Commentationes Mathematicae Universitatis Caroline

Vladimír Müller
 On discontinuity of the spectral radius in Banach algebras

Commentationes Mathematicae Universitatis Carolinae, Vol. 18 (1977), No. 3, 591--598

Persistent URL: http://dml.cz/dmlcz/105803

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

$$
18,3 \text { (1977) }
$$

ON DISCONTINUITY OF THE SPECTRAL RADIUS IN BANACH ALGEBRAS

Vladimir müLJßR, Praha

Abstract

We give an example of a complex Banach algebra with two generators containing no non-zero quasinilpotents in which the spectral radius is discontinuous (even on lines).

Key words: Banach algebras, continuity of the spectral radius, quasinilpotents.

AMS: 46HO5
Ref. Ž.: 7.976.11

Introduction: Banach algebras with uniformly continuous spectral radius have been recently characterized as those commutative modulo the radical, [1],[5],[10]. There remains the problem of algebraic characterization of Banach algebras on which the spectral radius is merely continuous [9]. In connection with the paper [7] the problem of investigation continuity properties of the spectral radius in Basach algebras without quasinilpotents has been raised by J. Zemanek in [9]. Here we give a negative answer to this question. So the closedness of the set of quasinilpotents is not sufficient for the continuity of the spectral radius (of course it is necessary).

Our construction is based on a modification of the example due to S. Kakutani ([6], p. 282) of discontinuity of
the spectral radius. We obtain an example of two operators A, B on a Hilbert space such that the spectral radius is discontinuous on the line $A+\lambda B$, (λ real) (for related topics see [1],[8]). This gives in some sense the best possible example for we get a Banach algebra with two generators A, B with discontinuous spectral radius. On the other hand every Banach algebra with one generator is commutative and therefore its spectral radius is continuous even uniformly.

The second tool in our construction is an idea used by A.S. Nemirovskij [4] and J. Duncan and A.W. Tullo [3] in constructing the first example of a non-commutative Banach algebra without quasinilpotents (in fact, we do not know whether the spectral radius is continuous in this original example).

We start with the following lemma:
Lemma: There exists a sequence $\left\{\beta_{j}\right\}_{j \in N}$ of all rational numbers from the interval (0,2) such that

$$
\begin{equation*}
\beta_{1}^{2^{k-1}} \cdot \beta_{2}^{2^{k-2}} \cdots \cdots \beta_{k-1}^{2} \cdot \beta_{k \geq 1} \tag{1}
\end{equation*}
$$

for every $k \in N$.
Proof. Let $\left\{x_{i}\right\}_{i \in N}$ and $\left\{s_{i}\right\}_{i \in N}$ be sequences of all rational numbers from the intervals $(0,1\rangle$ and (1,2), respectively. Denote $R=\left\{r_{i}, i \in N\right\}, S=\left\{s_{i}, i \in N\right\}$. We construct the sequence $\left\{\beta_{j}\right\}_{j \in N}$ inductively as follows. Put $\beta_{1}=$ $=8_{1}$. Let $\beta_{1}, \ldots, \beta_{k}$ be defined and $\left\{\beta_{1}, \ldots, \beta_{\mathbf{k}}\right\}=$ $=\left\{r_{1}, \ldots, r_{i}\right\} \cup\left\{s_{1}, \ldots, s_{j}\right\}$. For simplicity put $f(k)=$
$=\beta_{1}^{2^{k-1}} \ldots \ldots \beta_{k}$. If $\beta_{k}=s_{j}$ and $f(k)^{2} \cdot r_{i+1} \geq 1$ put $\beta_{\mathbf{k}+1}=\mathbf{r}_{\mathbf{i}+1}$. Put $\beta_{\mathbf{k}+1}=\mathbf{s}_{\mathbf{j}+1}$ otherwise.

It is clear from the construction that $f(k) \geq 1$ for every
$k \in N$ so the condition (1) is satisfied. Denote $B=$
$=\left\{\beta_{j}, j \in N\right\}$. Clearly SCB and so it suffices to prove
$R \subset B$. Suppose the contrary. Let $R \cap B=\left\{r_{1}, \ldots, r_{m}\right\}$,
$(m \geq 0)$. Let $r_{m}=\beta_{k}$. It follows from the construction that

$$
\beta_{k+1}>1 \text { so } f(k+1)=f(k)^{2} \cdot \beta_{k+1}>1 \text { and } f(\rho)^{2} \cdot r_{m+1}<1
$$

for every $\ell>k$. At the same time we have $f(\ell)=$
$=f(\ell-1)^{2} \cdot \beta_{\ell}>f(\ell-1)^{2}>\ldots>f(k+1)^{2^{\ell-k-1}}$.
So we have (for every $\ell>k$) $r_{m+1}<\frac{1}{f(\ell)^{2}}<\frac{1}{f(k+1)^{2^{\ell-k}}}$.
But the last term tends to 0 for $\ell \rightarrow \infty$, so $r_{m+1} \leqslant 0$, a contradiction. Hence the described sequence $\left\{\beta_{j}\right\}_{j \in N}$ really exhausts all rational numbers from (0,2).

Example (discontinuity of the spectral radius on lines):
Let H_{1} be a separable Hilbert space with an orthonormal sequence of vectors e_{1}, e_{2}, \ldots. Let A_{1} be a bounded linear operator on H_{1} (shortly $A_{1} \in B\left(H_{1}\right)$) defined by $A_{1} e_{k}=e_{k+1}$, $k=1,2, \ldots$ (A_{1} is an unilateral shift). We define an operator $A_{0} \in B\left(H_{1}\right)$ as a weighted shift with weights α_{i}, i.e. $A_{0} e_{k}=\alpha_{k} \cdot e_{k+1}$, where $\alpha_{k}=\beta_{j}$ for $k=2^{j-1}(2 m+1)$, $m \in N\left(\beta_{j}\right.$ are the numbers from the lemma above). Then obviously $A_{0}-\lambda A_{1}$ is a nilpotent operator for every $\lambda \in(0,2)$ rational and $\left|A_{0}\right|_{\sigma}=\lim _{n \rightarrow \infty}\left|A_{0}^{n}\right|^{1 / n} \geq \limsup _{k \rightarrow \infty}\left(\lim _{i=1}^{n-1} \alpha_{i}\right)^{1 / 2^{n-1}}=$
$=\limsup _{h \rightarrow \infty} f(k)^{1 / 2 k-1} \geq 1$. So $\lim _{\lambda \rightarrow 0}\left(A_{0}-\lambda A_{1}\right)=A_{0}$ and $\lim _{\lambda \rightarrow 0}\left|A_{0}-\lambda A_{1}\right|_{\sigma} \neq\left|A_{0}\right|_{\sigma}$ (in fact this limit does not exist
as follows from the almost continuity theorem of Aupetit, see [2]).

Theorem: There exists a complex Banach algebra B with two generators t_{0}, t_{1}, without non-zero quasinilpotents such that the spectral radius is discontinuous on the line $t_{0}+\lambda t_{1}, \lambda$ real.

Remark: It is not clear whether the Banach algebra generated by the operators A_{0}, A_{1} from the example above does not contain quasinilpotents. We avoid this difficulty by the following construction.

Construction: Let $H_{1},\left\{e_{m}\right\}, A_{0}, A_{1}$ be as before. Let H_{2} be the Hilbert space with the orthonormal basis $\left\{f_{i_{1}}, i_{2} \ldots i_{n} ; k\right\}$, where $n \in N, 1 \leqslant k \leqslant n, i_{j} \in\{0,1\}$ for $j=$ $=1, \ldots, n$. Put $H=H_{1} \oplus H_{2}$. Define operators $T_{0}, T_{1} \in B(H)$ by the relations $T_{j} / H_{1}=A_{j}, j=0,1$,
$T_{j}\left(f_{i_{1}, i_{2} \ldots i_{n} ; k}\right)= \begin{cases}0 & \text { if } i_{k} \neq j \\ \frac{1}{2} \cdot f_{i_{1}, i_{2}} \ldots i_{n} ; k+1 \\ & i f i_{k}=j \text { and } k<n \\ \frac{1}{2} \cdot f_{i_{1}}, i_{2} \ldots i_{n}, l\end{cases}$

$$
\text { if } i_{k}=j \text { and } k=n
$$

(For instance $T_{0}\left(f_{1,1,0,1 ; 2}\right)=0, T_{1}\left(f_{1,1,0,1 ; 2}\right)=$
$\left.=\frac{1}{2} f_{1,1,0,1 ; 3}.\right)$ Obviously $\left|\left(T_{0}-\lambda T_{1}\right)\right|_{H_{2}} \leqslant \frac{1}{2}$ for every
$|\lambda| \leq 1$.
Denote by $G_{\mathbf{k}} \subset B(H), \mathbf{k}=0,1, \ldots$ the smallest closed (in the
norm topology) subspace of $B(H)$ containing all operators of the form $T_{i_{k}} \cdot T_{i_{k-1}} \ldots T_{i_{1}}$ (G_{o} is the set of scalar multiples of identity). Denote $\mathcal{B}=\left\{\left\{S_{0}, S_{1}, \ldots\right\}, S_{i} \in G_{i}, \sum_{i=0}^{\infty}\left|S_{i}\right|<\right.$ $<\infty\}$. We shall introduce algebraic operations and a norm on \mathcal{B} by

$$
\begin{aligned}
& \left\{S_{0}, S_{1}, \ldots\right\}+\left\{S_{0}^{\prime}, S_{1}^{\prime}, \ldots\right\}=\left\{S_{0}+S_{0}^{\prime}, S_{1}+S_{1}^{\prime}, \ldots\right\} \\
& \lambda \cdot\left\{S_{0}, S_{1}, \ldots\right\}=\left\{\lambda \cdot S_{0}, \lambda \cdot S_{1}, \ldots\right\} \text { for } \lambda \in C \\
& \left\{S_{0}, S_{1}, \ldots\right\} \cdot\left\{S_{0}^{\prime}, S_{1}^{\prime}, \ldots\right\}=\left\{U_{0}, U_{1}, \ldots\right\} \text { where } \\
& \qquad U_{k}=\sum_{i+j=k} S_{i} S_{j}^{\prime} \text { (convolution) }
\end{aligned}
$$

and $\left\|\left\{s_{0}, s_{1}, \ldots\right\}\right\|=\sum_{i=0}^{\infty}\left|s_{i}\right|$.
We shall denote by $\|\cdot\|$ the norm in B and by 1.1 the norm in $B(H)$. In the same way $\|\cdot\|_{\sigma}$ and $1 \cdot I_{\sigma}$ denotes the spectral radii in B and $B(H)$, respectively. One can prove easily that \mathcal{B} with the norm $\|\cdot\|$ is a Banach algebra with the $u-$ nit $\{I, 0,0, \ldots\}$ and with generators $t_{0}=\left\{0, T_{0}, 0,0, \ldots\right\}$ and $t_{1}=\left\{0, T_{1}, 0,0, \ldots\right\}$.
We shall prove that \mathcal{B} satisfies all the conditions required. observe first that $\left\|\left\{0,0, \ldots, 0, s_{k}, 0, \ldots\right\}\right\|_{\sigma}=$
$=\lim _{n \rightarrow \infty}\left\|\left\{0, \ldots, 0, s_{k}^{n}, 0, \ldots\right\}\right\|^{1 / n}=\lim _{n \rightarrow \infty}\left|s_{k}^{n}\right|^{1 / n}=\left|s_{k}\right|_{\sigma}$. We have $\lim _{\lambda \rightarrow \infty}\left(t_{0}-\lambda \cdot t_{1}\right)=t_{0}$. On the other hand $\left\|t_{0}-\lambda \cdot t_{1}\right\|_{\sigma}=\left\|\left\{0, T_{0}-\lambda \cdot T_{1}, 0, \ldots\right\}\right\|_{\sigma}=\left|T_{0}-\lambda \cdot T_{1}\right|_{\sigma} \leqslant$ $\leq \frac{1}{2}$ for $\lambda \in(0,1), \lambda$ rational; and $\left\|t_{0}\right\|_{\sigma}=$ $=\left\|\left\{0, T_{0}, 0, \ldots\right\}\right\|_{\sigma}=\left|T_{0}\right|_{\sigma} \geq\left.\left|T_{0}\right|_{H_{1}}\right|_{\sigma} \geq 1$. So the spectral radius is discontinuous on the line $t_{0}+\lambda \cdot t_{1}$, λ real.

It remains to prove that \mathfrak{B} does not contain non-zero
quasinilpotents. Suppose the contrary. Let $\left\{S_{0}, S_{1}, \ldots\right\}$ be a non-zero quasinilpotent in B. Let k be the smallest index such that $S_{\mathbf{k}} \neq 0$. Then for every $n \in N$ it holds
$\left\|\left\{s_{0}, s_{1}, \ldots\right\}^{n}\right\| \geq\left|s_{k}^{n}\right|$, therefore $0=\left\|\left\{s_{0}, s_{1}, \ldots\right\}\right\|_{\sigma} \geq$ $\geq\left|S_{k}\right|_{\sigma}$ and $\left|S_{k}\right|_{\sigma}=0$.
As $S_{k} \in G_{k}$, it can be written in the form $S_{k}=\lim _{r \rightarrow \infty} S_{k}^{(r)}$ (in the norm of $B(H)), S_{k}^{(r)}=\sum_{i_{1} \ldots i_{k}} \lambda(r) \ldots i_{i_{1}} \cdot \ldots T_{i_{k}} \ldots T_{i_{1}}$ (finite sum), $i_{1}, \ldots, i_{k} \in\{0,1\}$. As $\left|S_{k}\right|_{\sigma}=0$ and the vectors $f_{i_{1}} \ldots i_{k_{k}, i}$ are eigenvectors of S_{k} it must be $0=$
$=S_{k}\left(f_{i_{1}} \ldots i_{k}, 1\right)=\lim _{r \rightarrow \infty} S_{k}^{(r)}\left(f_{i_{1}} \ldots i_{k}, 1\right)=$
$=\lim _{r \rightarrow \infty} \sum_{j_{1}} \sum_{j_{g}} \lambda{\underset{j}{r}}_{(r)}^{j_{1}} j_{k} T_{j_{k}} \ldots T_{j_{1}}\left(f_{i_{1} \ldots i_{k}, l}\right)=$
$=\lim _{r \rightarrow \infty} \lambda_{i_{1} \ldots i_{k}}^{(r)}\left(\frac{1}{2}\right)^{k} \cdot f_{i_{1}} \ldots i_{k}, 1$. Hence
(2) $\quad \lim _{r \rightarrow \infty} \lambda \stackrel{(r)}{i_{1} \ldots i_{k}}=0$ for every $i_{1}, \ldots, i_{k} \in\{0,1\}$.

Supposing (2) is satisfied we shall enumerate
$S_{k}\left(f_{i_{1} \ldots i_{t}, s}\right)=\lim _{r \rightarrow \infty} \sum_{j_{1} \ldots j_{k}} \lambda \underset{j_{1} \ldots j_{k}}{(r)} T_{j_{k}} \ldots T_{j_{1}}\left(f_{i_{1} \ldots i_{t}, s}\right)=$
$=\lim _{r \rightarrow \infty}\left(\frac{1}{2}\right)^{\mathbf{k}} \cdot \lambda{\underset{i_{1}}{(r)}, i_{s+1}, \ldots i_{s+k-1}} \cdot \mathbf{f}_{i_{1} \ldots i_{t, s+k}}=0$
(addition is to be taken mod t) and $S_{k}\left(e_{m}\right)=\lim _{n \rightarrow \infty} S_{k}^{(r)}\left(e_{m}\right)=$
$=\lim _{n \rightarrow \infty} \sum_{i_{1} \cdots i_{k}} \lambda(r), i_{i_{1}}^{(}, \ldots T_{i_{k}} \ldots T_{i_{l}}\left(e_{m}\right)=$
$=\sum_{i_{1} \ldots i_{l k}} \lim \lambda_{i_{1}, \ldots}^{(r)} i_{k_{k}} \cdot T_{i_{k}} \ldots T_{i_{1}}\left(e_{m}\right)=0$ according to
(2). So we have $S_{k}=0$, a contradiction.

This finishes the proof.
References
[1] B. AUPETIT: Caractérisation spectrale des algebres de Banach commutatives, Pacific J. Math. 63(1976), 23-35
[2] B. AUPETIT: Propriétés spectrales des algèbres de Banach (to appear)
[3] J. DUNCAN and A.W. TULLO: Finite dimensionality, nilpotents and quasinilpotents in Banach algebras, Proc. Edinburgh Math. Soc. 19(1974), 45-49
[4] A.O. NEMIROVSKIJ: O svjazi nekommutativnosti s naliとiem obobšcennych nilpotentov dija nekotorych klassov banachovych algebr, Vestnik MGU, ser. mat.mech. 6(1971)
[5] V. PTAK and J. ZEMANEK: On unifomm continuity of the spectral radius in Banach algebras, Manuscripta Math. 20(1977), 177-189
[6] C.E. RICKART: General theory of Banach algebras, Van Nostrand 1960
[7] Z. SZODKOWSKI, W. WOJTYŇSKI and J. ZEMANEK: A note on quasinilpotent elements of a Banach algebra, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 25(1977), 131-134
[8] E. VESENTINI: On the subharmonicity of the spectral radius, Boll. Un. Mat. Ital. I(1968), 427-429
[9] J. ZEMANEK: A survey of recent results on the spectral radius in Banach algebras, Proc. of the fourth Prague Symp. in General Topology and its Rela tions to Modern Analysis and Algebra, 1976
[10] J. ZEMÁNEK: Spectral radius characterizations of commutativity in Banach algebras, Studia Math. 61 (1977)

Matematicky ustav CXSAV
 Žitná 25, Praha 1
 Ceskoslovensko

(Oblatum 16.6. 1977)

