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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

19,2 (1978)

GRAPHS WITH GIVEN SUBGRAPHS REPRESENT ALL CATEGORIES II.

Véclav KOUBEK, Praha

Abstract. We characterize sets § of graphs for which
the categor{ of (all) graphs can be fully embedded into
its full subcategory G (GRA) defined as follows: a graph G
belongs to (}(GRA) :Lf for each edge ,in G and each graph H e
€ there exists a full subgraph H® of G, isomorphic to H

containing the edge.

Key words: Full subcategory, binding category, graphs
with given subgraphs, strong embecidlng.

ANS: 18B15

For a singleton set G ={H} with H a finite graph,
the categories G (GRA) (denoted by GRAy) were studied in
[10]. The main result stated: GRA can be fully embedded in-
to GRAH iff H is not discrete and contains no loops. In the
present paper we show that GRA can be fully embedded into
G(GRA), where G is a set of (possibly infinite) graphs iff
1) H is not discrete and does not contain loops for He G
2) the graphs in (5, have the same variance, i.e. they are
either all antisymmetric, or all symmetric, or all fail te
be antisymmetric or symmetric.

There remains an interesting open problem: if G is a
finite set of finite graphs, does there exist a fini,te graph

in G (GRA) ? (If so then it will easily follow from the re-
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sults presented in [10] that there is a full embedding
GBA into G-(GRA) preserving finite graphs).

First we recall some well-known definitions.

Definition (14,15] : Let (K,U), (L,V) be concrete ca-
tegories. A full embedding ¢ :K—> L is called a strong em-
bedding if there exists a set functor F:Set —» Set such
that the following diagram

commutes,

Definition [10] : Let X be a set, R, R’ be relatiens
(graphs) on X with RcR’, A, B be subsets of X with a bi-
Jection i:h—> B such that ix i(Rn (A% A)) = Rn(BxB) and
i% i(R°A (A A)) = R°n (BxB). Then (X,R,R’,A,B) is called
a 81ip.

For a given graph (Y,S) define a &{p-product (X,R,R’,A,B)¥
x*(Y,8) = (2,Q) as follows: Z = X»= (Y= Y)/~ where
(x,yl,yz)fv ('i,il,iz) iff either y; =¥, and x = X for xe€ A,
ory, =¥, and ¥ = i(x) for xeA, or ¥y, =¥, and x = X for
x¢B. Q is a factor-relation of T = { ((x,y,,¥,),(%,¥,,¥,));
(yl = ?1& ¥ = ?2&(x,§)¢h) or (yy =?1&y2 =¥, &

& (yy,yp)e S&(x,T)€RF by ~

For £:(Y,S) —> (Y,3) define (X,R,R’,A,B)x £:(X,R,R*,A,B) %
* (¥,8)— (X,R,R",A,B) % (¥,5) as follows: 2(L(x,¥1,¥,)) =
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= [(x,f(yl),f(yz))] where [al is the class of ~» con-
taining a point a. Then (X,R,R*,A,B)%- is a functor which
is an embedding.

Definition £10]1 : A 3fp (X,R,R°, A,B) is called

strongly rigid if for every graph (Y,S) and for every com-

patible mapping

£:(X,R)—> (X,R,R",A,B)* (¥,S) (or £:(X,R")—> (X,R,R",A,B) %
(1,s))

there exists (y,,yp)€ Y»Y (or (y,,y,)€S) such that £(x)

is the class containing (x,yl,yz) for every xe X.

Proposition 1: If (X,R,R°,A,B) is strongly rigid then
(X,R,R°,A,B)x~ is a strong embedding from GRA to GRA.
Proof see [101].

Before the main construction, we give a construction of
special infinite rigid graphs (i.e. such graphs which have
no endomorphism different from the identity). We recall that
for every set there exists a rigid connected graph on it,
see [17). If we use the results in [5,14] we get that for
every infinite set X, there exists a rigid symmetric connec-
ted graph, say Py, on X. Further for a set X, denote by Cy,
the complete graph on X without loops, i.e.

Cy =4 (x9,x5)5 Xy, %€ X, X% x5«

The following statement was first proved by L. Babai
and J, NeSet¥il in [1]), and they told me this result via
conversation: for every cardinal o there exists a rigid
graph in G (GRA), where G =<4(«,C_ )}.I give here an in-

dependent construction.
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Construction 2: Iet o« be an infinite cardinal. We

shall construct a sequence of triples (Zi’si’gi) where Z1

is a set, S; and §i are relations on Z;. First define a
sequence -ieoi% y=¢ Such that e, = and ;.4 is a suc-
cessor cardinal of . Define Z j = «, (we identify a

cardinal & with the set of all ordinals smaller than o ),

S°=C°‘,S° l-'M.Z1 =2, (0c;,1%8S;) (we assume that

Z;n (eol+1xS ) = ﬂ) Si4 = 83v ( U{Cc& +l"{(x y)nu{x,y} ;
(x,y)e Si; » 8541 = Uus e, x4(x,y)4 7 (x,y)tS } . Put 2 =

%341
= U{Zi; is= 0,1,...} N 8= U{Sl’ i 0,1,--.} o Then

clearly:

1) 2. 1€ 24 Sic Si*_1 for all i;

i1’
2) if (x,y)esi‘,_1 -5 (or (x,y)eS,) then there ex-

ists a full subgraph of (Z;,,,S;,,) (and of (Z, 5), too)

i+l

isomorphic to (. Co. ) containing the edge (x,y) and
i+

i+1?
there exists no full subgraph of (Z,g) isomorphic to (ccj,
C‘j) for j>i + 2 containing the edge.

3) For every couple {x,y}% of points of Z there ex-
ists a finite sequence To’Tl""'Tn of subsets of Z with
xe T , ye T, such that Sn (T4 Ty) = C‘Ti for every i = O,

1,...,n and card (T;n T;,,)Z 2 for every i = 0,1,...,n-1.

i+l
hoose a sequence £ ¢ :Z —> 5 ; nz5% of one-to-
one mappings (such sequence is called suitable for o¢ ).
Define G(e, {¢ ; n25%) = (Z,5(«c, 4 ¢, nZ5%) where
Slec , 9,5 n25%) =8 u {(x,y),(y,x); x62_, y € o€y X
»* ¢ (x), nZ5¢ . We shall write only S instead S(ec,
{qn; nZ 5% ) if a misunderstanding cannot occur. Then it

holds:
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4) every edge (x,y)€ S lies in a full subgraph of
(z,S) which is isomorphic to (e¢,Cy );

5) for every point x€Z;,, - Z;, 120, there exists
ne full subgraph of (Z,S) containing x which is isomorph-
ic to (eci+3,c“i+ )

[ Proof: (Z,é) has this property and for every x €
€21 - 25, card{y; (y,x)esS -5} ¢ <. ]

6) for every point ero and every cardinal 3 such
that {3 = °"i for some i, thereexists a full subgraph ef
(z,8) isomorphic to (f,Cp) containing x;

- 7) if £:(2,8)—>(Z,S) is a compatible mapping, then
£(z2)eZ,, £(25,1 - 23)€ 25,4 ~ 23, for i20;

[ Proof: Since (Z,S) has not loops, by 2),5) and 6)
we get that f£(Z;)¢ Z; for every iZ O. Further, if H = (U,T)
is a full subgraph of (Z,S) isomorphic to (eci+1,0¢i+l),
then card (UnZ;)€ 2. Let x€2, - 2, , for n>0, then the-
re exist two distinet points u,ve Zn—l and a full hubgraph
H = (U,T) of (Z,S) isomorphic to (e,G ) with u,v,xeU.

n
Then f£/U is one-to-one and card (£(U)n 2, ;) &2, but f(u)s
$£(v) and f(u),f(v)e £(U)nZ, _,, therefore f(x)¢Z,_,,
and hence £(2, - 2 _,)cZ, - Z,_, for all n>0.]

8) (Z,S) is a rigid graph.

[ Proof: Let f:(Z,S)~—>(Z,S) be a compatible mapping.
We prove by induction over n that :t’/Zn =1y .

n
a) f£/Z, = 1Z°. Let (u,v)e P“o’ then ((ocy % f(u,v)}) v
uduvi, C(eclx{(u,v)i)u-fu,vi )is a subgraph of (Z,S).
Further, if H = (U,T) is a subgraph of (Z,S) isomorphic
to (oy,C ) and card (UnZ )2 2, then Tc S aml hence there
1
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exists (u,v)e P‘,‘,’o with (4,7} = Un Z,. So (£(u),f(v)) € R,
)

and therefore £/7 :( P PR ) is a compatible
mappings, thus r/zo =1, .° °
b) Assume that £/Z, = IZO for all i<n., Then ((ec, x
< udix s

{ (X,y)} ) { ;Yf ) c&cnx{(x,y)l)u{x,yi) for (x,y)e Sn_l
is a subgraph of (Z,S) gna £(x) = x, £(y) = y. It means
that flec < 4(x,7)3) € % {(x,y)} for all (x’y)e_s-n-l,
therefore it suffices to prove f/,cnx 4(x,y)}% = 1. If£ (U,T)
is a subgraph of (Z,S) isomorphic to (ot,,1,Cx 1) with

T+
card (Un (e, = 4(x,y)3 ))2 2, then there exists (u,v) €
€ xiGeyy Vith {u,v} = Un (= £(x,y)% ) and thus
f/ccnx {(x,y)} :(ecnx {(x,y)3, P“nx{(x’y)})—"* (°Gn >
x {(x,y)% , PﬁnK{(X.Y)i) is a compatible mapping, it means
that £/2 =1, . The proof is concluded. ]
n

Summarize these properties in the following theorem:

Theorem 3: For every infinite cardinal o and every
suitable sequence {Cfn; nz5% for o , the graph G(ec,
{9, n25%) is a rigid object of G.(GRA), where G =
= -((eo,Cx )% . Moreover, for every distinct points x,y of
the underlying set of G(oo, { ¥ ,i nZz5%) there exists a
finite sequence To,Tl,v...,Tn of subsets with xe Tor YT,
such ithat for every i = 0,1,...,n, ‘Ti'CT.) there is a sub-

i
graph of G(ec, 4¢ ; n25%) and for every i = 0,1,...
«esyn=1, card (T;n Ty,q)22.

Proposition 4: Let < be an infinite cardinal,
{g,inz53, {1y ;nZ5% be different suitable sequen-
ces for o . Then there exists no compatible mapping from

Gles, £ ; n257%) to Glec, {9 ;n25%).
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Proof: Let f:G(ec, {g,; nz53%)—>G(x, {trn;
nz53%) be a compatible mapping. Then by 2),5) and 6) we
prove f£(Z;)c Z; and analogously as in 7) f£(Z;,, - Z;) e
c Zi+1 - Zi for all iZ 0. Since for the proof of 8) we
use only 7) and the properties of (Z,5), we get that f =
= 1z, hence it follows that ¢ = ¥, for every nz5 -

a contradiction.

Now we shall describe the main construction. For a
given connected graph G we shall construct a strongly ri-
gid 31p (Vv,T,T",A,B) such that (V,T),(V,T") € G(GRA) whe-
re G =46} . This 81p is constructed so that to a suit-
able sum of graphs G(oc, {tyn; nz5%) we add edges to
get the required 31p. More precisely:

Construction 5: Let G = (X,R) be a connected graph
without loops with card X> 2. Choose an infinite cardinal
o« >card X. Let a be a point with aéXx 40,1t and choo-
se an edge (x,y) € R and a one-to-one mapping ¥ from
((X =4x,y3 ) > 40,13) u {a} to the set of all suitable
sequences for o¢ (which has power bigger than o > card X).
Now, denote G(«, ¥ (b)) = (Z,S(ec,¥ (b))) (the underlying
set is the same for all G(e,¥ (b)) ) for all be ((X -

- {x,y3 )% {0,13)u fa} . Further choose a total order-
ing £ on Z and define Q(x ,¥ (b)) =4 (u,v); (u,v)e S(,
¥ (b)), uévy. For every b€ ((X - { x,5y3 ) > $0,13) v
v{a} choose a bijection ¥(b) from Q(e,¥ (b)) to Z.
Define subsets T ,T,,T,,T of VxV where ¥ = Z = [((X -

- {x,y})= 40,13 )uda¥]l as follows:

T, = 4((u,b),(v,b)); (u,v)e e, ¥ (b)),
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bel((X -{x,73 )= 40,13 ) u {ali;
T, = £((u,b),(v,b)); (u,v)e S(e,¥ (b)),
be ((X - %73 )< 40,13 )ufaidd;
T, = {((z,u,i),(2,7v,i)); (u,v)€R, i = 0,1, z€2Z, u,v §
¢4ix,y33} v 4 ((u,w, 1), (y (w,i)(u,v),t,1-i)),((v,w,i),
(y (w,i)(u,v),8,1-1)); (u,v)e Qe ,¥(w,i)), we X -
- 4ix,y§, i=01, (x,t),(y,8)eR, t§y, sexiv
u{((—V(w,i)(u,v),t,l-—i),(u,w,i)), ((y (w,i)(u,v),s,
1-i),(v,w,i)); (u,v)eQ(e,¥(w,i)), weX - {x,5%,
i=0,1, (t,x),(s,y)€R, tey, skxiu{((u,a),(y(a)
(u,v),t,0)), ((v,a),(y(a)(u,v),s,0)); (u,v)e Qlec,
Y (a)), (x,t),(y,8)€R, y$t, sdxju{((y(a)(u,v),
£,0), (u,a)), ((¥ (a)(u,v),8,0),(v,8)); (u,v)e Q(ac,
Y(a)), (t,x),(s,y)6R, yt, xtb8si;
T3 = 4((u,a), (y(8) (u,v),t,1)),((v,a),(y (a)(u,v),s,1));
(u,v)e Q(ec , ¥ (a)), (x,t),(y,8)€R, yt, sx§ U
v iy (a)(u,v),t,1), (u,a)), ((4 (a)(u,v),s,1),
(vy2)); (u,v) & e, ¥ (a)), (t,x), (s,y) &R, yt ,
S x %,
Define T = T u Ty, T° = T,V T,VTy = Tu Ty if (y,x) &R,
T = T,u Ty, T’ = TV T,u Ty = TUT, if (y,x)€ R, Then it
holds:
9) there exists no full subgraph of (V,Tz) or (V,T3)
which is isomorphic to (x ,C. );
10) for every be ((X -{x,y} )= £0,13 Jufa i, the-
re exist no z,z’€ Z with ((z,b),(z",b)) e T,u T3;
11) if § =4G} then (V,T), (V,T") are objects of
C‘,(GRA);
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12) TET .
Choose z,2,€ Z, z,% 2, and put A =4(z),a)§ , B =
={(22,a)} . Clearly, (v,T,T",A,B) is a &1p.

Proposition 6: The &{p (V,?,T°,A,B) is strongly ri-
gid.

Proof: Let (X°,R") be a graph. Let f£:(V,T) —>
— (v,7,77,4,B)% (X",R") be a compatible mapping. By 3),
8) and 9) we get that for every.be ((X - 4 x,y3 )< 40,13 )u
u 4a} there exists X, € X'x X’ such that the cless £(z,b)
of ~ contains (z,b,X,). Choose weX - { x,y3 , i = 0,1,
(z,é')eQ(cc,‘.{"(w,i)), then it holds:
y¥#t, (x,t)e R== ((z,w,i), (¢ (w,i)(z,2"),t,1-i)) €T
y+t,(t,x)e R == ((y (w,i)(z,2"),t,1-i),(z,w,i))e T
x*t, (y,t)e R == ((z",w,i),(y(w,i)(z,27),t,1-i)) €T
x+t, (t,y) € R = ((y(w,i)(z,27),t,1-i),(z",w,i))e T
Since card X>2 and G is connected we have that there ex-
ists te X with x% t+y such that either (x,t)€R, or (t,x)e
€ R, or (y,t)e R, or (t,y)e R. Hence 'x‘(w’o) = ;(s,l) for
all w,s¢ X - € x,y} . Further, the foregoing implication
holds, too, if we substitute a in place of (w,i) and O in
place of 1-i and choose (z,z°) with z,z°é {2,,2,} , hence
we get that ia = i(w,o) for all weX - {x,y} . Hence, £
has the required form., If f:(V,T°)—> (v,T,T ,A,B)% (X’,R")

is a compatible mapping then the proof is the same.

Lemma 7: If G is a graph with at least one edge with-
out loops then there exists a connected graph G’ without

loops, with at least three-noint underlying set such that
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for every edge of G’ there exists a full subgraph of G°,
isomorphic to G, containing this edge.

Proof: Let G = (X,R). If card X =2 then all is ob-
vious. Therefore we can assume that card X> 2, Let X =
= § Xii jer De a decomposition of X to components of G.
Since R+ @ and G has not loops there exists ioe I with
card )(].L > 1. Choose xe){i and for every i€ I choose y; €

o 0
€ xi with x:]-yio. Define G, = (Xl,Rl) as follows:

X, = (X -4 x})ou 4(x,i); ie13, R =1(v,z; (v,2)eR,
véx#z $u {(v,(x,i)),(x,i),2); (v,x),(x,2)e R$. Let
2=(40,1%, 4(0,0),(1,1)% ).

Define an equivalence ~ on X » 40,13 as followa:
((x,1),J)~ (y5,1-j) for every ieI, j = 0,1. Obviously,
G’ = G, > 2/~ (where x is the categorical product) has

the required properties,

Definition: A graph (X,R) without loops is
a) symmetric if (x,x")e R implies (x',x)e R;
b) entisymmetric if (x,x’)e€ R implies (x’,x)&R;
c) mixed if it is neither symmetric nor antisymmetric.
We say that graphs (X,R) and (X’,R’) have the same varian-
ce if both are either symmetric, or antisymmetric, or mix-

ed.

Construction 8: Let (X,R), (Y,S) be connected graphs
without loops with the same variance such that card X>2,
card Y>2,

Denote Ry = §(x;,%;); (x,%,),(xp,x;)€ R}, Ry =R =Ry
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and analogously

Sl = ‘“31132)5 (11’72)»(’2071)5 83, sz =S - 51'
Choose (yy,y,)€ S; (if it exists) and (3!_-3,.1“)&82 (if it
exists) and define Tl =LY -4y,,5,% )u({yl,y?_} > Rl)]x
= {13,

Y, = [(¥ =4yt du Ly, 3 R)I = {23,
§) = 40w, 1), (v,1)); (u,v)eS, u,v §437,9,33u{(v,1),
((yl,r)l)),((V,l), ((yz,r),l)), (((yl,r).l),(w,l)), (((yz,
r),1), (z,1)); (u,yl),(yl,w),(v,yz),(yz,z)e S, Uk 4w,
v¢yl#z, reR1} v {(((yl,r),l), ((yz,l‘),l))» (“3211')’
((yl,r),l)); reR ¥,
5, = 1((1,2),(v,2)); (u,v)eS, u,v&4y3,¥,350 1 ((u,2),
((y3,r),2)), ((v,2),((y4,r),2)), ((y3,r),2),(w,2)),
(((y‘,r),2),(z,2)); (u,y3), (y3,w),(v,y4),(y4,z)cs,
Uy, +w, vEy3+z, reRy§ ui(((y3,r),2),((y,,r),2));
reR2§ .
Assume that Yl' ?2 and X are disjoint sets. Choose total

ordering < on X and define an equivalence ¢ on Ylu_fzu X:

xw(yl,(x,i),l), xz(y,,(x,%),1) if (x,i)eﬁl, xX4X,
xz(yB,(x,i),«?), i-’&’,(y4,(X,l-(),2) if (x,X)eR,

Put (2,T) = (XuY;u¥,,RuS u§,)/® = (X,R) ® (Y,S). Fur-
ther define ?(X,R)®(Y’S):(X,R)——’(X,R) ® (¥,S) such
taini .
that V(X,R)@ (Y,S)(X) is thz cliss of & containing x
Since x&y implies (x,y)¢RuS ;v S, we get that
?(X,R)g(y,s) is a full embedding. Moreover (X,R) ® (Y,S)

is connected and has the same variance as (X,R) and
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card Z> 2, Further for every edge of (X,R)® (Y,S) there
exists a full subgraph of (X,R) ® (Y,S), isomorphic to
(Y,S), containing the edge.

Proposition 9: Let G be a set of graphs without
loops with the same variance such that each graph ef 9.
has at least one edge. Then there exists a connected graph
G = (X,R) € G- (GRA) without loops with card X> 2.

Proof: By Lemma 7 we can assume that every H € G is
connected and its underly ing set has at least three points.
Choose a well-ordering on g, ={Hi; ieoc} where o« =
= card G. . We shall construct a chain of graphs {‘Vi,j:
10;—> G5 14 € @ ey such that ¥, ; ere full embed-
dings and for every k<i< j £ @D s Wy 5
and ?i,i =1,

a) PutG°=Gl=H

b) put Gy, =G;® Hp, ¥i 441 = ?Gis Hy where k «  and

¥x,i~ Yi,j

o? wo,l =1

i =ne« + k for some n < @5

¢) if i is limit, put {c,, wj,i;,j‘i; = colim ‘f‘Vj,k‘GJ‘“’ Gys

Jek<i}. Since ¢; , 1s a full embedding for every Jé k<1,
’

we get that ‘?J,i is a full embedding, too, for every j<i.

Put G = Gwouo - Then G is connected without loops and its
underlying set has at least three points. We are to prove
G ¢ G(GRA). Let Hye G and let (x,y) be an edge of G.
Then there exists j < @, o such that (x,y) is an adge
of Gj' Clearly there exists n < @, with j<n-.e , then
(x,y) is an edge of n-o¢ + 1. By Construction 8, there

exists a full subgraph of Gn,ec+i+1 isomorphic to Hi contai-
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ning (x,y). Since ‘fl'cc+i+1,w°-cc is a full embedding we
get that G € G (GRA).

Main Theorem 10: Let G be a set of graphs. There ex-
ists a strong embedding of GRA to G.(GBA) (i.e. G-(GRA) is

binding) if and only if every graph in g, has at least one
edge, has not loops and all graphs in G have the same va-
riance.

Proof: Sufficiency follows from Propositions 6 and 9
and Construction 5, because if (V,T,T', A,B) is a 31ip with
(V,T) € G (GRA) and (V,T°) € G (GRA), then for every graph
(X,R), (V,T,T°,A,B)% (X,R) € G (GRA).

Necessity. If some graph in § has not an edge or graphs

in G have not the same variance, then (X,R) € G (GRA) iff
R = ¢, If some graph in G has a loop, then (X,R) € G (GRA)
implies either R = # or (X,R) has a loop. In both cases for
every (X,R),(Y,S) € G (GRA) there exists a compatible mapp-
ing between (X,R) and (Y,S), hence G (GRA) is not binding:
the two-object discrete category cannot be embedded into

G (GRA),

Corollary 11: Denote GRA; = G (GR), if G =4{G} .
Then GBAG is binding iff G has not loops and has at least

one edge.

Corollary 12: For every set Q. of graphs with the sa-
me variance such that every graph in Q, has at least one ed-
ge and has not loops and for every monoid M and for every

cardinal « there exist graphs Gi’ i €« such that
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1) 6; € G (GRA) for every i € « j
2) the endomorphism monoid of G; is isomorphic to M;
3) there exists no compatible mapping between G; and

G.i whenever i% j.

Moreover, there exist strong embeddings ¢, :GRA —> G .(GRA),
i € « such that for every couple of graphe (X,R) and

(Y,S) there exists no compatible mapping between ¢i(X,R)
and <Pj(Y,S) whenever i#j.
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