Commentationes Mathematicae Universitatis Carolinae

Ivan Volný
Conditions for local asymptotic normality of experiment sequences

Commentationes Mathematicae Universitatis Carolinae, Vol. 19 (1978), No. 2, 281--290
Persistent URL: http://dml.cz/dmlcz/105852

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1978

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

> 19,2 (1978)

CONDITIONS FOR LOCAL ASFMPTOTIC NOFMALITY OF EXPERTIENT

SEQUENCES

Ivan VOLNX, Praha

Abstract

Conditions concerning Iy-differenciability of square roots of densities ensuring local asymptotic normality of the sequence of independent experiments are presented to generalize the result of Roussas [2]. Under little stronger conditions the asymptotic linearity of the mentioned derivations is proved.

Kex words and phrases: Experiment sequence, local asymptotic normality, likelihood ratio, differenciability in the second mean.

AMS: Primary $62 F 20$
Secondary 62B05

In this article only independent experiments will be treated, which means that the following scheme will be used:

$$
\left(\mathcal{X}_{n}, \mathcal{R}_{m}, P(\cdot, t)\right)=\left(\prod_{1}^{m} E_{q}, \prod_{1} B_{q}, \prod_{1}^{m} P_{k}(\cdot, t)\right), t \in E_{r},
$$ moreover we shall assume that probability measures $P_{k}(t)$ are absolutely continuous with respect to a $\boldsymbol{\sigma}$-finite measure \boldsymbol{m} in a neighbourhood of some parametric point t_{0} :

$$
\frac{d P_{k}(t)}{d m}=p_{k}(t), \quad t \in U\left(t_{o}\right)
$$

We call a sequence of experiments locally asymptotically normal (LAN) when the limiting distribution of likelihood ratios $\log \frac{d P_{n}(t+h / \sqrt{n})}{d P_{n}(+)}$ is Gaussian. Such a property is uti-
lized when the efficiency of estimates or test criteria are examined (see for instance Hajek [1]). Therefore the main goal of this paper is to find general conditions implying IAN in the case of the described independent experiments. The regularity conditions for LAN of the sequence under consideration are to be expressed in terms of roots of densities $p_{k}(t)$, say

$$
s_{k}(t)=\left(p_{k}(t)\right)^{1 / 2}
$$

treated as members of the space $L^{2}(m)$ of square integrable functions. More precisely, our conditions concern Fréchet differenciability in $L^{2}(m)$ of these roots:

Condition Al: $\mathbf{s}_{\mathbf{k}}(t)$ are Frechet differenciable in parametrical point t_{0}, i.e.
$\left\|h \lim _{\| \rightarrow 0}\right\| h \|^{-2} \int\left(s_{k}\left(t_{0}+h\right)-s_{k}\left(t_{0}\right)-h^{\prime} d_{k}\left(t_{0}\right)\right)^{2} d m=0$,
uniformly in $k=1,2, \ldots$
Condition A2. Putting

$$
G_{k}=\left\langle d_{k}\left(t_{0}\right), d_{k}\left(t_{0}\right)\right\rangle L_{L}^{2}(\underline{m})
$$

then there exists

$$
\lim _{n \rightarrow \infty} n^{-1} \sum_{k=1}^{n} G_{k}=0
$$

Condition A3.

$$
\lim _{n \rightarrow \infty}(n G[j, j])^{-1} \sum_{k=1}^{n} \int_{A_{n k}} D_{k[j]}^{2} d P_{k}\left(t_{o}\right)=0, \quad 1 \leqslant j \leqslant r
$$

where $D_{k[j]}$ is the $j-t h$ component of

$$
\begin{aligned}
D_{k} & =d_{k} s_{k}^{-1} \text { for } s_{k}>0 \\
& =0 \quad \text { for } s_{k}=0
\end{aligned}
$$

and $A_{n k}=\left\{x: D_{k[j]}^{2} \geq n G_{[j, j]} \varepsilon\right\}, \quad \varepsilon>0$.
Condition 14. Derivations $d_{k}(t)$ exist in a neighbourhood of t_{0} and are $L^{2}(m)$-continuous at the point t_{0} uniformly for $k=1,2, \ldots$.

Let

$$
\begin{aligned}
& c_{n h}=n^{-1 / 2} \sum_{k=1}^{n} D_{k}\left(t_{0}+n^{-1 / 2_{h}}\right) \\
& P_{n h}=\prod_{k=1}^{n} P_{k}\left(t_{0}+n^{-1 / 2} h\right) .
\end{aligned}
$$

Now, we are in position to state our main results.
Proposition 1. Assume that $\mathbf{A 1}, \mathbf{A}, \mathbf{A} 3$ hold. Then for every bounded sequence $\left\{h_{n}\right\}$ is
(1) $\quad \log \frac{d P_{n h_{n}}}{d P_{n 0}}-2 h_{n}^{\prime} C_{n 0}+2 h_{n}^{\prime} G h_{n} \rightarrow 0$
in $P_{n o}$ Probability. Moreover, if $h_{n} \rightarrow h$, then
(2)
$L\left(\log \frac{d P_{n h_{n}}}{d P_{n 0}} / P_{n 0}\right) \rightarrow N\left(-2 h^{\circ} O h, 4 h^{\circ} \mathrm{Oh}^{\prime}\right)$
(3)
$L\left(\log \frac{d P_{n h_{n}}}{d P_{n 0}} / P_{n h_{n}}\right) \rightarrow N\left(2 h^{\circ} O h, 4 h^{\prime} \mathrm{Ch}\right)$
(4) L $\left(C_{n o} / P_{n O}\right) \rightarrow N_{r}(0, G)$

where $L(X / P)$ denotes the distribution of a random vector X with respect to a probability measure P.

Proposition 2. Assume that Al-A4 hold. Then for every bound-
ed sequences $\left\{h_{n}\right\},\left\{g_{n}\right\}$ is
(6) $\quad\left\|C_{n h_{n}}-C_{n 0}+2 \mathrm{Ch}_{n}\right\| \rightarrow 0$ in $P_{n O}$-probability
and

$$
L\left(\left.\binom{C_{n 0}}{C_{n n_{n}}} \right\rvert\, P_{n 0}\right) \rightarrow N_{2 r}\left(\binom{0}{-2 G h},\left(\begin{array}{ll}
G & G \tag{7}\\
G & G
\end{array}\right)\right)
$$

(8)

$$
L\left(\left.\binom{C_{n o}}{C_{n h_{n}}} \right\rvert\, P_{n_{g_{n}}}\right) \rightarrow N_{2 r}\left(\binom{2 G g}{2 G(g-h)},\left(\begin{array}{ll}
G & G \\
G & G
\end{array}\right)\right)
$$

whenever $\left\{h_{n}\right\},\left\{g_{n}\right\}$ are convergent sequences in E_{r} with limits h, g, respectively.

Assertions of Proposition 1 are proved by Roussas-Philippou (1973) under a little bit stronger and not so compact assumptions. A close examination of their proofs leads immediately to the verification of our Proposition 1, the proof of which will be therefore omitted here. Our main goal is Proposition 2. In what follows we present its proof.

Relation (2) implies that sequences $\left\{P_{n n_{n}}\right\},\left\{P_{n o}\right\}$ are contiguous (see Roussas 1972, Theorem 3.1). It will be convenient to construct a sequence of probability measures, say $\left\{R_{n}\right\}$, also contiguous with $\left\{P_{n o}\right\}$. Let R_{n} be defined by

$$
\frac{d R_{n}}{d P_{n o}}=a_{n} \prod_{k} s_{k h_{n}} s_{k g_{n}}
$$

where

$$
\begin{aligned}
a_{n}^{-1} & =\iint \prod_{k} s_{k h_{n}} s_{k g_{n}} d m=\iint \prod_{k} \frac{1}{2}\left[s_{k h_{n}}^{2}+s_{k g_{n}}^{2}-\right. \\
& \left.-\left(s_{k h_{n}}-s_{k g_{n}}\right)^{2}\right] d m .
\end{aligned}
$$

It is possible to assume, without loss of generality, that

$$
h_{n} \rightarrow h \text { and } g_{n} \rightarrow g
$$

Then

$$
a_{n} \rightarrow \exp (h-g)^{\circ} G(h-g)
$$

and

$$
\log \frac{d R_{n}}{d P_{n 0}}-\log a_{n}-\frac{1}{2} \log \frac{d P_{n h_{n}}}{d P_{n 0}}-\frac{1}{2} \log \frac{d P_{n g_{n}}}{d P_{n 0}} \rightarrow 0
$$

in $P_{n o}$-probability. These relations, together with (1) and (4), give
(9) $L\left(\left.\log \frac{d R_{n}}{d P_{n 0}} \right\rvert\, P_{n 0}\right) \rightarrow N\left(-\frac{1}{2}(h+g)^{\prime} G(h+g),(h+g)^{\prime} g(h+g)\right)$
and, consequently, $\left\{R_{n}\right\},\left\{P_{n o}\right\}$ are contiguous sequences again according to Roussas (1972).

The contiguity of sequences $\left\{R_{n}\right\},\left\{P_{n n_{n}}\right\},\left\{P_{n o}\right\}$ provides a substantial simplification because we need not distinguish among them when proving convergence in probability. This convenient tool will be now used for checking following asymptotic relations.
(10) $\sum \frac{s_{k h_{n}}-s_{k 0}}{s_{k h_{n}}}-\sum \frac{s_{k h_{n}}-s_{k o}}{s_{k g_{n}}}-h_{n}^{\prime} \alpha\left(g_{n}-h_{n}\right) \rightarrow 0$
(11) $\sum \frac{s_{k h_{n}}-s_{k o}}{s_{k h_{n}}}-h_{n}^{\prime} C_{n g_{n}}-\frac{1}{2} h_{n}^{\prime} G\left(4 g_{n}-3 h_{n}\right) \rightarrow 0$
in probabilities $R_{n}, P_{n h_{n}}, P_{n 0}$, where $\left\{h_{n}\right\},\left\{g_{n}\right\}$ are bounded.

The convergence (10) will be verified with respect to underlying probability measure R_{n}. The statistics

$$
\begin{aligned}
& U_{n}=\sum_{k=1}^{n} U_{n k}=\sum\left(\frac{s_{k h_{n}}-s_{k 0}}{s_{k h_{n}}}-\frac{s_{k h_{n}}-s_{k 0}}{s_{k g_{n}}}\right)= \\
&=\sum_{k=1}^{n}\left(s_{k h_{n}}-v_{k 0}\right)\left(s_{k g_{n}}-s_{k h_{n}}\right)\left(s_{k h_{n}} v_{k g_{n}}\right)^{-1}
\end{aligned}
$$

have finite means and it is easy to prove that

$$
\begin{equation*}
\mathbf{E}_{\mathbf{R}_{\mathbf{n}}} U_{\mathbf{n}}-\mathbf{h}_{\mathbf{n}}^{\prime} G\left(g_{\mathbf{n}}-h_{\mathbf{n}}\right) \rightarrow 0 \tag{12}
\end{equation*}
$$

Put

$$
\begin{aligned}
\mathbf{U}_{\mathbf{n k}}^{c} & =U_{\mathbf{n k}}\left|U_{\mathbf{n k}_{k}}\right|<c \\
& =0 \quad\left|U_{\mathbf{n k}}\right| \geq c
\end{aligned}
$$

for some $c>0$.
Now, to prove (10), it is necessary (and sufficient) to show that

$$
\begin{equation*}
P_{n 0}\left(U_{n}+\sum u_{n k}^{e}\right) \rightarrow 0 \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
E U_{n}-\Sigma \Sigma U_{n k}^{c} \rightarrow 0 \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.P_{n 0}\left(\mid \Sigma U_{n k}^{e}-\Sigma \Sigma U_{n k}^{e}\right) \mid>\varepsilon\right) \rightarrow 0, \quad \varepsilon>0 \tag{15}
\end{equation*}
$$

The first task is somewhat formally complicated. We mar
write

$$
\begin{aligned}
& \left.\mid s_{k 0}^{-2} z c\right)+P_{n 0}\left(\max _{k}\left|\theta_{k_{n}} g_{k g_{n}} s_{k 0}^{-2}-1\right| z \frac{1}{2}\right) \leqslant \\
& \leqslant \sum_{k=1}^{n} P_{k 0}\left(\mid s_{k 0}^{-2}\left(s_{k n_{n}}-s_{k 0}\right)\left[\left(s_{k g_{n}}-s_{k 0}-n^{-1 / 2} g_{g_{n}^{\prime}} d_{k}\right)-\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& -\left(s_{h_{n}}-a_{k}-n^{\left.\left.\left.-1 / 2_{h_{n}^{\prime}}^{\prime} d_{k}\right)\right] \left\lvert\, \geq \frac{c}{6}\right.\right)+}\right. \\
& +\sum_{k=1}^{n} P_{k 0}\left(\left\lvert\,\left(s_{k h_{n}}-s_{k 0}-n^{\left.\left.-1 / 2_{n_{n}^{\prime}} d_{k}\right) n^{-1 / 2} d_{k}^{\prime}\left(g_{n}-n_{n}\right) s_{k 0}^{-2} \left\lvert\, \geq \frac{c}{6}\right.\right)}\right.\right.\right. \\
& +\sum_{k=1}^{n} P_{k o}\left(n^{-1}\left|n_{n}^{\prime} d_{k} d_{k}^{\prime}\left(g_{n}-n_{n}\right)\right| \geq \frac{c}{6}\right)+ \\
& P_{n 0}\left(\max _{k}\left|s_{k h_{n}} s_{k g_{n}} s_{k 0}^{-2}-1\right| \geq \frac{1}{2}\right) \leq \frac{6}{c}\left[\sum \int\left(s_{k h_{n}}-s_{k 0}\right)^{2} d_{n}\right]^{1 / 2} . \\
& \text { - }\left\{\left[\sum \int\left(s_{k h_{n}}-\theta_{k o}-n^{-1 / 2_{h_{n}}^{\prime} d_{k}}\right)^{2} d m\right]^{1 / 2}+\right. \\
& \left.+\left[\sum \int\left(s_{k g_{n}}-s_{k 0}-n^{-1 / 2} g_{n}^{\prime} d_{k}\right)^{2} d m\right]^{1 / 2}\right\}+ \\
& +\frac{6}{c}\left[\sum \int\left(s_{k_{n}}-s_{k o}-n^{\left.-1 / 2_{h_{n}^{\prime}}^{\prime} d_{k}\right)^{2} d m}\right]^{1 / 2} .\right. \\
& \text { - }\left[\sum \int\left(d_{k}^{\prime}\left(g_{n}-h_{n}\right)\right)^{2} d n^{-1}\right]^{1 / 2}+ \\
& \left.\left.+\frac{6}{c n} \sum_{\left\{1 h_{n}^{\prime}\right.} d_{n R} d_{n}^{\prime}\left(g_{m}-h_{n}\right) \right\rvert\, \geq \frac{e n_{n}}{6} n_{n=0}^{2}\right\}\left|h_{n}^{\prime} d_{k} d_{k}^{\prime}\left(g_{n}-h_{n}\right)\right| d m+ \\
& \text { - } P_{n 0}\left(\max _{k} l s_{k h_{n}} s_{k g_{n}} s_{k 0}^{-2}-1 \left\lvert\, \geq \frac{1}{2}\right.\right) \text {. }
\end{aligned}
$$

But $\sum \int\left(s_{k h_{n}}-s_{k o}\right)^{2} d m$ and $\sum \int\left(d_{k}^{\prime}\left(g_{n}-h_{n}\right)\right)^{2} n^{-1} d m$ are bounded while sum e of the type $\Sigma \int\left(s_{k h_{n}}-s_{k o}-n^{\left.-1 / 2_{h_{n}^{\prime}} d_{k}\right)^{2} d m}\right.$ tend to zero and the last sump of integrals does the same according to condition A3. Therefore it is sufficient to prove that

$$
P_{n 0}\left(\max _{k=1, \ldots, n} \operatorname{s}_{k_{n}} s_{k g_{n}} s_{k 0}^{-2}-1 \left\lvert\, \geq \frac{1}{2}\right.\right) \rightarrow 0
$$

This probability, however, is not larger than

$$
\begin{aligned}
& P_{n 0}\left(\max _{k}\left|8_{k 0}^{-2}\left(8_{\operatorname{lon}_{n}} \log _{n}-\sin _{n} g_{k 0}\right)\right| \geq \frac{1}{4}\right)+
\end{aligned}
$$

$$
\begin{aligned}
& +P_{n 0}\left(\max _{k}\left|0_{k 0} \operatorname{shn}_{n}^{-1}-1\right| \geq \frac{1}{2}\right)+P_{n 0}\left(\max _{k}\left|\operatorname{skn}_{n} s_{k 0}^{-1}-1\right| \geq \frac{1}{4}\right)= \\
& =A_{n}+B_{n}+C_{n} \text {. } \\
& \text { For } \boldsymbol{A}_{\mathbf{n}} \text { we have } \\
& A_{n}=P_{n 0}\left(\max _{k}\left|s_{k_{g_{n}}} s_{k 0}^{-1}-1\right| \geq \frac{1}{8}\right) \leq 64 \quad\left[\sum \int \left(s_{k_{g_{n}}}-s_{k 0}-\right.\right.
\end{aligned}
$$

and the behaviour of B_{n} and C_{n} is evidently the same when $\mathbf{P}_{\mathbf{n h}}{ }_{\mathbf{n}}, \mathbf{P}_{\text {no }}$ are used, respectively.

Now, we show that the difference between means $E U_{n}$ and E $\Sigma^{\prime} U_{n k}^{C}$ with respect to R_{n}-probability is asymptotically negligible.

$$
\begin{aligned}
& \left|\left(s_{k h_{n}}-s_{k o}\right)\left(s_{k h_{n}}-s_{k g_{n}}\right)\right| d m \leq \\
& \leq a_{n} \sum_{\left\{\left|U_{m q_{2}}\right| \geq c\right\}} \int^{1\left(s_{k h_{n}}-s_{k 0}\right)\left(s_{k h_{n}}-s_{k g_{n}}\right) \mid d m \leq} \\
& \leqslant a_{n}\left[\Sigma_{i} \int\left(s_{k h_{n}}-s_{k g_{n}}\right)^{2} d m\right]^{1 / 2}
\end{aligned}
$$

- $\left\{\left[\Sigma \int\left(s_{k h_{n}}-s_{k o}-n^{-1 / 2} h_{h_{k}^{\prime}} d_{k}\right)^{2} d m\right]^{1 / 2}+\right.$
$\left.+\left[n^{-1} \sum_{\left\{\left|U_{m \neq 0}\right| \geq c\right\}}\left(n_{n}^{\prime} d_{k}\right)^{2} d_{m}\right]^{1 / 2}\right\}=A_{n}\left(B_{n}+C_{n}\right)$.
It is easy to see that the A_{n} are bounded and the sequence $\left\{B_{n}\right\}$ tends to zero. Moreover, we may write

$$
\begin{gathered}
c_{n}^{2}=n^{-1} \Sigma \int\left(h_{n}^{\prime} d_{k}\right)^{2} d m \leq n^{-1} \Sigma \int n s_{k 0}^{2} d m+n^{-1} \Sigma \int\left(h_{n}^{\prime} d_{k}\right)^{2} d m \cdot \\
\left\{\left|U_{n k}\right| \geq c\right\} \quad\left\{\left|U_{n k}\right| \geq c\right\} \quad\left\{\left(h_{n}^{\prime} d_{k}\right)^{2} \geq n s_{k 0}^{2}\right\}
\end{gathered}
$$

But the first term is equal to

$$
\sum P_{n 0}\left\{\left|\left(s_{k h_{n}}-s_{k 0}\right)\left(s_{k h_{n}}-s_{k g_{n}}\right)\left(s_{k h_{n}} s_{k g_{n}}\right)^{-1}\right| \geq c\right\}
$$

and therefore tends to zero as it has been proved previously. The second one also tends to zero according to A3. Hence $C_{n} \rightarrow 0$ and (14) holds. The simple fact that Var $\sum U_{n k}^{c} \rightarrow$ $\rightarrow 0$ leads us to the verification of (15).

To show that (11) is implied by (10) it is sufficient to prove that

$$
\sum \frac{s_{k h_{n}}-s_{k o}}{s_{k g_{n}}}-h_{n}^{\prime} c_{n g_{n}}-\frac{1}{2} h_{n}^{\prime} G\left(2 g_{n}-h_{n}\right) \rightarrow 0
$$

which is obvious when considering $P_{n g}$ as the underlying probability measure. Now, using (10) and (11) with $g_{n}=0$ we have

$$
h^{\prime}\left(c_{n g_{n}}-c_{n o}+2 G g_{n}\right) \rightarrow 0
$$

for each bounded sequence $\left\{h_{n}\right\}$, from which (6) follows readily. Finally, the asymptotic normality in (7) and (8) is
implies by (6) and Proposition 1.

References

[1] J. HRJEK: Local asymptotic minimax and admisaibility in eatimation, 6th Berkeley Symposium 1970.
[2] G.G. ROUSSAS - A.N. PHILIPPOU: Asymptotic distribution of the likelihood function, The Annals of Stat. 1(1973),3.
[3] I. voLNf: Candidate dissertation, Charlee University, 1975.
[4] G.G. ROUSSAS: Contiguity of probability measures, Cambridge University Press 1972.

Závod výpočetni techniky Csad
Sokolovakú, Praha
Ceskoslovensko
(Obla tum 3.11. 1977)

