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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROUNAE 

18,4(1977 ) 

RIGA P-POINT + ) 

Jaroslav NEŠETŘIL, Praha 

Abstract: For a graph G we define a G-arrow ultrafil-
ter U by the partition relation U—^(UjG)2-. We prove that 
every ultrafilter U is F-arrow ultrafilter for every compo
nent-finite forest F and we exhibit an example of a p-point 
U which is G-arrow iff G is a component finite forest. 

This means that p-pointness does not induce any non-tri
vial partition property. 

Key words: Ultrafilter, partition property. 

AMS: 04A20, 02K05, 05A99 Ref. 2.: 8.83 

§ 1. Introduction. Statement of results. An ordinal num

ber is considered as the set of all smaller ordinals. 

A graph G is a couple (V,E) where V is a set (the set of 

vertices) and E s tV] 2 =-f e SV; |e! = 2} (the set of edges). 

If G will be considered as the set of edges E only then we 

mean the graph (UE,E). 

A homomorphism f: (V,E)—* (v',E') is a mapping f: V—• 

— » V ' which satisfies { x , y U E..-=->{f(x),f(y)} € E'. An 

1-1 homomorphism is called a monomorphism. If V£V' and the 

inclusion is a monomorphism then (V,E) is called a subgraph 

of (V',E'). If both f and f are monomorphisms then (V,E) 

+) This note was written during 1977-summer stay at Latvian 
State University, Riga. 
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and (V',E') are said to be isomorphic, this is denoted by 

(V,E)-*(V',E'). 

The graph K^-* ( ctf, fc*..] ) is called the complete graph 

of size &. (K^ will be needed for oC .»» o) only). 

The chromatic number £(G) of a graph G is the mini

mal cardinal number oc for which there exists a homomorph-

ism G—> K^ . Equivalently, z (G) is the minimal number of 

colours which are needed for a colouration of vertices of G 

in such a way that the vertices of no edge get the same co

lour. 

A cycle of length n, 3-£n-< O , is every graph isomor

phic to the graph Cn = (n,«C4i,i + 1} ; i e n - l3 u 

uii l,n - 1}} ). Clearly C3 = K3. 

A forest is a graph which does not contain any cycle. 

In this list of graph-theoretical notions the following 

is the only non-standard one: A component-finite forest is a 

forest each of its components is finite. Explicitly, (V,E) 

is a component-finite forest if there are finite forests 

(V^,E^), ic I, such that V^, ic I, are pairwise disjoint sets 

andV-^Vi, B-iV-Bi. 

Let G « (v,E) be a graph, xcV. Put dQ(x) = \i y.j i x,y3 e 

€ E } | (the degree of x) and cf(G) » min4dG(x); x€V| . 

It is easy to see that for every finite forest F there 

exists a number cT^ such that every graph G with cf(G) > <Tp 

contains a subgraph isomorphic to F. If I F \ ~ n then it suf

fices to put cT« =- n and to prove the statement by induction 

on n (every forest contains a vertex of degree 1). 

All ultrafilters considered in this paper are proper 
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non-principal ultrafilters on a) * * 

Definition ([4]): An ultrafilter U is called a G-ar-

rpw ultrafilter if for every partition c: tcol — > 2 either 
*\ 

there exists Xe U such that c([X) ) = 4o} or there exists 

G'C[O>] 2, G'-^G, such that c(G') * il] . This fact is de

noted by U—*(U,G) 2. 

The notion of G-ultrafilter refines the scale of "par

tition" notions which are related to ultrafilters on a) : 

k-arrow ultrafilter is K^-arrow ultrafilter, 

arrow ultrafilter is an ultrafilter which is K.-arrow 

for every k < co , 

Ramsey ultrafilter is K^-ultrafilt er (see [13, Theorem 

2.1). 

In [1] and [4] there is proved the mutual independence 

of notions k-arrow ultrafilter, (k + l)-arrow ultrafilter, 

p-point, q-point. In particular, it is proved in [1] that 

there exists a p-point which is not a 3-arrow ultrafilter. 

The purpose of this note is to prove: 

Theorem 1; Every ultrafilter is P-arrow ultrafilter 

for every component-finite forest P. 

Theorem 2 [P(x)]: There exists an ultrafilter U with 

the following properties: 

i# U is a p-point, 

ii. U is a G-arrow ultrafilter iff G is a component-

finite forest. 

Theorem 1 is proved in ZPC. Theorem 2 is proved here 

under CH and it follows from the machinary developed in [l] 
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(independently, a similar procedure was found by P. Simon, 

see [8], [9]) that Theorem 2 is valid under the following 

consequence of Martin's axiom: 

[P(c)l If F is a set of infinite subsets <0 f IP |< 2 f 

such that finite intersections of elements of F are infini

te, then there exists an infinite set A £ co such that A\ B 

is a finite set for all B e F. 

(In the terminology of CI] one has to realize only that the 

function X — > ^,(X) is a " & -norm" which "handl.es the p-

point condition"; this is, essentially, proved by statements 

0 - 4 stated below in the proof of Theorem 2.) 

I thank to B. Balcar, F. Galvin and P. Simon for stimu

lating discussions and correspondence. 

Added in proof: Independently, a theorem similar to Theorem 

2 was proved by P. Galvin (who proved the existence of a p-

poi 

n). 

2 
point U which satisfies U—XUjC^v C,v ..,vCn) for every 

§ 2. Proof of Theorem 1. Let F be a fixed component-

finite forest. Denote by P^ i € o> , all the components of 

P, let F^ have n^ vertices (we may assume that P has infini

te many components). 

Let U be an ultrafilter. We prove U — • (UfP)
2. 

Let c: Leo] — * 2 be a partition and assume that 

c([X]2) 4-4 .0} for every XeU. 

Consider the graph G » (o>,c (1)) « (o>fE). 

It is ^(G) * a) as if there exists a homomorphism f: 

: G —!• K^ for a 1c << a> then there exists i c k such that 
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f"1(i)eU and (as f is a homomorphism) [ f ^ i l l ^ c " 1 ^ ) 

which is a contradiction. 

Now there exists a family of finite subgraphs G^ • 

=- (V.£fE.£) of G with the following properties: 

1. v£ are pairwise disjoint sets, i e o>; 

2- ^(V^Ep - 4 + 1,160)1 

3. ^>(V
v
fE

v)-^ni for every proper subgraph of (V.{,Epf 

i € a) . -

(The existence of graphs G^f i £ o> , may be seen as fol

lows: According to a compactness argument, see [2J, there 

exists a subgraph of G with chromatic number n-, + 1 and if 

we take any minimal subgraph G-f of G with this property then 

G-[ satisfies 2 and 3. Put G-̂  » G - G-[ » (a)\ V-[f { e e S ; e n 

n v j - 0}). It is again ^(G-,) * o> and therefore we may 

proceed for Q^ analogously as for g.) 

It is well known that every graph which satisfies con

ditions 2 and 3 above satisfies also 

4. ^(GpSi^^o^ f ie co . 

From 1 and 4 follows that the graph G contains a sub

graph F' isomorphic to F. Consequently F's c (1). 

5 3. Proof of Theorem Z. In the proof we use a const

ruction of a general type described in El]. However, as we 

are not interested in any generalizations we give a self-

contained description of the desirable ultrafilter. In this 

particular case the construction is also simpler. 

The following is a non-trivial combinatorial fact which 

will be used (see [3J,[5J,C6]): 
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Propositi oS: ^or every 3 * n 6 cJ , 3 6k e co , there 

exists a graph 0n ^ with the following properties: 

1. K(\f^ * a; 
2. G ^ does not contain cycles of length 3,...,k. 

*»* Qn,k * (Vn,k.«n,k)-

Let *CD3tD4>###tDnt••• i = «D be a partition of <a> 

such that I D* I « lv^ .| . Without loss of generality let us 

assume D^ = V. .. Put E » 4,̂ 3 E. .*• For the sake of brevity 

we put £ (X) » ^(XtlX]
2n E) for every X S o ) . 

The desirable ultrafilter will be constructed by means 

of the following sets: 

A set X S co is said to be large if ĵ  (X )*--&> • 

The following facts about large sets hold: 

0. co is large; 

! • X l a r g e , X2X-—si>Y large ; 

2 . X,Y not large « # X u Y not large; 

3 . X f i n i t e -BSX>X not large ; 

4 . I f 4 - ^ ; n € co I i s a par t i t i on of co then there 

e x i s t s a large s e t X such that e i ther X£A n f or s o 

me n or XAAJ^ i s f i n i t e for every n 6 co . 

(Only 4 has to be mentioned: I f £ (An) c CO for a l l n 6 co 
ttu 

then for every n & co choose n such that j£ ^%^JJS^I A j / £ n 

and put X ^ ^ ^ j C 1 ^ ^ -V̂ J. A^). X i s large and X A A ^ i s f i n i t e 

for every n * CO # ) 

Now l e t O 0 C ; < X < 2 0 J t P 0 C «•{ A ^ n 6 co\ , be an 

enumeration of a l l par t i t i ons of co . 

Put XQ * CO . Let X c , K o t be already chosen large 

s e t s with the property that any f i n i t e i n t e r s e c t i o n of X, i s 
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again large and that for every u «< oc the following holds: 

(*) either 3n(Xi?^) or Vn ( I X A A ^ U O> ) # 

In this situation we find a large set X' such that 

X^\ XL is a finite set for all t -< oc • The existence 

of X' is easy to see: for each n we choose i(n) as the mini

mal i for which £ (X-̂ n . ..nl^n D^)> n and we put X^ * 

= VAVUYisrs /T^ aX.). 

Using 4 there exists a large set X^S X^ such that (* ) 

holds for the partition 1^ . 

Summing up it follows that 4, X^ ; ot < 2 J is a family 

of large sets with all its finite intersections again large 
*o 

such that (* ) holds for every oc < 2 . Let U be an ultra-

filter generated by this family. 

U is a p-point by (* ) and U — • (U,F) for every compo

nent-finite forests follows from Iheorem 1. 

Let G be a graph which fails to be a component-finite 

forest. We distinguish two cases: 

a) G contains an infinite component. Consider the partition 

c: Lea]2—»2 defined by c(e) * 1 iff e «E. Then c([X]2) + 

+ -t0| for every XtU (every XfU is large and consequently 

1 tXl n B \ m j<0). Moreover G fails to be a subgraph of B. 
b) G contains a cycle of length n. Consider the partition 

c: Cw)2—*> 2 defined by c(e) « 1 iff eeE i if i>n. It is 
0% ' 

again c([X]^) + 0 for every XaU. Moreover a cycle of length 

n fails to be a subgraph of A-Z^Ej, ±. 

§ 4. Concluding remarks. The notion of G-arrow ultra-
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filter effectively refines the hierarchy provided by k-ar-

row ultrafilters. It can be shown the non-validity of the 

following implications: 

2 
1. U—• (U,G) for every graph without K̂ . implies 

U—MU fKk)2
f k > 3 ; 

2. U—*(U,K k)
2 implies U — M U , G ) 2 for every graph 

without K^, k£3. 

While the above proof used only large sets defined by 

means of chromatic number , these theorems use combinatori

al partition theorems of the type described in £71. 1 is im

plicitly proved in [1] and stated in £4J, 2 will appear in 

a joint paper with V. R5dl. Theorems and methods given in 

£71 do not imply 2. 

Finally, let us remark that for partitions of triples 

similar theorems do not hold. One can prove that the follo

wing three statements about an ultrafilter U are equivalent: 

a. U is a Ramsey ultrafilter. 

b. U—*(U,iC*)3 her* K^ » ( < 1,2,3,4}, U 1,2,3,4}] 3 ) . 

c. U—*(U,T)3 for every triple system T which does 

not contain id* 

(The equivalence s and b i s proved i n [ l l . A more detailed 

discussion of the statement c i s going to appear elsewhere.) 
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