Commentationes Mathematicae Universitatis Caroline

Milan Štědrý
Concerning Cesari's theorems

Commentationes Mathematicae Universitatis Carolinae, Vol. 19 (1978), No. 3, 501--512

Persistent URL: http://dml.cz/dmlcz/105872

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1978

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

19,3 (1978)

CONCERNING CESARI'S THEOREMS

M. ŠTKDRY, Praha

Abstract

A version of Schauder's theorem is used for proving assertions slightly generalizing Cesari s results derived in [3]. As an application, the existence of periodic solutions to a parabolic equation is proved.

Key words: Nonlinear equations, periodic solutions of parabolic equations.

AMS: 47H15, 35K05, 35BlO

1. Introduction. Şome abstract existence theorems modelled by assertions originating in Landesman-Lazer's works have recently been derived by Cesari in [1],[2] and [3]. In this paper a well-known version of Schauder's Theorem is used for proving two theorems which have been inspired by Cesari's results and which have many points in common with very abstract assertions derived in [8].

The first theorem is proved under a bit weaker assumption than the related result of Cesari, and the second theorem extends a result of Cesari as to the growth of the admissible nonlinearity. The equations with a nonlinear term whose growth is either sublinear or asymptotically linear have been investigated in a great deal of papers. Abundant bibliography on this subject can be found in [8].

As an application of the abstract theorem, a simple assertion on the existence of periodic solutions to a parabolic equation is proved.

It turns out that the used version of Schauder's Theorem is an appropriate tool for proving assertions of Lan-desman-Lazer's type since the rather complicated determination of set which has to be mapped into itself, as required by Schauder's Theorem, is replaced by an assumption which is very easy to be satisfied in this context.

Acknowledgment. The author is grateful to 0 . Ve jvoda who attracted his attention to the paper [3].
2. Auxiliary Lemma. Let X and W be Banach spaces and let R_{X}, R_{W} be positive numbers. Let the space $X \times W$ be equipped with the norm

$$
\left\|\|(x, w)\|=\max \left(\|x\|_{x}, R_{X} R_{w}^{-1}\|w\|,\right.\right.
$$

Let us denote

$$
\begin{aligned}
M & =\left\{(x, w) \in X \times W ;\|x\|_{x} \leqq R_{X},\|w\|_{w} \leqslant R_{w}\right\} \\
& =\left\{(x, w) \in X \times W ;\|(x, w)\| \leqslant R_{X}\right\} .
\end{aligned}
$$

Let $\partial \mathrm{M}$ be the boundary of M .
2.1. Lemma. Let $T: M \rightarrow X \times W$ be continuous and compact. Suppose that
(2.2) $\{(x, w) \in \partial M ; \exists \lambda>1$ such that $T(x, w)=\lambda(x, w)\}=\varnothing$.

Then there is $(x, w) \in M$ satisfying $T(x, w)=(x, w)$.
Proof. Let a continuous mapping $\mathfrak{P}: X X W \longrightarrow M$ be defined by

$$
\mathcal{P}(x, w)=\left\{\begin{array}{l}
(x, w) \text { if }\| \|(x, w) \| \in R_{X} \\
R_{X}(x, w) /\|(x, w)\| \text { otherwise }
\end{array}\right.
$$

By Schauder's Theorem there exists $(x, w) \in M$ satisfying $\mathcal{P} T(x, w)=(x, w)$. In virtue of (2.2) we have $\mathcal{P} T(x, w)=$ $=T(x, w)$ and this completes the proof.
3. Abstract theorems. The notation used in this section is taken over from [3]. Let X be a real Hilbert space whose inner product is denoted by \langle,$\rangle and norm$ by $\|\cdot\|$.

Let $\mathrm{F}: \mathrm{D}(\mathrm{E}) \longrightarrow \mathrm{X}, \mathrm{D}(\mathrm{E}) \mathrm{CX}$, be a linear operator, l 色dim $\mathrm{W}<$ $<+\infty, W=$ ker E and let N be a continuous (nonlinear) operator. Let P be the orthogonal projection onto W. Let us denote $X_{1}=(I-P) X$. Let $H: X_{1} \longrightarrow D(E) \cap X_{1}$ be a linear operator, compact as a mapping of X_{1} into X. Let us suppose that F, P and H satisfy:
(i) $X_{1}=\{E x ; x \in D(E)\}$,
(ii) if $x \in D(E)$, then $H E x=(I-P) x$.
(iii) If $x \in X_{1}$, then $E H x=x$.

Let $A: X \longrightarrow X$ be a continuous operator satisfying $\|A x\| \leq$ $\leqslant \omega(\|x\|)$ for all $x \in X$ with some nondecreasing function $\omega: R^{+} \longrightarrow R^{+}$. Finally, setting $L=\|H\|$, we have the theorem.
3.1. Theorem. Let $0<k<1$. Besides the hypotheses listed above let the following assumptions be satisfied.
(i) There are constants $J_{0} \geqq 0, J_{1} \geqq 0$ such that $\|N x\| \leq J_{0}+J_{1}\|x\|^{k}$ for all $x \in X$.
(ii) There are constants $R_{0} \geqq 0, \varepsilon>0, K_{0}>J_{0}, K_{1}>$ $>J_{1}$ such that $\langle N(w+H x), w\rangle \leqslant-\varepsilon\|w\|$ for all $x \in X$ and $w \in$ $\in W$ satisfying $\|w\| \geqq R_{0}$ and $\|x\| \leqslant K_{0}+K_{1}\|w\|^{\mathbf{k}}$.

Then there exists $\alpha_{0}>0$ and $C>0$ such that, for every real $\alpha,|\propto| \leqslant \alpha_{0}$, the equation

$$
\begin{equation*}
\mathrm{Ex}+\boldsymbol{A x}=\mathrm{Nx} \tag{3.2}
\end{equation*}
$$

has a solution $x \in D(E)$ with $\|x\| \leqq C$.
3.3. Remark. Theorem 3.1 is a slightly changed and weakened form of Theorem IV of [3].

Proof of Theorem 3.1. It is easy to eee, cf.[2], that instead of solving (3.2) one can investigate the existence of a fixed point of the mapping $T=\left(T_{1}, T_{2}\right): X \times W \longrightarrow X \times W$ given by

$$
\begin{align*}
& T_{1}(x, w)=w+H(I-P)(-\propto A x+N x) \tag{3.4}\\
& T_{2}(x, w)=w+P\left(-\propto A x+N T_{1}(x, w)\right) \tag{3.5}
\end{align*}
$$

Let $x>0$ and $\nu>0$ satisfy $K_{0} \geqq x+J_{0}$ and $J_{1}(I+\nu)^{k} \leqq$ $\leqq K_{1}$. Let us choose R_{X} such that

$$
R_{X}(1+\nu)^{-1} \geqq R_{0}, R_{X}(1+\nu)^{-1}+L K_{0}+I K_{1} R_{X}^{k} \leqq R_{X}
$$

and denote $R_{W}=R_{X} /(1+\nu)$. Let

$$
\begin{equation*}
\alpha_{0}=\left(\omega\left(R_{X}\right)\right)^{-1} \min (x, \varepsilon) . \tag{3.6}
\end{equation*}
$$

Let W be equipped with the Hilbert space structure induced by \mathbf{X} with the same notation of the norm and the inner product. We denote

$$
M=\left\{(x, w) \in X \times w ;\|x\| \leqq R_{X},\|w\| \leqq R_{w}\right\}
$$

We will show that the mapping T satisfies (2.2). Let us suppose there is $(x, w) \in \partial M$ and $\lambda>1$ such that
(3.7) $\quad T_{1}(x, w)=\lambda x$,
(3.8) $\quad T_{2}(x, w)=\lambda w$.

Then the two cases will be distinguished:
A) $\|x\|=R_{X},\|w\| \leqq R_{W}$,
B) $\|x\|<R_{X},\|w\|=R_{w}$.

In case (A) we have

$$
\begin{aligned}
\left\|T_{1}(x, w)\right\| & \leqq R_{W}+\alpha_{0} L \omega\left(R_{X}\right)+L J_{0}+L J_{1}\|x\|^{k} \leqq \\
& \leq R_{W}+L \nsim+I J_{0}+L K_{1} R_{X}^{k} \leqq R_{X}(1+\nu)^{-1}+ \\
& +L X_{0}+L K_{1} R_{X}^{k} \leqq R_{X} .
\end{aligned}
$$

This contradicts (3.7). In case (B) we have $T_{l}(x, w)=w+$ +Hy , where

$$
\begin{aligned}
\|y\| & \leq \alpha_{0} \omega\left(R_{X}\right)+J_{0}+J_{1}\|x\|^{k} \leqq \\
& \leq R_{1}+J_{0}+J_{1} R_{X}^{k} \leqq \\
& \leqq K_{0}+J_{1}(1+\nu)^{k}\left[R_{X}(1+\nu)^{-1}\right]{ }^{k} \leqq \\
& \leqq K_{0}+K_{1} R_{W}^{k}=K_{0}+K_{1}\|w\|^{k}
\end{aligned}
$$

Thus, by the assumption (ii) we obtain

$$
\begin{aligned}
\left\langle T_{2}(x, w), w\right\rangle & =\|w\|^{2}-\propto\langle A x, w\rangle+\left\langle N T_{1}(x, w), w\right\rangle \leqq \\
& \leqq R_{w}^{2}+\alpha_{0} R_{w} \omega\left(R_{x}\right)-\varepsilon R_{w} \leqslant R^{2}
\end{aligned}
$$

since $\alpha_{0} \leq \varepsilon / \omega\left(R_{X}\right)$. This relation contradicts (3.8). Hence T satisfies (2.2) and Lemma 2.1 can be applied to the mapping T on the set M. This completes the proof.
3.9. Remark. Using (3.4), we easily derive that every
solution x co (3.2) given by the preceding theorem satisfies $x-H z \in W,\|x-H z\| \leqslant R_{W}$ for some $x \in X,\|z\| \leq R_{Z} \equiv x+J_{0}+$ $+J_{1} R_{X}^{k}$. The constants $R_{\text {w }}$ and R_{Z} depend on the operators E and N but not on the operator A.

Under the assumptions and notations given at the beginning of this section we can prove a theorem which deals with another class of admissible nonlinearities.
3.10. Theorem. Let the following assumptions be satisfied.
(i) There are constants $J_{0} \geqq 0, J_{1}>0$ such that
$\left\|N_{x}\right\|\left\{J_{0}+J_{1}\|x\|\right.$ for all $x \in X$.
(ii) There exists $\nu>1$ such that $I J_{1}(I+\nu)<I$.
(iii) There are constants $R_{0} \geq 0, \varepsilon>0, K_{0}>J_{0}$ such that $(N(w+H x), w) \leqslant-\varepsilon\|w\|$ for all $x \in X, w \in W$ satisfying $\|w\| \geqq R_{0}$ and $\|x\| \leqslant K_{0}+J_{1}(1+\nu)\|w\|$.

Then there exists $\alpha_{0}>0$ and $C>0$ such that, for every real $\propto,|\propto| \leqslant \alpha_{0}$, the equation $E x+\propto A x=N x$ has a solution $x \in D(E)$ with $\|x\| \leq C$.

Proof. Let x satisfy $K_{0} \geqq x+J_{0}$. We choose R_{X} such that

$$
\begin{aligned}
& R_{X}(1+\nu)^{-1} \geqq R_{0} \\
& R_{X}(1+\nu)^{-1}+L K_{0}+L J_{1} R_{X} \leqq R_{X}
\end{aligned}
$$

These inequalities can be satisfied since $(I+\nu)^{-1}+I_{1} \leqslant$ $\leqslant 2(1+\nu)^{-1}<1$. Putting $R_{W}=R_{X} /(1+\nu)$ and proceeding along the same lines as in the proof of Theorem 3.1 we will complete the proof of this theorem.
3.11. Remark. By applying Lemma 2.1 one can also prove the other theorems in [1], [2] and [3] as well as some further theorems of Landesman-Lazer's type, e.g. [4],[5].
3.12. Remark. Numerous abstract results connected with theorems of Landesman-Lazer's type can be found in [8].
4. Example. In this section we will prove the existence of periodic solutions to a parabolic equation by applying Theorem 3.1. We will denote by $\mathrm{S}^{1}, \mathrm{Z}$ and Z^{+}the unit circle in \mathbb{R}^{2}, the sets of integers and positive integers respectively. For brevity we will write $Q=S^{1} \times(0, \pi)$ and $X=L^{2}(Q)$. By Y we denote the closure of all functions $x=$ $=x(t, \xi) \in C^{\infty}(\bar{Q})$ vanishing at $\xi=0$ and $\xi=\pi$ in the norm

$$
\|x\|_{Y}=\left(\left\|x_{t}\right\|_{L^{2}}^{2}+\left\|x_{\xi \xi}\right\|_{L^{2}}^{2}\right)^{1 / 2}
$$

Equivalently, the space Y is the space of all functions x which can be written in the form

$$
x(t, \xi)=\sum_{j \in Z, k \in Z^{+}} x_{j, k} e^{i j t} \sin k \xi
$$

where $x_{j, k}=\bar{x}_{-j, k}$ and the number

$$
\pi^{2} \sum_{j \in Z, k \in Z^{+}}\left(j^{2}+k^{4}\right)\left|x_{j, k}^{2}\right|^{2}
$$

is finite (and equal to $\|x\|_{\mathbf{Y}}^{\mathbf{2}}$). This implies that the identity map of Y into X is compact ard, further, that $Y \subset C(\bar{Q})$ and $\|x\|_{C} \leqslant C_{S}\|x\|_{Y}$ for all $x \in Y$ with a certain constant ${ }^{\circ}{ }_{S}$ 。
Let $h: R \rightarrow R$ be ε continuous function, which for some $\hat{x}>0$

satisfies

a) h is monotone on $(-\infty,-\hat{x}) \cup(\hat{x},+\infty)$,
b) $h(x) x \geqq 0$ for all $x \in(-\infty,-\hat{x}) \cup(\hat{x},+\infty)$,
c) $\lim _{x \rightarrow+\infty} h(x)=+\infty, \lim _{x \rightarrow-\infty} h(x)=-\infty$,
d) for some $0<k<1$ and $h_{0}>0, h_{1}>0,|h(x)| \leqq h_{0}+h_{1}|x|^{k}$ for all $x \in R$.

Let $a=a(t, \xi, x): Q \times R \rightarrow R$ be measurable in (t, ξ), continuous in x and satisfy
(4.1) $|a(t, \xi, x)| \leqslant \tilde{\omega}(|x|)$ for all $(t, \xi, x) \in Q \times R$, where $\tilde{\boldsymbol{\omega}}: \mathrm{R}^{+} \rightarrow \mathrm{R}^{+}$is a nondecreasing function.

We will now prove an assertion which is closely related to an analogous result in [6], Sec. 6.6 and which for $\alpha=$ $=0$ follows from Theorem V. 3 of [7] as a very special case.
4.2. Theorem. Let the functions h and a satisfy all the hypotheses formulated above in this section. Let $m \in Z$, $m>1$. Let $p \in L^{2}(Q)$. Then to every \propto sufficiently close to 0 , there exists $x \in Y$ satisfying
(4.3) $x_{t}-x_{\xi \xi}-m^{2} x+\alpha a(t, \xi, x)+h(x)=p(t, \xi)$ for almos t all $(t, \xi) \in R \times(0, \pi)$,
(4.4) $x(t, 0)=x(t, \pi)=0, t \in R$,
(4.5) $x(t+2 \pi, \xi)=x(t, \xi),(t, \xi) \in R \times(0, \pi)$.

Proof. Let us denote

$$
E x=x_{t}-x_{\xi \xi}-m^{2} x, W=\operatorname{span}\{\sin m x\}
$$

and P the orthogonal projection onto W. Then $\mathbf{X}_{1}=(I-P) \mathbf{X}=$
$=E Y$. Given $x \in X_{1}$, i.e. $x=\sum_{\left.(j)_{k}\right) \neq(0, m)} x_{j, k} e^{i j t}$ sin $k x, x_{j, k}=$
$=\bar{x}_{-j, k}, \sum\left|x_{j, k}\right|^{2}<+\infty$, we define a bounded linear operator $H: X_{l} \longrightarrow Y$ by $(H x)(t, \xi) \underset{(j, k) \neq(0, m)}{=} \sum_{\left.i j+k^{2}-m^{2}\right)^{-1} x_{j, k}}$
$e^{i j t} \sin k \xi$.
Obviously, the mapping H considered as a mapping of X_{1} into X satisfies the assumptions (ii) and (iii) of Section 3. This mapping is compact since the identity map of \mathbf{Y} into \mathbf{X} is compact.

Further we set $N x=p(t, \xi)-h(x)$. This operator satisfies hypothesis (i) of Theorem 3.1. Let positive numbers $K_{0}^{\prime}, K_{1}^{\prime}$ and $\bar{\varepsilon}$ be chosen arbitrarily. Then hypothesis (ii) will be verified as soon as we have shown that there is $r_{0}>0$ such that, for all $r \geqq r_{0}, y \in C(\bar{Q}),\|y\|_{C} \leqq K_{0}^{\prime}+K_{1}^{\prime} r^{k}$, we have
(4.6) $\left.V(r) \equiv\langle h(r \sin m \xi+y(t, \xi)), \sin m \xi\rangle_{L^{2}}\right\rangle \bar{\varepsilon}$,
(4.7) $\langle h(-r \sin m \xi+y(t, \xi)),-\sin m \xi\rangle_{L^{2}}>\boldsymbol{\varepsilon}$.

To this end we define, $\eta>0$

$$
\begin{aligned}
& \Omega_{+}=\{(t, \xi) \in Q ; \sin m \xi>\eta\}, \\
& \Omega_{-}=\{(t, \xi) \in Q, \sin m \xi<-\eta\}, \\
& \Omega_{0}=\{(t, \xi) \in Q,|\sin m \xi| \leqslant \eta\} .
\end{aligned}
$$

For brevity we set $\varphi(r)=K_{0}^{0}+K_{1}^{\prime} r^{k}$ and $\widetilde{K}=\max \{|h(x)|$, $|x| \leq \hat{x}\}$. Since $m>1$ we ean fix $\eta>0$ such that
(4.8) $\quad \min \left(\right.$ meas Ω_{+}, meas Ω_{-}) $>$meas Ω_{0}.

Let us choose \hat{r} such that $r \geqq \hat{r}$ implies $\eta r-\varphi(r) \geqq \hat{x}$ and $\varphi(r) \geqq \hat{x}$.
Now, let $r \geqq \hat{r}$ and let $y \in C(\bar{Q})$ satisfy $\|y\|_{C} \leqslant \varphi(r)$. As
$\int_{\Omega_{0}} \int h(r \sin m \xi+y(t, \xi)) \sin m \xi d \xi d t \geqq$
$\geq \eta\{\min (-\tilde{\mathrm{K}}, \mathrm{h}(-\varphi(r)))-\max (\widetilde{\mathrm{K}}, \mathrm{h}(\varphi(r)))\}$ meas Ω_{0},
we have

$$
\begin{aligned}
& \mathrm{V}(\mathrm{r}) \geq \int_{\Omega_{+}} \int h(\eta r-|y(t, \xi)|) \eta d \xi d t- \\
&-\int_{\Omega_{-}} \int h(-\eta r+|y(t, \xi)|) \eta d \xi d t+ \\
&+\int_{\Omega_{0}} \int h(r \sin m \xi+y(t, \xi)) \sin m \xi d \xi d t \geqq \\
& \geqq \eta\left\{h(\eta r-\varphi(r)) \text { meas } \Omega_{+}-\max (\tilde{K}, h(\varphi(r))) \text { meas } \Omega_{0}\right\}+ \\
&+\eta\left\{-h(-\eta r+\varphi(r)) \text { meas } \Omega_{-}+\min (\widetilde{K}, h(-\varphi(r))) \text { meas } \Omega_{0}\right\} . \\
& \text { By (4.8) this yields lim } \quad V(r)=+\infty \quad \text {. Hence (4.6) is ve- } \\
& \text { rified for all sufficiently large } r \text {. The estimate (4.7) can } \\
& \text { be proved similarly. }
\end{aligned}
$$

By Remark 3.9 the solutions of the equation

$$
\begin{equation*}
E x+\propto d x=N x \tag{4.9}
\end{equation*}
$$

with the operators I and N defined above will satisfy the estimate

$$
\|x\|_{C} \Leftrightarrow B \equiv \pi^{-1} R_{w}+\sup \left\{\|H z\|_{C} ;\|z\|_{x} \leqslant R_{Z}\right\}
$$

no matter how the operator A is defined. Hence we can put

$$
A x(t, \xi)=a_{B}(t, \xi, x(t, \xi))
$$

with $a_{B}(t, \xi, x)=\max (-\tilde{\omega}(B), \min (\tilde{\omega}(B), a(t, \xi, x)))$. The estimate of $\|x\|_{C}$ just mentioned shows that solutions
to equation (4.9) guaranteed by Theorem 3.1 satisfy (4.3) (4.5). This completes the proof.
4.10. Remark. Let a continuous function $h: R \longrightarrow R$ satisfy hypotheses a) - d) formulated at the beginning of this section and let there exist a positive number A such that $\mathrm{Ah}(\mathrm{x}) \leqslant-\mathrm{h}(-\mathrm{x}) \leqslant \mathrm{A}^{-1} \mathrm{~h}(\mathrm{x})$ for all $\mathrm{x} \geqq \hat{x}$. Then Theorem 4.2 holds also for $m=1$.
4.11. Remark. If h grows linearly, i.e. if it satisfies $|h(x)| \leqq h_{0}+h_{1}|x|, x \in R, h_{0}, h_{1}>0$, instead of d), then Theorem 4.2 holds provided h_{1} is sufficiently small.

References

[1] L. CESARI: Existence theorems across a point of resonance, Bulletin AMS 82(1976), 903-906.
[2] L. CESARI, R. KANNAN: An abstract existence theorem at resonance, Proceedings of AMS 63(1977), 221-225.
[3] L. CESARI: An abstract existence theorem across a point of resonance, Proc. Internat. Sympos. Dynamical Systems (Univ. of Florida, Gainesville, March 1976), Academic Press, New York 1977, 11-26.
[4] E.M. LANDESMANN, A.C. LAZER: Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19(1969/70), 609-623.
[5] S.A. WILLIAMS: A sharp sufficient condition for solution of a nonlinear elliptic boundary value problem, J. Diff. Eqs. 8(1970), 580-586.
[6] V. ŠTASTNOVA, S. FUČfK: Weak periodic solutions of the boundary value problems for nonlinear heat equation, Apl. mat. (to appear).
[7] H. BRÉZIS, L. NIRENBERG: Characterizations of the ranges
of some nonlinear operators and applications to boundary value problems, Preprint.
[8] S. FUCfK: Ranges of nonline ar operators, Lecture Notes Dept. Math. Anal., Charles University, Prague, 1977.

Matematicky ustav CSAV
Žitń 25
11567 Praha 1
Československo
(Oblatum 2.5. 1978)

