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* COMMENTATIONIS MATEБMATICAE UNI1ШЮITATIS CA.ЮLINAI 

19,1 (1978) 

LIOUVILЫB FOЯШLA FOR SYSTEMS OF LINIAH HOMOGINIOUS iтб 

STOCHASTIC DIFFlffiNTIAL IQUATIONS 

Ivo VЖOČ, Praha 

Abstract; Let X(t) be the fundamental matrix solution 
of It* equation (1) and D(T) = det X(T). The process D(t) 
is a solution of (2) and hence given by (6). It is shown 
that X(t) is regular and a formula for solutions of nonho-
mogeneous linear It8 equations is derived. 

Key words; Linear ItS stochastic equations, Liouville 
f ormula, fundament a1 matrix solutions, variation of constants 
formula. 

AMS: 60H10 Ref. 2.: 9.655 

The general system of linear homogeneous Ito stochastic 

differential equations can be written in the vector form 

(1) dx = A(t)xdt + «-& B^}(t)xdw4> 

where x is an n-dimensional vector, A(t), B^tt^ j = 1,..« 

...,kf are matrix functions of the type nx n defined on 

<0,oo), w.(t) are stochastically independent Wiener proces-

ses. 

Assume that II A(t) |. , I B^'(t)R are measurable and 

locally bounded on <0,co)« A matrix function X(t) of the 

type nx n defined on <t ,a?)f t ^ O is called a fundamen

tal matrix solution of (1) if the columns of X(t) are solu-
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tiona of (1) on <t0,«) and X(tQ) is the unit matrix. The 

existence and unicity of the solutions of (1) is proved in 

[11, 121. Denote D(t) * det X(t). 

Theorem 1. The process D(t) is a solution of 

(2) dD = Ctr A(t) + | £ ( BH > ( t ) BiJ ) ( t ) " 
p,Qf j

 pp q 4 

- B^)(t)B(J)(t))2 D(t)dt • D(t) S< tr B(J}(t)dw4 . 
PH qp j j 

Proof. Let x£j)(t) be the i-th element of the j-th co

lumn of X(t). The determinant D(t) can be written by the well-

known formula 

«. (j-,) (jn) 
(3) D(t) « . '2j e (j1»...»jn)x1

 X (t) ... x^ n (t), 

where the indices j,f•• • fj assume the values of all permuta

tions of lf...,nf eljp,.,,^) = 1 or -1 if Jx,###,^n is a n 

even or an odd permutation, respectively. Applying the ItS 

formula to (3) we obtain 

«- r -J1 (JT ) (*L i > 
(4) dD = o ^ ^ i VLP^ x!x - - v r 1 

d-(Vx
(w ( v + i s

 (v 'W 
• a x

P V i •••-». + ? * x i ••• V i 
PfH 

ta'V.'Vi' ̂ q - i V V ^ W <V . 
• axp xp+i ••• xq-i axq xq+l ••• -n 

Due to (1) we obtain { V ( V .* - ( j ) (V-= . (J} ( V> d x p P d x q
Q = 2&CS B p k x k P If Bq£ - ^ )dt 

and equation (4) can be rewritten as 

(5) dD * SI det QCp) • ̂  Si det R(P»q»j)dtf 
P *" PiQtJ 
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where Q p are matrices of the type nxn defined by 

Q^> - -i d ) if i*P and Q ;^ = ta*-\ 
1J X pj p 

R C p , q f j ) a r e matrices of the type nxn defined by 

^Co^q,j) = ^ v ) i f u + p a n d u # q > 

R(P»q,J) e 2 B
(^ir(v) RCpfqfj) s «* BCj)xCir) 

RpfT ^ Bpk xk » Hqfv ^ Bqk xk * 

Equation C5) can be easily transformed (by using well-known 

properties of determinants) into 

dD a DCtMS A dt + 2 B(*pdw,) • 
p PP p,j p p J 

+ A 2 CBC^)B(J) - B(J)B(J))DCt)dt 
P,q»j P P q q P q q p 

which is the same equation as C2). 

Conclusion 1. Let the assumptions of Theorem 1 be ful

filled. If XCt) is the fundamental matrix solution of CD, 

XCtQ) s- I CI is the unit matrix) then 

ft 
(6) det X(t) * D(t) » exp 4 tr ACtr )dt -

- | 2 / tr(BC^(^))2dr • 2 / tr B(j)(t;)dWjCf )3N 
j t0 j t0 

The formula for D(t) follows immediately from (2) and the 

ItS formula. 

Conclusion 2. Let the assumptions of Theorem 1 be ful

filled. If XCt) is the fundamental matrix solution of Cl)f 

XCtQ)
 s I then the probability that XCt) is regular for all 

t € < t0,oo) is equal to one. 
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This conclusion follows directly from formula (6) • Con

clusion 2 implies that the inverse matrix X" (t) exists al

most everywhere. 

Conclusion 3. Let the assumptions of Theorem 1 be ful

filled. If X(t) is the fundamental matrix solution of (l)f 

X(tQ) * i then to every ̂ > t 0 and oc & 1 there exists e^O 

such that Bli X""1(t) 11*4 c for t 6 <0fT > . 

Proof. If X-1(t) exists then X j ^ * (-l)**'* det XCX'k)/ 

/det X where X* ,k^ is the subaatrix of X corresponding to the 

element x^k . Since det X^ ,k' » 2? e (j^,..., ig^t %-t-i,##* 

tfs' 

tions of 1,2,..#>k - lfk + l,...,n we can derive an estimate 

..,jn) TÎ xs
 s where j 1 #..., j| - l f j^»...» Jn are permuta-

S£/V 

S v r TT * - ( J s ) 1 1°* z. 
* álf%-l»%^lfjn

 L W s det X J » 

4((n - 1)1 f"1 . H . 
Jl»"^l'Jl.+l'"jn 

TOSn" 
•ПVEІ 
8fЄ- S 

where S i s the mathematical expectation. I t i s proved in 121 

that to every T > t 0 , ^ iSl there exists CgO such that 

E l x ( t ) S o C ' n 4 C for t c < t Q f T > where x(t) is a solution of 

(1) fu l f i l l ing If x( t 0 ) l l 4 1. Using (6) we obtain that also 

1 — 1 £ c 1 for t € < 0,T > . Inequality (7) implies 

Idt t x\«n 

{£ fc) n""l I 
1 IS f iU—!—I* 4 ((n - 1)1)* C n Cn and the statement of 

1 det X x 
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Conclusion 3 easily follows. 

Theorem 2. Let A(t), B C ^ ( t ) f Wj(t), j = lf...fk ful

fil the conditions of Theorem 1 and let ©o(t)f ftAt)9 j = 

= lf...fk be n-dimensional sector functions defined on 

<0foo) such that l|oo(t)lt f II ft At) || 2 are locally integ-

rable. Denote by X(t) the fundamental matrix solution of (1), 

X(t) = I# If xQ is a nonstochastic vector then the process 

x(t) = X(t)xn + XCt)f X~1(t: )(oc(<K) -
Jt0 

- 2&S B(j)C«) aA<z))&z + Kit) [ X^Cf) -g &Ax )dw,(c ) 
a J J t0 i J J 

is the solution of the nonhomogeneous Jt8 equation 

k ( *% k 
dx » A(t)xdt + S Bij;(t)xdw.: + ©o(t)dt • 25 ^.(t)dw4 

j«l a j*l J J 

fulfilling x(tQ) = xQ. 

Proof. With respect to Conclusion 2 the process X- (t? ) 

exists and the integrals converge. Denote J-»(t) * X(t)x^f 
t 

JP(t) « X(t) f X-1(r )CocC«) - -S . ^ ( t ; ) p.(«)>dtr and 
2 J t 0 j J 

J3(t) » X(t) J X"*x('r ) 2S ftAv )dw.Ctr ). The process J-^t) 
to ^ 

is evidently the solution of (1) fulfilling ^x(t0)
 = xo* 

Using the It©* formula we obtain that J2(t) is the solution 

of 

dJ2 = AJ2 dt * E B ( , i ) J 2 dWj + Coo - S B ( j ) /J.)dt 

fu l f i l l ing J 2 ( t ) = 0 and the process J~*(t) is the solution 

of 
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dJU * AJ-* dt * S! B C j ^ dw4 • S B ( ^ a. dt • £ /S.dw, 

fulfilling J3(t0) » 0. 

Remark. The theorems and the conclusions are valid 

eiren if A(t)f B(t)f oc(t) f ($At) are nonanticipative stoch

astic processes fulfilling the above conditions with proba

bility l. 
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