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COMMENTATIONES MATHIMATICA1 UN1V11SITATIS CAHOLINAl 

19,1 (1978) 

SIPABATION OP TWO CONVEX SITS BY OPIMTOBS 

Karl-Heinz EIOTEB, Ilmenau, leinhard NEHSE, Halle (Saale) 

Abstract; In this paper we generalize the usual sepa
ration "theorems (where the separation is carried out by (con
tinuous) linear functionals) to separation involving (conti
nuous) linear operators mapping a (topological) vector space 
in a (normal topological) partially ordered vector space. 

Key words; Separation theorems, convex sets. 

AMSj 46-00, 52A05 Hef. 2.: 7.97 
(46A40) 

§ 1. Introduction. In our paper £8] some assertions on 

separation of convex sets by means of linear operators are 

published, where a suitable formulation of the Hahn-Banach 

theorea for operators is used" (cf. also £131 and£l4J)» 

In this paper we develop a different approach for the 

proofs of such separation theorems using the separation of 

convex sets by linear functionals. 

Simultaneously, the theorems of this note contain classical 

assertions as special cases. 

The proof principle given here is more convenient than 

that in £83, since this new way of the proofs is easily trans

formable to continuous linear operators. Moreover, we can 

prove stronger assertions than in £83. 
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§ 2. Notions and terminology. 1:he used terminology 

corresponds to that in [13 ,C!53 f£l3J and C161. All vector 

spaces considered in the following are real vector spaces. 

We will use the notations "partially ordered vector spa

ce" and "topological (partially ordered) vector space" in 

the common sense (see Cl3l)« 

Moreover we apply the abbreviations: 

x_£y i f f x£y and x4-y, 

F+:=4 x | xcP, i i O I f 

F + + := F + \ 4 0 } . 

The set F+ is a proper convex cone,that means 

F+n (-F+) a 10i f F+ + F+ = F+ . 

k (partially ordered) vector space F is said to be topologi

cal, if a Hausdorff-topolo^r is defined in F such that the 

mappings 

(xfy)—* x + y of Fx F in F 

and 

(X ,x) —* X x of I K F in F 

are continuous (and F+ is closed in this topology). 

We say that a (topological) partially ordered vector space 

F has the least upper bound property, if each non-empty sub

set of F possessing an upper bound in F also possesses a 

least upper bound in F. 

k topological partially ordered vector space F is said to 
b e normal, if there exists a basis of neighbourhoods of 0 

such that each element V of that basis has a representation 

in the following way: 
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V « Cf + F+)r l C? - F +). 

Let E be a real vector space. For a non-empty subset A of 

E denote 

A the affine manifold spanned by Af 

A the intrinsic core of A: 

i A := i x c E | V y e *A3 e :* e C x f y ) > 0 : x + rCy - x ) e A ¥ r e 

C - e f e J l 

( i f 1Jk «- E we w i l l w r i t e A 1 :* XA for the core of A ) , 
aA the s e t of po in t s in E l i n e a r a t t a i n a b l e from A: 

aA:= { x e l | 3 y e A f y # x : y * t ( x - y ) e A Vt £ CO f l ) J . 

Furthermore, we def ine 

bA:= Au a A f
 nA:= \ ^ k . 

For a non-empty subset A of a topological vector space 

E denotes int A the set of all interior points of A. 

Let both B and F be (topological) vector spaces. Then 

<£,CE,F) and $L*(®ff) denote the real vector spaces of all 

linear operators and continuous linear operators LiE—•• Ff 

respectively. In particular, we will write 

E* := tf(BfR), E
#:=4e'CE,R) 

for the algebraical dual space and Ctopological) dual space 

of E, respectively, where the vector space R of the reals 

has the usual topology. < u,x > denotes the value of u e E * 

or ucE' in the point xeE. 
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§ 3. Separation Theorems. First of all we will give 

the basic idea of the proofs of the following separation 

theorems. 

Let E be a (topological) vector space, and let F be a 

(normal topological) partially ordered vector space, let 

y 6 F+ and y e F++f respectively. If ucE*(u#I
#), u*0 f 

separates the sets A and B in a certain sense, then the ope

rator L € E(EfF) (L 6 C'(EfF)) defined by 

(1) L(x):= < u,x > yQf xll, 

is a linear (continuous) operator which separates these sets 

in a certain sense. The continuity of L follows from the con

tinuity of utl', the compatibility of the topology in F with 

the vector structure and the normality of this topology. 

Now let E and F be vector spaces as given above. Then 

from the linearity of Lc^(E,F) and L e£6'(EfF)f respective

ly, it is easy to see that we have the following implications 

for two non-empty subsets A and B of E. 

1. y 0 e P 

L(x) l ry 0 .# L(y) V ( x , y ) c A * B ì 
2 . y 0 e F 

-> OáL(z) V z é B - A. 

O^L(z ) V z e B - A. 
L ( x > é y Q 4 L ( y ) V(x ,y )€ A*B 

or 

L ( x ) ^ y Q é L ( y ) V ( x , y ) б A к B 

194 



j Oé LCz) Vz6 A ^ B , 
l 3 z £ B - 4 : O^LCz) . 

3 . y 0 c F 

L ( x ) é y 0 é L C y ) V C x . y U A x B 

and 

3 x e A : L(x)£ y 0 

or 

H y € B ; y 0 é L C y ) 

These implications hold true if a y € F with the pro

perties assumed in the implications doesn't exist, but LCx) 

and LCy) for all Cxfy)€ Ax B are comparable as demanded abo

ve. 

The conversions of the implications hold true for F = H 

Csee [93). However, this is not true for operators L€^£CEfF) 

and Le<s£'CBfF)f respectively, except that F has additional 

properties Ce.g.f if F has the least upper bound property). 

Therefore, if two sets A and B of E are separated by a line

ar Ccontinuous) operator in a certain sense, then an analo

gous separation of 0 and A - B is possible, but not necessa

rily conversely. 

3.1. Separation by Linear Operators. In this section 

let E be a vector space and let F be a partially ordered vec

tor space with F+4.+ 0. 

We obtain as a stronger result than in t83, Folgerung 10 f 

Theorem 1: Let A and B be two non-empty convex subsets 

of E and B 1* 0. There exist an L6if(EfF) and a y-̂ c F+ u 

u C-F+) with 

C2) LCx)*yls*LCy) VCxfy)€A*B, 
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(3) y ^ L C y ) VyfeB 1 

i f and only i f An B 1 = 0 . 

Proof: 1 . Let An B 1 s 0. Then t h e r e e x i s t a u f i l * . 

u-^0 f and an cc € R such t h a t 

< u f x > 4 # o c is < u ,y > V ( x f y ) e A*.Bf 

oo < < u f y > V y e B 1 

(see t lOJ , § 17, or T l U ) . Hence we obta in 

< u f x > y 0 6 o c y 0 i < u f y > y 0 V ( x , y ) e A x B 

ocy 0 ^ <u fy> y 0 V y e B 1 

for y Q e P + + . L 6 j £ ( l f F ) defined by (1) and y-,:-- oc yQ a r e 

convenient . 

2 . I f t he r e e x i s t s an opera tor L e ^ ( l , F ) which has 

the p r o p e r t i e s (2) and ( 3 ) , then the assumption An B ^ 0 

leads t o a c o n t r a d i c t i o n . 

Theorem 2 : Let A and B be two non-empty subsets of 1 

and A = A 1 , B = B 1 . There e x i s t an L f i ^ ( E . I ) and a y^e F+u 

u (~F+) with 

L ( x ) ^ y x * L(y) V (x,y) e AxB 

i f and only i f AnB = 0 . 

Proof: Let AflB =- 0 . Then, by ClOJ, t h e r e e x i s t a 

u e 1 * , m # 0 , and an oc £ R such t h a t 

< u , x >< cc -< < u fy > V ( x f y ) e A x B . 

For y Q e F + + i t follows 

< u»x > y 0 4 «cy0 * < ti,y > y 0 V ( x , y ) e A K B . 
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Therefore, L€4&(E,F) defined by (1) ami ŷ :*- oc yQ are con

venient. The proof of the conversion is trivial. 

In the next separation theorems we need only assump

tions about the intrinsic core of certain sets. Therefore, 

we prove two assertions about such sets. 

Lemma 1; Let A S ! and xk^¥0f l e t L €*s£(E,F) and yQe P . 

I f 

(4) L(x) |»y 0 V x £ A f 

then 

3 X€ A; L ( x U y Q < = > ixeS I L(x) = yQ } r% £A = 6. 

Proof: Let x,£ A and L(x,)^y . We assume that there 

exists an 

xQe i X«LE 1 L(x) = y0? r% iA. 

Because of x € "'"A, for x£ A there exists an e > 0 such that 

xQ + r (x - xQ) e A V r c [-e» e] # 

This holds true in particular for x = x-», x,6 A \ 4 x c S)L(x)s 

= y0l . 

Therefore, from (4) we obtain 

L(xQ • r(xx - x0)) = L(x0) + r [ Ux±) - L(xQ) 3 i yQ 

Vr € [- £,e] . 

Since the relation 4 is antisymmetric and L(x ) = y , we 

have 

L(x1) = L(xQ) = y0. 

This is a contradiction. 

The proof of the conversion of the statement is trivial. 

197 



Lemma 2s Let 4£ 1 and X44J0* I f there exist a ue S* 9 

u#-Ot and an ©c e 1 such that 

< u fx > # oc Vxe 4 t 

then for the operator L defined by (1) and 

y1:» « y 0 , yQa F++f holds true 

3x*4s < ufx >-< oo<«=> L C x ) . ^ V x e ^ . 

Proof; Let x-^e 4 and <u ,x 1 > < a; , then for x^e 4 £ ^4 

there ex is t s an & > 0 such tha t 

x^ • r (x, - x J i 4 V r « I - f e . t ] . o i o f 

Hence, 

<u t x 0 > + r < u t x 1 - x0> » ©c + r £ < u fx 1> - < u fxQ>3 6 oc 

for a l l r of £ - %t &3. I t follows 

< u , x 1 > « <u fx0> • oO | 

but this is a contradiction and, thereforet we have 

< u,x ><oc Vx e 4. 

B?oa (1) and y,s* ec y f y e F^+ our statement follows. 

It is easy to see that the conversion holds true. 

In connection with these assertions we obtain theorems 

which are sharper than those in £83. 

Theorem 3: Let 4 and B be two non-empty convex subsets 
4 

of 1 an! B#0. Ihen the deficiency of B is finite, there 

exist an L e^(ltF) and a y-̂ e F^u (~F+) with 

(5) L(x)iy14L(y) V(xfy)c4*B 

and 
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(6) L(x)^j^ for a t l e a s t one xcA 

or 

(?) J^Uj) V y c £ B 

i f and only i f An XB « 0. 

l^roof: 1. Let An x B * 0 . Then there ex is t a U£E* f 

u4-0 f and an oc € 1 such tha t 

<u f x >*cc (fir <u ,y > V(x fy)6A?cB 

and 

<u fx > < oc for a t l e a s t one xeA 

or 

<u fy > > QC for a t l e a s t one x € B 

(see t 3 ] f [ l l ] ) . 

For yQ£ F + + we get 

<u,x > JQ4S€CJQ£<VL,J > y 0 V(x fy)fi A*B 

and 

<u f x > y 0 ^ o c y 0 for a t l e a s t one x c A 

or 

<u f y> y 0 £ « c y 0 f ° r a>t l e a s t one y ^ B . 

Therefore, hj Lemma 2, L«^£( l f F) defined by (1) and y-» J= 

- s oc y 0 are convenient. 

2. The assumption AnxB4.$ in connection with (5) f (6) 

and (7) leads to a contradict ion. 

As a general izat ion of Satz 4 in C8 3 we have 
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Theorem 4 s Let A and B be two convex subsets of £ 

with xk*0 and xB#-0. There exist an L€^(1,F) and a 

y1£ F+ U (-F+) with 

L(x)i jxk L(y) ¥ (x,y) e Ax B 

and 

or 

L(x) .éy 1 Іxєгk 

L(y)>y
1
 V x e ^ 

if and only if
 xknl® = 0. 

The proof of this theorem is analogous to that of Theo

rem 3 (with respect to Dl
f
-.9l and tlllK 

As a general geometric version of the Hahn-Banach theo

rem we obtain 

Theorem 5; Let A be a convex subset of 1 with
 xk%*0$ 

and let II be a linear manifold in E. 

There exist an LcE(E,F) and a y-̂ e F^u (-F
+
) such that 

L(x)#y
1
 « L(y) V(x

f
y)6 A H M , 

L(x)6y
1
 Vx€xA 

i f and only i f II n x k = 0 . 

Proof : Since M * M = XM, from [ 1 ] and our assumptions 

i t fo l lows t h a t t h e r e e x i s t a u t B * f u - f s O f and an occR 

such t h a t 

< u f x > i 4 o c » < u , y > V ( x , y ) € A * i l , 

< u f x > < oc V x £ X A . 

From this we get in connection with y £ F++ our statement in 

the same way as in the other proofs« 
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The assertion of this theorem is also proved in C8]9 Folge-

rung 11, however, different methods have been used. Moreover, 

here the assumption that F is archimedean, can be dropped. 

In i 23 a new proof of this statement is also given. 

We have an analogous result for II £ 4 in 

Theorem 6: Let AS E and M £ n 4 convex sets with XA%0 

and %^0m Then there exist an L e^£(E,F) and a y ^ F # U 

U (-F+) such that 

L(x)4y1 « L(y) V(x,y)6AxM, 

L(x)Ay1 \fx€lk. 

For the proof of this statement, a theorem given in tl2 

may be used. 

A sharper result than in [83, Folgerung 9, is contained 

in the following theorem in which the strong separation is 

generalized. 

Theorem 7: Let A be a convex subset of E with xA + 0t 

and let xQ€ B \ A. Then there exist an L e ̂ (ItF) and 7^2€ 

6 F+ or 7*1*72€ ""*+ such that 

L (x) * y-^ y2 § L(x0) V x feA. 

Proof; % our assumptions there exis t a u e i * 6 , u4*0, 

an oce B and an e > 0 such tha t 

<u ,x > £ o c - & - « o O i i < u,x0> Vx£ A 

(cf. [13). For y0e F + + it follows 

<u,x > y 0i (oc- e)y 0^ oc y 0i <nfx0 > yQ V xcA. 

Therefore yx: = (oc - e)y0» y2:« oc yQ and L e^(I,F) defined 

by ( 1 ) are convenient. 
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3.2. Separation by Means of Continuous Linear Operators. 

for some theorems of the last section, analogous theorems 

with continuous operators separating certain sets, can be 

proved* 3JI this section let I be a topological vector space 

and let f be a normal topological partially ordered vector 

space with f4.+ 4
i0« 

In the beginning of Section 3 it was said in which way 

the continuity of an operator defined in (1) follows. There

fore, the proofs can be finished if there exists a continuous 

linear functional ue E #, u«^0, which has certain separation 

properties. 

As a generalization of a theorem proved in £143 by means 

of other methods we have 

Theorem 1*: Let A and B be two non-empty convex subsets rf 

E and int B4>0. There esist an L*^#(l,f) and a y-^ f+ u 

u (-f+) with 

L(x)*y16L(y) V(x,y)feAxBf 

y-̂ 6 L(y) Vj€ int B 

if and only if An int B » 0. 

The proof goes in the same way as for Theorem 1. 

The existence of a uf 1 % u+0, and an ©c e 1 having the de

manded properties follow from [10 J. 

Analogously to Theorem 2 we get 

Theorem 2#s Let A and B be two non-empty convex subsets 

of 1 with int A * A and int B = B. 

There exist an Lc£'(E,F) and a j ^ e f+U (-f̂ ) with 

L(x)^y1.6L(y) V(x,y)# A * B 
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if and only if An B • 0m 

The proof, using a result from ClOl, is trivial. 

As a general geometric version of the Hahn-Banach 

theorem including an assertion for a continuous linear ope

rator we have 

Theorem 5*t Let A be a convex subset of I with int A 4s 

4*0, and let M be a linear manifold in S. 

There exist an L§i£'ClfF) and a y-̂ e W^U C~F+) such that 

LCx)4y1 « LCy) VCx,y)€AxM, 

L(x)_»y* xfeint A 

if and only if Mnint A » 0. 

A result from [101 can be used for the proof. 

Then it is easy to see 

ylJSS ^^o w i t n yo**++ a n d I*6^'CI,F) defined in CD 

are convenient. 

If E is a locally convex topological vector space, then 

strong separation theorems for compact subsets can be pro

ved, too. 

Theorem 8 s Let A and B be closed convex subsets of a 

locally convex topological vector space 1, and let A be com

pact. Then there exist an L fc£t'Cl,F) and Hi^i*- y+ o r yl» 

ygc -F+ such that 

L C x ^ y ^ y ^ L C y ) VCxfy)iU*B. 

Proofs By our assumptions there exist a.- u*l #, u4»0f 

an oc t R and an e »* 0 such that 

<u,x> k at- e •< cc £ < i*fy ) VCxty)6 AxB 
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(cf. [61, section ¥.2). For y € F^+ in connection with (l)f 

y. ;= (oc - e )y and y25= ^ y0 *-*
e statement follows. 

As corollaries from Theorem 8 we find the following asser

tions. 

1. If Ac I is a closed convex set and x ^ A, then there ex

ist an L 6«C(12,F) and y i ^ 6 p+ 0T yl,y26"~ *V sucJl ^a>t 

L(x)4yx^y2 = L(xQ) VxeA. 

2. For any x-jjXgi-E, x-H-Xg, there exists an Le^(EfI) such 

that 

L(x1)ii L(x2) and L(x1)* L(x2). 

Remarks; 

1. The assumptions for Theorem 8 can be weakened e.g. in the 

following way: 

Let A and B be closed convex subsets of a locally convex 

topological vector space lf let A be a continuous subset and 

one of the sets A, B locally compact. 

Then the assertion of Theorem 8 holds true. 

For a proof of this statement, a result given in 191$ Theorem 

2.9, can be used. 

2. Using in (1) yQ€ F^ it is possible to derive further se

paration theorems for operators in accordance with the usual 

strong separation. 

For instance, if F is finite-dimensional and F*4*0f then Theo

rem 7 holds true in the following sharper form; 

Let A be a convex subset of I with XA#0 and let xQ e 

€E\ bA. Then there exist an Lerf(E,F) and ^1$y2^
F^ 03? 
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ylfy2€~F+ such that L(x) i y ^ y2̂ g HxQ) VxcA, 

To this y-j< y2 is defined by y2 ~ y^€ Fj> 

3. It is a consequence from our proof principle that every 

classical separation theorem leads to an analogous separation 

theorem for linear operators. 

4. It is easy to see that some separation theorems proved 

in this paper can be generalized on finite f amilies of con

vex sets (cf. [153). 

5. Analytic versions of the Hahn-Banach theorem and some 

equivalent assertions were considered in [123. 
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