo

wing characterization of hermitian algebras. 

Theorem 1. Let A be a Banach * -algebra. Then the 

following properties are equivalent. 

1° A is hermitian. 

2° Ibr every proper left ideal LcA there exists a njn~ze-

ro positive linear functional f with f(L) « 0. 

3° For every proper modular left ideal LcA there exists 

a non-zero positive linear functional f with f(L) » 0. 

Proof. Assume 1°. Set L^**ix+A,:xeLfJl complex J 

so that L is a linear subspace of A, (where A., * { a + T> : 

: acA, •)> complex} , i.e. the unitization of A). 

Now define fe(x + A ) * A for each x + A € 1.̂ . Then 

f0 is a linear functional on L̂ ^ with f0(l) * 1. It is evi

dent that L is a proper 3eft ideal in A1# Therefore, we ha

ve 0 c fS (x) for all xeL, hence Xe & (x + A ) . Hence 

lf#(x + ^ ) | • IAI * Ix + Al r . 

Since, by definition, A is hermitian if and only if A-, 

i$ hermitian, we can use the fundamental inequality C3J. It 

follows 

l f 0 ( x +A)\6 l x a l r i P A ( x + A ) . 

The Pt&k's function p being a pseudonorm on hermitian 

algebras [33, we can extend f0, by Hahn-Banach extension 

theorem, to a linear functional f satisfying |f(a)(^ p(a) 

for all ac A-_. New ty Theorem 6.4 of C33t f is state on A,. 

Ejy definition f(L) « 0. 

In this fashion we have obtained the implication 1°—>. 

— * 2 ° . The implication 2°—*3° is immediate. 
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Assume 3° and let us proTe 1°. Let bcA and h =* b* b. 

If A(l + h) would be a proper modular left ideal in A, then 

there would exist, by assumption, a non-zero positiTe defi

nite linear functional f with f (A(l + h>) * 0. 

It follows that f(a + h) * f(a) + f(ah) * 0 for all 

as A. Putting a « h, we obtain f (h) + f Ch ) • 0. The func-

tional f being peeitiTe, this implies f(h) « 0 * f(h ). 

From the Cauchy-Schwartz inequality we conclude f (ah) « 0 

for all acA and hence f (a) 3. 0, f = 0, which is not the ca

se. Therefore A(l + h) » A. This means that -l^cT(h) and so 

A is hermitian. The proof is complete. 

Remark. For locally continuous involution the implica

tion 1°—*3° was proTed in the monograph of C. Rickart 

14, p. 236 3 and the implication 3°—*>1° is due to H. Leptin 

[2]. 

Now using these results we can state our main 

Theorem 2. Let A be a Banach #.-algebra. The algebra 

A is hermitian if and only if I and A/I are hermitian. 

Proof. Let A be hermitian and let I be a closed self-

aijoint ideal of A. Then, it is well known that for each xe I 

the following relations hold: 

°k(x) c 6 I ( x ) 

and 

d€tix) c d6A(x) 

where d stands for the boundary of the spectrum* 

Now, if xeH(I) then we have the following inclusions: 

^ ( x l c R 1 and d62(x) c 3er4(x)cR
1. It follows that 

Cj(x)clr, i.e. I is hermitian. 
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Now denote by JT the canonical quotient *-homomerp-

hism of A modulo I, i.e. at t A — * A / I . It is well known 

that ^/iCtfC*)) c ^A(a) f*r any * € A # 

Let tfr (x)* * tff(x). Then there exists z e ^ ( x ) , which 

is i*H(A). Hence ^/jC^Cx)) » CA/ICar(z)} c e ^ z J c H
1 , 

i.e. A/I is hermitian. 

Conversely, assume I and A/I are hermitian and show 

that any maximal modular left ideal L in A is annihilated 

by some non-zero positiTe functional f on A. Let u be a umit 

modulo L. 

Without restriction of generality, we assume 14"A. We 

consider first the case when A 4a I + L. Then M = I + L is t 

prop© r modular left ideal in A hence the set ar (M) is a 

left ideal in A/I. We show that sr (M) is proper. Indeed, 

if <TT(u) e ft (M) then u - m c l c M for some m c M so that 

ueM, which is a contradiction. 

Thus or (M) is a proper left ideal in the hermitian al

gebra A/I. Hence there exists a non-zero positiTe functional 

P ea A/I such that P(^r(M)) = 0. We define a non-zero posi

tiTe functional f on A by f(a) * F(sr(a)). 

ObTiously f(M) = 0. This pr©Tes the first case. 

It remains the case when A » I + L. Then L = I n L is 

a proper left ideal in I, hence there exists a non-zero po

sitiTe functional fQ on I with fQ(L0) = 0. If a = j-, + JL « 
= ^2 + ^ 2 w i t n «*i»^2c * and "*1» ̂ 2 £ ̂  tnen **1 ~ $2 ~ 

• &2 - ^ 1 * L 0 . Hence f0(j^)
 s ^ 0(J 2)

# So w e can extend f 0 

to the whole of A in the natural way: for a. = j + Z with 

jel, Jfc e L, put f(a) « f0Cj). Hence f(L) = 0. Obriouoly 
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f i s a non-zero functional and we show only that i t i s posi

t i v e . 

We have a* a = j * j + Z* j + m*<£ . Here m* A € L, 

so that f(a*/C ) = 0. To compute f ( . £ * j ) , we observe that 

&* j 6 I whence f(<&* j) = fQ(\&* j ) . Since f0 i s posit ive, 

we have fQ( Z* j ) » ( f 0 ( j*-€ ) ) * , but f Q ( j * ^ ) » 0 since 

j U i LQ. 

Thus f (a* a) « -?0(j* j ) 2 0 and the proof i s complete. 
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