Commentationes Mathematicae Universitatis Caroline

Vítězslav Švejdar

Degrees of interpretability

Commentationes Mathematicae Universitatis Carolinae, Vol. 19 (1978), No. 4, 789--813

Persistent URL: http://dml.cz/dmlcz/105894

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1978

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

DEGREES OF INTEHPRETABILITY
Vítĕzslav Švejdar, Praha

Abstract

T\) is a fixed theory containing arithmetic. For sentences φ, ψ in the la nguage of $\mathrm{T}, \varphi \leqslant_{T} \psi$ means that T with the additional axiom φ is relatively interpretable in T with the additional axiom ψ. The structure V_{1} of degrees induced by \leqslant_{T} is considered and various algebraic properties of V_{T} are exhibited. For example, if T is essentially reflexive, then V_{T} is a distributive lattice with 0 and l and no element except 0 and 1 has a complement.

Key words: Interpretability, axiomatic theory, preorder on theories.

AMS: Primary O2G99, 02D99 - Secondary 06A20

1. Introduction. In this paper we consider formal axiomatic theories. Intuitively, some of these theories are stronger than others. This is certainly related to the question of consistency. As is well known, all the famous results concerning the consistency of the axiom of choice, continuum hyoothesis and their negations were reduced to finding some interpretations. In this work we use interpretations as a mean to explicate the notion that a theory S is stronger or more complex than a theory T : it is just in the case that T is interpretable in S. In this way we heve defined a (partial) preorder on theories and we may ask what properties this preorder has. In particular, is it den-
se?, are there incomparable elements?, etc.
First of all, let us restrict ourselves to tneories of the form (T, φ) arising by adding one new axiom to a fixed theory T. Hence we define the ordering only for sentences of $T: \varphi \leqslant_{T} \psi$ iff (T, φ) is interpretable in (T, ψ). The restriction to theories of this form is convenient because we may consider only one fixed language, and it is also natural because it corresponds to the situation that we work in some theory and we are interested in the strength of additional axioms. Sentences φ and ψ have the same degree (notation $\varphi \#_{T} \psi$) if both $\varphi \leqslant_{T} \psi$ and $\psi \leqslant_{T} \varphi \cdot V_{T}$ is the set of all degrees. V is a partially ordered set with greatest and lowest element and it is a lower semilattice where meet is the disjunction of sentences.

Now there are two kinds of questions we have to solve. Firstly, questions concerning algebraic properties of the semilattice V_{T} : are there incomparable elements in V_{P}, is V_{T} a lattice?, are there complements in V_{T} ?, etc. Secondly, the questions on syntactical comple xity: what is the simplest sentence in a given degree?

As wo the first kind of questions, it follows from the results of R.G. Jeroslow [J] that for reasonable theories the ordering on V_{T} is dense and that there are many incomparable elements. We shall further show that for every degree $d \neq 0,1$ there are degrees incomparable with d. If T is essentially reflexive then V is a distributive lattice. No element in V_{T} distinct from 0 and I has a complement.

If the theory T is essentially reflexive then, furthermore, in every degree in V_{T} there is an arithmetical π_{2} and
a Σ_{2} sentence. There are degrees containing neither π_{1} sentences nor Σ_{1} sentences, but Π_{1} sentences are in V_{T} cofinal whereas Σ_{1} sentences are not. J. Mycielski's work [M] is motivated similarly as the present paper but the author makes no restriction on theories. In his structure every degree contains with each theory T many "copies" of T with different language and the l.u.b. of two degrees is simply the union of sets of representatives with disjoint languages. If the theory T is essentially reflexive then V_{T} is a substructure of Mycielski's lattice according to \leqslant_{T}, but I was unable to decide whether also l.u.b.'s coincide.

This paper uses the method of arithmetization described in the fundamental Feferman's paper [F]. It is a continuation of papers of R.G. Jeroslow, M. Hájková and P. Hájek. It węs written under supervision of P. Hájek. I would like to thank P. Hajek for the time he spent with me during many valuable discussions and for the help with translation of the work into English.
2. Preliminaries. We shall use the logical system described in [VH 1] Chapt. I, Sect. 2. The reader may omit the following part concerning logic but he is supposed to understand the statement "the theory T contains arithmetic". For example, in the set theory we may use the arithmetical operation symbols $+, \cdot, ', \overline{0}$ and form arithmetical formulas.

The language L of a theory can contain variables of varịous sorts which are distinguished by inaices (x^{i}, x^{j} where i, j are numbers of sorts in I). Every theory has one
universal sort i such that for every term in $L, T \vdash \exists x i(t=$ $=x^{i}$). We suppose to have fixed one sort as the arithmetical sort. Variables withoyt indices will usually be variables of the arithmetical sort.

The language of Robinson and Peano artthmetic has only the arithmetical sort and operation symbols $+,,^{\prime}, \overline{0}$. For the axioms see [F].

We restrict ourselves to theories T satisfying the following:
(a) T has a finite language, i.e. finitely many predicates, functions and sorts (we have of course at our disposal infinitely many variables $x_{1}^{i}, x_{2}^{i}, \ldots$ of every sort i)
(b) T has a recursively enumerable set of axioms
(c) T contains Robinson arithmetic, i.e. its language has the arithmetical sort and the arithmetical operation symbols and all the axioms of Robinson arithmetic are provable in T
(d) T is consistent.

The notion of interpretation is an obvious modification of the corresponding notion for one sorted systems.

The knowledge of Feferman's paper [F] is assumed. The predicates $\operatorname{Tm}(n)$ (number n is a term), $F m(n)$ (n is a formula), $\operatorname{Prf}_{T}(n, d)$ (n is a formula, d is a sequence of formulas and it is a proof of n in T) are primitive recursive. The predicate $\operatorname{Pr}_{T}(\varphi)(\varphi$ is provable in T) is recursively enumerable and the relation " (T, φ) is interpretable in (S, ψ) " is recursi vely enumerable whenever T is finitely axiomatizable, see Lemma 5 in [HH]. The definitions of Π_{m} and \sum_{n} formulas can be found e.t. in [G] and PR-formulas are defin-
ed in [F]. The sets Π_{n} and Σ_{n} are closed under conjunction, disjunction and bounded quantification; in addition, Π_{n} and Σ_{n} is closed under universal and existential quantification respectively. The negation of a Π_{n} formula is a Σ_{n} formula and vice versa. Theget PR is included in Σ_{1} and the conjunction, disjunction, negation and bounded quantification of PR-formulas is al ways P-equivalent to a PR-formula, where P is the Peano arithmetic. All formulas without unbounded quantifiers are PR.

The definition of numeration and binumeration are known (see [F]). A relation is primitie recursive iff it is binumerable by a PR-formula (in any theory). For every theory T, a relation is recursively enumerable iff it is numerable in T (by a \sum_{1}-formula). Every finite set $A=\left\{a_{1}, \ldots, a_{n}\right\}$ has a natural PR-binumeration $x=\bar{a}_{1} \vee \ldots \vee x=\bar{a}_{n}$ which is denoted by [A].

We shall use the Feferman's formulas $\mathrm{Tm}_{\mathrm{m}}(\mathrm{x})$, $\mathrm{Fm}_{\mathrm{g}}(\mathrm{x})$,
 a (formal) term of L ", " x is a formula", " x is a sentence", " y is a proof of the formula x ", "the formula x is provable" and "the theory described by \propto is consistent". These formulas are formalizations of the related meta-mathematical notions. First four of them are $P R$ and binumerate the sets of all terms, formulas etc., the formula $\operatorname{Pr}_{\boldsymbol{\infty}}$ is $\Sigma_{\mathcal{1}}$ and the formula Con n_{\propto} is Π_{1} whenever \propto is a Σ_{1}-formula.

Further we shall extensively use the Feferman's diagonal lemma: for every theory T and for every T-formula $\psi(x)$ there is a sentence φ such that $T \vdash \varphi \equiv \psi(\bar{\varphi})$.

3. The semilattice of degrees of interpretability and

its basic properties. In this section we shall give the basic definition and collect the most obvious facts. I include also some nontrivial results of general character.
3.1. Definition. Let T be a theory, let φ, ψ be sentences in the language of T. φ is said to be T-below ψ if the theory (T, φ) is interpretable in ($\mathrm{T}, \boldsymbol{\psi}$). This relation is denoted by $\varphi \leqslant{ }_{T} \psi$.
3.2. Lemma. (a) \leqslant_{T} is reflexive and transitive.
(b) If $T \vdash \Psi \rightarrow \varphi$ then $\varphi \leqslant T \Psi$.
3.3. Theorem. If both $\varphi \leqslant T \psi_{1}$ and $\varphi \leqslant T \psi_{2}$ then $\varphi \leqslant_{T} \Psi_{1} \vee \Psi_{2}$.

Proof. For simplicity, let us restrict ourselves to the case that the language of T consists only of one sort and of one binary predicate 6 . We have two interpretations $*$ and a of (T, φ) in (T, Ψ_{1}) and (T, ψ_{2}) respectively and we have to determine a new interpretation \perp of (T, φ) in ($T, \psi_{1} \vee \boldsymbol{\psi}_{2}$). Let $\delta_{1}(x)$ be the definition of the sort x^{*} in $\left(T, \psi_{1}\right), \delta_{2}(x)$ be the definition of the sort $x^{[}$in $\left(T, \psi_{2}\right)$ (the ranges of interpretations $a, *)$. Let $E_{1}(x, y)$ and $E_{2}(x, y)$ be definitions of ϵ^{*} and e^{a} in (T, ψ_{1}) and (T, ψ_{2}) respectively. Let us define a new sort x^{\perp} and new \in (in ($T, \psi_{1} \vee, \psi_{2}$)) as followe:
$\exists x^{\perp}\left(x=x^{\perp}\right)=\left(\psi_{1} \& \delta_{1}^{\prime}(x)\right) \vee\left(7 \psi_{1} \& \psi_{2} \& \delta_{2}^{\prime}(x)\right)$ $x^{\perp} \bullet^{\perp} y^{\perp}=\left(\psi_{1} \& E_{1}\left(x^{\perp}, y^{\perp}\right)\right) \vee\left(7 \psi_{1} \& \psi_{2} \& E_{2}\left(x^{\perp}, y^{\perp}\right)\right)$.

Now it is easy to check that for any formula. \boldsymbol{X},
$T_{1} \psi_{1} \vdash x^{+}=x^{*}$
$T_{1} 7 \psi_{1} \& \gamma_{2}+x^{\perp}=x^{\square}$
and that \mathcal{L} is indeed an interpretation of (T, φ) in $\left(T, \psi_{1} \vee \psi_{2}\right),-1$

The last theorem shows how \mathbb{K}_{T} is related to the Lindenbaum algebra of sentences (with contradiction as the greatest element).
3.4. Definition. (a) We say that a sentence φ has the same degree as ψ (notation: $\varphi \boldsymbol{\sigma}_{\top} \psi$) iff both $\varphi \leqslant_{T} \psi$ and $\psi \leqslant_{T} \boldsymbol{\rho}$ •
(b) The degree $[\phi]$ of a sentence φ is the set
$\left\{\psi ; \varphi \sum_{T} \psi\right\}$. The set of all degrees is denoted by V_{T}.
(c) $[\varphi] \leqslant T[\psi]$ iff $\varphi \leqslant_{T} \psi$.
3.5. Lemma. (a) $\left(V_{T}, \kappa_{T}\right)$ is a lowerr semilattice and $[\boldsymbol{g}] \sim[\psi]=[\boldsymbol{\varphi} \vee \boldsymbol{\psi}]$.
(b) $1_{T}=\{\varphi ; T \vdash 7 \varphi\}$ is its greatest element and $O_{T}=\{\varphi ;(T, \varphi)$ is interpretable in $T\}$ is its least element.

This is a consequence of Theorem 3.3 abd the fact that if (T, ψ) is consistent and $\varphi \boldsymbol{T}^{*} \boldsymbol{T} \psi$ then (T, φ) is also consistent. The following lemma follows from Theorem 3.3 by elementary logic.
3.6. Lemma. (a) Let $\varphi \in T \boldsymbol{\sim}$. Then there is a sentence φ^{\prime} such that $\varphi=T \varphi^{\prime}$ and $T, \psi \vdash \rho^{\prime}$.

(c) If $\varphi 4_{T} \psi \quad$ then $[\psi \rightarrow \varphi]=0_{T}$.

Proof. (a) It suffices to choose $\varphi^{\prime} x \rho \vee \psi$ and use 3.3 and $3.2(b)$.
(b) Let $\varphi \leqslant \tau \Psi \& 7 \varphi ;$ furthermore, we have $\varphi \leqslant \tau \psi \&$ \& φ. By 3.3, we have $\varphi \leqslant \tau(\psi \& 7 \varphi) \vee(\psi \& \varphi)$ and the last formula is equivalent to ψ.
(c) $\psi \rightarrow \varphi \leqslant T \varphi$ by 3.2 and $\varphi \in T \psi$ by assumption. Obviously $\psi \rightarrow \varphi \boldsymbol{a}_{\mathbf{T}} 7 \boldsymbol{\psi}$, thus by 3.2 (a) and 3.3 we
have $\psi \rightarrow \varphi \mathbb{G}_{T} \psi \vee 7 \psi \quad$ and the last sentence is of degree zero. -+

Observe that the converse of 3.6 (c) does not hold. Choose a refutable sentence for φ and let ψ be independent and such that ($T, 7 \psi$) is interpretable in T. Then $[\psi]<_{T}[\varphi]=1_{T}$ by $3.5(b)$, moreover $T \vdash \psi \rightarrow \varphi=7 \psi \quad$ and the sentence 7ψ is of degree zero by 3.5 (b).

The following two theorems were stated in the Feferman's paper [F]. Recall that we assume all theories to contain Robinson arithmetic.
3.7. Theorem. Let τ be arbitrary numeration of a theory T in some theory K. Then there is a finite subtheory F of Peano arithmetic such that T is interpretable in $K \cup F\left\{\operatorname{Con}_{\mathbb{T}}\right\}$.
3.8. Theorem. Let K be a theory and let T be interpretable in S. Then to e very numeration σ of S in K there is a numeration τ of T in K such that

$$
P \vdash \operatorname{con}_{\sigma} \rightarrow \operatorname{con}_{\tau} .
$$

Moreover, τ is a \mathbb{x}_{1}-formula whenever σ is. If T is finitely axiomatized we may choose $\tau \mathbb{T}[T]$.
3.9. Definition - lemma. Let $\tau(x)$ be an arithmetical formula. Then (τ, z) is an abbreviation for the formula $\tau(x) \vee x=2$. This formula has the following properties:
(a) $P \vdash S_{t}(x) \& F_{n}(y) \rightarrow\left(P_{x} \tau(x \rightarrow y)=P_{0}(x, z)(y)\right)^{+h}$ (formalized deduction theorem)
(b) If τ (bi)numerates T in K then $(\tau, \overline{\mathcal{\rho}})$ (bi)numerates (T, φ) in K.
3.10. Definition. A theory T is $\Sigma_{1}-$ sound iff each \mathbb{Z}_{1}-sentence provable in T is true (in the structure N of natural numbers).
3.11. Theorem. Let $T \supseteq P$ and let τ be a Σ_{1}^{*}-numeration of T in T. Thens
(a) If φ is consistent (i.e. if (T, φ) is consistent) then $\varphi<_{T} \operatorname{Con}(\tau, \bar{g})$.
(b) If T is $\Sigma_{1}-s o u n d$ and both φ and ψ is consistent then $\operatorname{Con}_{(\tau, \bar{\zeta})} \& \operatorname{Con}_{(\tau, \bar{\Psi})}$ is a consistent upper bound of the set $\{\varphi, \Psi\}$.
(c) $\left[\operatorname{con}_{\tau}\right] \neq O_{T},\left[7 \operatorname{con}{ }_{\tau}\right]=O_{T}$.
(d) $\varphi={ }_{T}(\varphi \& 7 \operatorname{Con}(\tau, \bar{\varphi})$).
(e) If T is finitely axiomatized and $\varphi \leqslant_{T} \psi$ then $T \vdash \operatorname{con}_{\{\tau, \psi j]} \rightarrow \operatorname{con}_{[\tau, \varphi]}$,

Proof. (a) By 3.9 and $3.7(T, \varphi)$ is interpretable in a certain theory TuFu\{Cọn(r,ळ̧) which is equivalent to ($T, \operatorname{Cop}_{(\tau, \bar{g})}$) because $F \subseteq P \subseteq T$. So we have $\varphi \leqslant_{T} \operatorname{Con}(\tau, \bar{\varphi})$ and
 Then $\operatorname{Con}_{(\tau, \bar{\varphi})}$ is consistent because φ is, and by 3.8 (applied to $(\tau, \bar{\varphi})$) there is a Σ_{1}-numeration σ of (T, $\operatorname{con}_{(\tau, \bar{\zeta})}$) such that T proves $C_{o n}^{n}(\tau, \bar{\Phi}) \rightarrow \operatorname{Con}_{\sigma}$. This is just the situation excluded by the second Gठdel's theorem (see [F]): no consistent theory $S \supseteq P$ can prove the formula Con σ whenever σ is a Σ_{1}-numeration of S in any $F \subseteq S$.
(b) By (a), $\operatorname{Con}_{(\tau, \bar{\varphi})} \& C_{0} \eta_{(\tau, \bar{\psi})}$ is an upper bound of φ, ψ. We show that $\left(T, C o n(\tau, \zeta)\right.$ \& $C_{0}^{n}(\tau, \bar{\psi})$) is consistent. Assume the contrary. Then $T \vdash \operatorname{Pr}_{\tau}\left(\overline{\bar{T}_{\varphi}}\right) \vee \operatorname{Pr}_{\tau}\left(\overline{\bar{T}_{\psi}}\right)$; since the last formula is Σ_{1}, we have be $\operatorname{Pr}_{\tau}\left(\overline{\overline{7}_{\varphi}}\right) \vee \operatorname{Pr}(\overline{7 \psi})$ by Σ_{1}-soundness. Then $F \operatorname{Pr}_{\tau}(\overline{7 \varphi})$ or $\operatorname{Pr}_{\sim}(\overline{7 \psi})$, for example, let $k \operatorname{Pr}_{\tau}(\overline{7} \varphi)$. Let $T_{0}=\{x ; F \tau(\bar{x})\}$. Then $T_{0} \vdash 7 \varphi$ and $T_{0} \subseteq T$
 which contradicts the assumption that (T, φ) is consistent.
 3.2 (b) we have

$$
{ }^{\operatorname{con}}{ }_{\tau}<\tau{ }_{\left.T o n_{(\tau,}, \overline{\cos n_{\tau}}\right)}=_{T}{ }^{C o n} n_{\tau}
$$

so indeed $O_{T}<_{T}\left[\mathrm{Con}_{\tau}\right]$. Moreover from TCon $_{\tau} \boldsymbol{K}_{T} \mathrm{Con}_{\tau}$ and $7 \operatorname{Copn}_{\boldsymbol{\tau}}<\boldsymbol{T} \mathrm{Copn}_{\tau}$ we get $\left[7 \operatorname{Con}_{\boldsymbol{\tau}} I=0_{T}\right.$ using 3.3 and 3.5 (b).
(d) is a direct application of (c) to the theory (T, φ) and
(e) is immediate from 3.8. -1

Theorem 3.11 (b) shows that the greatest degree 1_{T} is not a l.u.b. of any two smaller degrees; hence there are no "upper exact pairs". The existence of lower exact pairs is an easy consequence of the next theorem 3.12. Another consequence of Theorem 3.12 is the existence of (infinitely many) incomparable elements in V_{T}. Theorems 3.12 and 3.13 were proved by R.G. Jeroslow in [J], the latter had to be slightly reworked for our puroose. Theorem 3.14 is my contribution to the subject.

Theorem 3.12 requires some preliminaries. Let B be the set of all propositional formulas built up from infinitely many atomic formulas A_{1}, A_{2}, \ldots by Boolean operations $v, \&$ and 7 . The set B can be ordered by $" \varphi \leqslant_{B} \psi$ iff φ is a tautological consequence of $\psi \mathrm{N}$. By a natural factorization similar as in 3.4 B becomes an infinite countable atomless Boolean algebra. By a positive element of B we shall mean a (equivalence class determined by) propositional formula not containing the negation sign
3.12. Theorem. (a) If T is a consistent theory then the countable atomless Boolean algebra can be embedded into V_{T}.

More precisely, there is a one-one function from B to $\mathbf{V}_{\mathbf{T}}$ preserving greatest lower bounds. In particular, for $x, y \in B$ $x \leqslant_{B} y$ iff $f(x) \leqslant T^{f}(y)$.
(b) If, moreover, $T \supseteq P$ and if τ is a Σ_{1}-numeration of T in T then f maps all positive members T-below the formule: Con ${ }_{\sim}$.

For the proof see [J].
3.13. Theorem. Let a theory T be essentially reflexive or finitely axiomatized. Then for every $a<b$ there is a $c \in$ $6 V_{T}$ such that $a \ll_{T} c<{ }_{T}$.

Proof. By 3.6 (a) we can choose $\mathscr{\varphi}_{1} \leqslant a, \mathscr{\varphi}_{2} \in$ b such that $T \vdash \varphi_{2} \rightarrow \varphi_{1} \quad$. There is a finitely axiomatized theory $F \subseteq T$ such that (F, φ_{2}) is not interpretable in (T, φ_{1}). Indeed, if T is finitely axiomatized, then we may choose FIT and if T is essentially reflexive then F exists by Theorem 6.9 in $[F]$ and by the reflexivity of $\left(T, \varphi_{1}\right)$. Recall that the set of all $\langle\vartheta, \lambda\rangle$ such that (F, ϑ) is interpretable in ($\mathrm{T}, \boldsymbol{\lambda}$) is recursively enumerable. By the Feferman's diagonal lemma we can construct a self-referring sentence ψ saying "if $\left(F, \varphi_{2} \vee\left(\varphi_{1} \& \psi\right)\right)$ is interpretable in $\left(T, \varphi_{1}\right)$ then $\left(F, \varphi_{2}\right)$ is interpretable in $\left(T, \varphi_{2} \vee\left(\varphi_{1} \& \psi\right)\right.$). Then $x=$ $=\varphi_{2} \vee\left(\varphi_{1} \& \psi\right)$ is our required formula. Obviously $\varphi_{1} \leqslant T$ $\epsilon_{T} x \leqslant_{T} \varphi_{2}$, because $\varphi_{2} \vdash x \vdash \varphi_{1}$. For the proof of $x \not \boldsymbol{\not}_{T} \varphi_{1}$ and $\varphi_{2} \psi_{T} \boldsymbol{x}$ see the analogous proof in [J] Theorem 3.2. Alternatively, if the reader has [J] not at his disposal, he may extract some information from the proof of our next theorem. -1
3.14. Theorem. Let T be essentially reflexive or finitely axiomatized. Let $a, b \in V_{T}$ be such that $a \neq 1_{T}, b \neq 0_{T}$. Then
there is a $c \in V_{T}$ such that $c ⿻ 丷 ⿻ 二 丨 凵 八^{a}$ and $b \not ⿻_{T} c$ ．
Proof．Let us choose $\gamma_{1} \in a, \gamma_{2} \in b$ ．By the same rea－ son as in the proof of 3.13 there is a finitely axiomatized theory $F \subseteq T$ such that（ F, γ_{2} ）is not interpretable in T ．Si－ milarly as in 3．13，there are primitive recursive relations $R_{1}(\varphi, n)$ and $R_{2}(\varphi, n)$ such that
$R_{1}(\varphi, n) \vee R_{2}(\varphi, n)$ implies φ is a formula
$\exists \mathrm{n} \mathrm{R}_{1}(\varphi, \mathrm{n})$ iff（ F, φ ）is interpretable in（ T, γ_{1} ）
$\exists \mathrm{nI} \mathrm{R}_{2}\left(\varphi, \mathrm{n}\right.$ ）iff（ F, γ_{2} ）is interpretable in（ T, φ ）
Let the formulas $\alpha(x, y)$ and $\beta(x, y)$ binumerate R_{1} and R_{2} in Q．Let us define a diagonal sentence φ by
（1）$Q \vdash \varphi \equiv \forall y(\alpha(\bar{\varphi}, y) \rightarrow \exists x \leq y \quad \beta(\bar{\varphi}, x))$
We shall prove that φ determines the required degree c ．We have to prove $\varphi \varlimsup_{T} \gamma_{1}$ ．We shall even prove that（ F, φ ）is not interpretable in（ T, γ_{1} ）．Assume that it is interpretab－ le by some interpretation $*$ ．Then

$$
\mathrm{T}, \gamma_{1} \vdash \varphi^{*}
$$

hence
（2）$T, \gamma_{1} \vdash \forall y^{*}\left(x^{*}\left(\bar{\varphi}^{*}, y^{*}\right) \rightarrow \exists z^{*} \leq^{*} y^{*} \beta^{*}\left(\bar{\varphi}^{*}, z^{*}\right)\right.$
and，furthermore，$R_{1}(\varphi, p)$ for some p ．Let m be the least
auch p ．Since \propto binumerates R ，we have
Qम $\propto(\bar{\varphi}, \bar{m}) \& \forall \mu<\bar{m} 7 \propto(\bar{\varphi}, \mu)$
Since interpretations preserve provability，we have
（3）$T, \gamma_{1} \vdash \propto^{*}\left(\overline{\varphi^{*}}, \overline{m^{*}}\right)$
From（2）and（3）we obtain

$$
T, \gamma_{1} \vdash(\exists x \leq \bar{m} \beta(\bar{\varphi}, x))^{*}
$$

We have proved that the sentence $\exists z \leq \bar{m} \beta(\bar{\varphi}, z)$ is consis－ tent with the theory（ F, φ ），hence it is consistent with Q ． But such a simple sentence is decided in Q（according to
whether $\exists n \leqslant m R_{2}(\varphi, n)$ or not). So it is decided positively, hence
(4) $\exists n \leq m R_{2}(\varphi, n)$ and
(5) $Q \vdash \exists z \leq \bar{m} \beta(\bar{\varphi}, x)$.

By (4), (F, γ_{2}) is interpretable in (T, φ), but from (5) and (I) we can prove φ in Q. This is a contradiction because F was such that $\left(F, \gamma_{2}\right)$ is not interpretable in T. Se we have proved that (F, φ) is not interpretable in (T, γ_{7}), hence $R_{1}(\rho, n)$ does not hold for any n, hence for each n (6) $Q \vdash \operatorname{loc}_{\infty}(\bar{\varrho}, \bar{n})$.

It remains to prove that $\gamma_{2} \xi_{T} \rho$. We shall again show that even (F, γ_{2}) is not interpretable in (T, φ). If it were interpretable, i.e. if $R_{2}(\varphi, m)$ for some m, then for this m, (7) $Q \vdash \beta(\bar{\varphi}, \bar{m})$.

From (6) and (7) we can prove φ in Q, which is impossible by the same reasons as above. -1

If we choose $a=b$ in Theorem 3.14 we see that to every degree different from O_{T} and l_{T} there is an incomparable degree.
4. The lattice of degrees of interpretability given by an essentially reflexive theory. All results of this section concern only essentially reflexive theories. Analogous rroblems e.g. for finitely axiomatizable theories remain open. As is known, both Peano arithmetic and Zermelo-Fraenkel set theory is essentially reflexive.
4.1. Definition. We say that a theory T is reflexive if for every n TFCôn $\left.n^{T} \wedge_{n}\right]$. T is essentially reflexive if every extension of T with the same le nguage is refle xive.

The following lemma utilizes the fact that if $\tau(x)$ is a binumeration of a set T in K then for every n
$\mathrm{K} \vdash \tau(x) \& x \leq \bar{m}=[T P n](x)$,
see [F], Iemma 4.14.
4.2. Lemma. Let $T \supseteq P$ be a recursively axiomatized theory and let τ be arbitrary binumeration of T in T. Then
(a) T is refle xive iff $\mathrm{TH}_{\mathrm{Con}}^{\mathrm{T}+\mathrm{n}}$ for each n .
(b) T is essentially reflexive iff for every T-sentence φ and for each n,

T, $\varphi \vdash \operatorname{Con}(\tau, \Xi) \upharpoonright \pi$.
In theremaining part of this paper we assume that $T \supseteq P$, T is essentially refle xive and recursively axiomatized and τ is a binumeration of T in T.
4.3. Lemma. For arbitrary sentences $\varphi, \psi \quad \varphi \leqslant T \psi$ iff $T, \psi \vdash \operatorname{Con}_{(x, \bar{\zeta}) \uparrow \bar{n}}$ for each n.

This is a form of Orey's arithmetical compactness theorem, see [F] and [HH].
4.4. Theorem. Every pair of degrees in V_{T} has a l.u.b., i.e. V_{T} is a lattice.

Proof. Let a, b be a given pair of degrees and choose $\varphi_{1} \in$ a and $\varphi_{2} \in$ b. By the diagonal lemma there is a sentence Ψ such thet
 We shall prove that ψ determines the required degree, i.e. that $[\psi]=\sup \{a, b\}$. By the essential reflexivity of T (see 4.2 (b)) we have
(2) $T, \psi \vdash \operatorname{Con}(\tau, \bar{\psi})+\pi$ for each n.

The formula Con $(\tau, \neq)+\bar{\pi}$ is the antecedent in the 6ormula $\psi ;$
hence from (1) and (2) we have for each n
$T, \psi \vdash \operatorname{Con}\left(\tau, \bar{\Phi}_{1}\right) \uparrow$ \& $\operatorname{Con}_{\left(\tau, \bar{\varphi}_{2}\right) P \bar{\pi}}$.
Now $\varphi_{1} \leqslant T \psi$ and $\varphi_{2} \leqslant T \psi$ by 4.3 , hence ψ is an upper bound. Let x be arbitrary upper bound. By 3.6 (b) it suffices to prove $\psi \leqslant_{T} X \& 7 \psi$. Let n be arbitrary. As x is an upper bound we have (by 4.3)
(3) $T, x \vdash \operatorname{con}\left(\tau, \Phi_{1}\right) P \pi \& \operatorname{con}\left(\tau, \bar{\varphi}_{2}\right)+\bar{n}$.

Moreover, by (1),

From (3) and (4) we can prove
$T, x \& 7 \psi \vdash \exists y\left(\bar{m}<y \& \operatorname{con}(\tau, \bar{\psi}) \operatorname{riy}_{y}\right)$
hence
$T, x \& \neg \psi \vdash \operatorname{con}_{(x, \bar{\zeta})}+\pi$
and we get $\psi \leqslant \tau \chi \& 7 \psi$ by 4.3. This comple tes the proof. $\boldsymbol{H} \boldsymbol{H}$
From 4.3 we can prove that $[\varrho]=0_{T}$ iff for every $n T$ proves Con ${ }_{(\tau, \bar{\zeta}) N} \pi$ This will be used in the proof of the following lemma.
4.5. Lemma. For every theory T, there is a sentence φ such that $[\varphi]=[7 \varphi]=0_{T}$.

Proof. Let neg (x, z) be a formula that functionally binumerates negation in Q, i.e. for arbitrary formula φ,
(1) $Q \vdash \operatorname{meg}(\bar{\varphi}, x) \equiv x=\overline{T_{\varphi}}$.

Let us define a diagonal sentence φ by

$$
T \vdash \varphi=\forall y\left(\operatorname { C o n } (x , \overline { \varphi }) _ { y } \rightarrow \forall x \left(\operatorname{neg}(\varphi, x) \rightarrow \operatorname{Con}_{\left.\left.(\tau, x))_{y}\right)\right)}\right.\right.
$$

By (1) we have
(2) Tト $\varphi=\forall y\left(\operatorname{Con}(\tau, \bar{y}) r_{y} \rightarrow \operatorname{Con}\left(\tau, \pi_{9}\right) H_{y}\right) \cdot$

By the reflexivity of the theory (T, φ) we have
(3) T, ¢ $\vdash \operatorname{Con}(\tau, \mp) P \pi$ for each n.

From (2) we get
(4) $\left.T, \varphi \vdash C_{\left.0 n_{(~}^{\left(\varepsilon, T_{\varphi}\right.}\right)}\right)+\bar{n}$ for each n.

By the reflexivity of ($T, 7 \varphi$) we have
(5) T, $7 \varphi \vdash \operatorname{Con}_{\left(\tau, \bar{T}_{\varphi}\right) \uparrow \bar{m}}$.

By (4) and (5)

and indeed $[7 \varphi]=O_{T}$. Furthermore, by (2) we have

From (5) and (6) (using the fact that $x_{1}<x_{2} \& \operatorname{con}_{\sigma r x_{2}} \rightarrow \operatorname{con}_{\sigma i x_{1}}$ we get
(7) T, $7 \varphi \vdash \operatorname{Con}(\tau, \boldsymbol{y}) \uparrow \bar{m}$.

And again by (3) and (7)
TーCon ($چ, \bar{\Phi}) \uparrow \bar{m}$ for each n,
i.e. $[\rho]=O_{\top} \cdot-1$

If we apply Lemma 4.5 to the theory (T, ψ) we get the following

Corollary. In every degree $[\psi]$ there are mutually contradictory sentences of the form $\psi \& \varphi$ and $\psi \& \nabla \varphi$.
4.6. Lemma. For arbitrary sentences φ, ψ
$T \vdash \operatorname{Con}_{(r, \overline{\varphi \vee \psi})} \equiv \operatorname{Con}_{(r, \bar{\Phi})} \vee \operatorname{Con}_{(r, \Psi)} \cdot$
Proof. We know that for arbitrary sentences $x_{,}, x_{1}, x_{3}$, $P \vdash P_{r_{\tau}}(\overline{7 x}) \equiv 7 C_{i n}(\tau, \bar{z})$ and $P \vdash P_{\mu_{\tau}}\left(\overline{x_{1} \& \bar{x}_{2}}\right) \equiv P_{r_{\tau}}\left(\bar{x}_{1}\right) \& P_{r_{\tau}}\left(\bar{x}_{2}\right)$. Lemma 4.6 is an easy consequence of these facts. -1

Having Theorem 4.4 in mind we can use in V_{T} the lattice overations \vee (least upper bound, join) and \wedge (meet). Recall that if $a, b \in V_{T}$ and $\varphi \in a, \psi \in b$ then $\varphi \vee \psi \in a \wedge b$ (see 3.5 (a)) and $[\varphi \& \psi] \geq_{T} a \vee b$ by 3.2 (b).
4.7. Theorem. The lattice V_{T} is distributive.

Proof. It suffices to prove that $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$ because the dual distributivity law follows from this one.

Moreover, the inequality \leq holds automatically in every latlice. Let us prove \geq. Choose $\varphi_{1} \in a, \varphi_{2} \in b, \varphi_{3} \in c$ and define diagonal formulas

$$
\begin{aligned}
& \psi_{1} \equiv \forall y\left(\operatorname { C o n } (\tau , \Psi _ { 1 }) \Gamma _ { y } \rightarrow \left(\operatorname{Con}\left(r, \Phi_{1}\right) \Gamma_{y} \& \operatorname{Con}_{\left.\left.\left(\tau, \Phi_{2}\right) N_{y}\right)\right)}\right.\right. \\
& \left.\psi_{2} \equiv \forall y\left(\operatorname{Con}_{\left(r, \bar{\psi}_{2}\right) \lambda_{y}} \rightarrow \operatorname{Con}_{\left.\left(r, \Phi_{1}\right)\right)_{y}} \& \operatorname{Con}_{\left.\left(r, \bar{\Phi}_{3}\right)\right)_{y}}\right)\right) \\
& x=\forall_{y}\left(\operatorname { C o n } (r , \overline { x }) _ { y } \rightarrow \left(\operatorname{Con}_{\left.\left.\left.\left.\left(r, \Phi_{1}\right)\right)_{y} \& \operatorname{Con}_{\left(r, \Phi_{2} \vee \Phi_{3}\right.}\right)_{y}\right)\right) .}\right.\right.
\end{aligned}
$$

By 3.5 (a) and 4.4 we have $\varphi_{2} \vee \varphi_{3} \in b \wedge c, \psi_{1} \in a \vee b, \psi_{2} \in a \vee c$, $x \in a \vee(b \wedge c)$ and $\psi_{1} \vee \psi_{2} \in(a \vee b) \wedge(a \vee c)$. We have to prove that

$$
\psi_{1} \vee \psi_{2} \leqslant T X
$$

By 3.6 (b) it suffices to prove
$\psi_{1} \vee \psi_{2} \leqslant_{T} x \& \neg \psi_{1} \& 7 \psi_{2}$.
By 4.3 it suffices to prove that, for each n,

$$
T, x, \neg \psi_{1}, \neg \psi_{2} \vdash \operatorname{Con}\left(x, \overline{\left.\psi_{1} \vee \psi_{2}\right)}\right) \ \bar{m} .
$$

We shall prove

$$
T, x, 7 \psi_{1}, \neg \psi_{2} \vdash \operatorname{con}\left(\tau, \overline{\psi_{1}}\right) \Gamma \bar{m} \vee \operatorname{con}\left(\tau, \overrightarrow{\psi_{2}}\right) \Gamma \bar{n}
$$

and use Lemma 4.6. Let n be given. By the reflexivity of (T, x we have

$$
T, x \vdash \operatorname{Con}(\tau, \bar{x}) \Gamma \bar{m}
$$

By this and by the definition of x we have (using Lemma 4.6)

$$
T, x \vdash \operatorname{Cos}_{\left(\tau, \bar{\varphi}_{1}\right) \uparrow \bar{m}} \&\left(\cos _{\left(\tau, \bar{\Phi}_{2}\right) \uparrow \bar{n}} \vee \operatorname{Cop}_{\left(\tau, \bar{\varphi}_{夕}\right)}\right.
$$

hence

From the definition of ψ_{1}, ψ_{2} we get
$T, \neg \psi_{1}, \operatorname{Con}\left(\tau, \bar{\varphi}_{1}\right) \uparrow \bar{m} \& \operatorname{Con}\left(\tau, \bar{\phi}_{2}\right) \Gamma \bar{m} \vdash \operatorname{Con}\left(\tau, \bar{\psi}_{1}\right) \uparrow \bar{n}$

$$
T, 7 \psi_{2}, \operatorname{Con}_{\left(\tau, \bar{\Phi}_{1}\right) \upharpoonright \pi} \& \operatorname{Con}_{\left(\tau, \bar{\varphi}_{3}\right) \Gamma \bar{m}} \vdash \operatorname{Con}_{\left(\tau, \overline{\psi_{2}}\right) \uparrow \bar{m}}
$$

Putting this together we indeed have

$$
T, x, \neg \psi_{1}, \neg \psi_{2} \vdash \operatorname{Con}\left(r, \nabla_{1}\right) \uparrow \bar{m} \vee \operatorname{Con}\left(r, \psi_{2}\right) \Gamma \pi \cdot-1
$$

5. Simplest sentences in a degree. The sentence ψ produced in the theorem 4.4 was an arithmetical sentence. If we take in the theorem 4.4 the same sentence for φ_{1} and φ_{2} we see that in every degree in V_{T} there is an arithmetical and syntactically simple sentence. This contrasts with the fact that in the Lindenbaum algebra e.g. of ZF there are degrees of arbitrarily high arithmetical comple xities and that there are also non-arithmetical degrees, i.e. there are set sentences non-equivalent to any arithmetical sentence. In this section we shall further try to determine for some concrete formulas their position in the lattice $V_{\boldsymbol{T}}$.
5.1. Theorem. If $T \supseteq P$ is essentially reflexive and recursively axiomatized then
(a) In every degree in V_{T} there are Π_{2} sentences.
(b) In every degree in V_{T} there are Σ_{2} sentences.

Proof. (a) Let a degree [\wp] be given and let τ be a Σ_{1}-binumeration of T in T. Let us define a diagonal sentence ψ by
$T \vdash \psi \equiv \forall y\left(\operatorname{Con}_{(\tau, \bar{\psi}) r_{y}} \rightarrow \operatorname{Con}_{(\tau, \bar{\zeta}) \Gamma_{y}+\pi}\right)$.
The formula ψ is π_{2} and the proof that $\psi \equiv T_{\varphi}$ is analogous to the proof of the theorem 4.4.
(b) Let φ, ψ be as above and let us take a sentence
$\sigma エ \exists y\left(\operatorname{Con}(\tau, \bar{\Phi}) l_{\psi} \& \operatorname{Con}_{\left.(\tau, \bar{\varphi}))_{y}\right)}\right.$.
Qbviously σ is a Σ_{2} sentence and $T \vdash \sigma \longrightarrow \psi$. So we have to prove $\sigma \leqslant T \psi$. By 3.11 (d) $\psi z_{T} \psi \& \operatorname{Con}(\tau, \bar{\psi})$. Furthermore, we have

$$
\begin{aligned}
& T \vdash 7 \operatorname{Con}(\tau, \psi) \rightarrow \exists y 7 \operatorname{Con}(\tau, \varphi) \gamma y, \\
& T, \psi \& \exists y 7 \operatorname{Con}(\tau, \varphi) \Gamma_{y} \vdash \sigma \\
& \text { and herce } \sigma \leqslant_{T} \psi \cdot-1
\end{aligned}
$$

5.2. Theorem. Let T and S be theories containing Peano arithmetic, let the induction for all T-formulas be provable in T and let T enable the coding of finite n-tuples of $T-o b-$ jects. Then to every interpretation $*$ of S in T there is a T-Formula. $\rho\left(x, x^{*}\right)$ such that
(a) $T \vdash \forall x \exists!x^{*} \rho\left(x, x^{*}\right)$
(b) $T \vdash \rho\left(x_{1}, x^{*}\right) \& \rho\left(x_{2}, x^{*}\right) \rightarrow x_{1}=x_{2}$
(c) $T \vdash \rho\left(x, x^{*}\right) \& y^{*} \leqslant^{*} x^{*} \rightarrow \exists y \rho\left(y, y^{*}\right)$
(d) for every arithmetical \sum_{1}-formula $\varphi(x, \ldots)$
$T \vdash \rho\left(x, x^{*}\right) \& \ldots \rightarrow\left(\varphi(x, \ldots) \rightarrow \varphi^{*}\left(x^{*}, \ldots\right)\right)$
For the proof see e.g. [H].
If we apply Theorem 5.2 to a Σ_{1}-sentence ρ we get $T \vdash \varphi \rightarrow \varphi^{*}$. The dual statement for Π_{1}-sentence π claims $\mathbf{T} \vdash \boldsymbol{\pi}^{*} \longrightarrow \boldsymbol{\pi}$. This fact has important consequences.
5.3. Corollary. Let T have the properties required in Theorem 5.2. If ψ is a T-sentence and φ is a $\Pi_{\mathcal{l}}$-sentence then $\varphi \leqslant \boldsymbol{\leqslant} \boldsymbol{\psi}$ implies $T, \psi \vdash \boldsymbol{\varphi}$.
5.4. Corollary. Let T have the properties from Thecrem 5.2 and let φ_{1}, φ_{2} be Π_{1}-sentences. Then
$\left[\varphi_{1} \& \varphi_{2}\right]=\left[\varphi_{1}\right] \vee\left[\varphi_{2}\right]$.
The following definition 5.5 and lemma 5.6 show the connection that interpretability has to partially conservative sentences (studied by D. Guaspari).
5.5. Definition [G]. A sentence φ is said ts be Π_{1} conservative over T if for every π_{1}-sentence $\pi, T, \varphi \vdash \pi$ implies T ト $\boldsymbol{\pi}$ 。
5.6. Lemma [G]. Let T be reflexive and satisfy the assumptions of 5.2. Then φ is π_{1}-conservative iff $[\varphi]=C_{T}$.

Proof. T is essentialy reflexive harace ' $1, \varphi \vdash \operatorname{Con}(\tau, \not \subset)+\bar{n}$
for each n. The sentence Con ... is π_{1} hence by the π_{1}-conservativity of φ we have $T \vdash \operatorname{Con}_{(\tau, \Phi)}(\bar{m}$ and by Lemma 4.3 indeed $[\varphi]=0_{\tau}$.

Assume conversely $[\varphi]=O_{T}$. Let $T, \varphi \vdash \pi \quad$ and $\pi \in \Pi_{1}$. We have to prove $T \vdash \pi$. Let $*$ be an interpretation of (T, φ) in T. Then $T, \varphi \vdash \pi$ implies $T \vdash \pi^{*}$. By Theorem 5.2 or Corollary 5.3 we have $T \vdash \pi \cdot \rightarrow$
5.7. Rosser's sentences. In the rest of the paper assume that T is P or $Z F$ and τ is a PR-binumeration of T in T. Let us define sentences ρ and π (the former using the diagonal lemma):

$$
\begin{aligned}
& \rho \equiv \forall y\left(\operatorname{Prf}_{\tau}(\bar{\rho}, y) \rightarrow \exists x \leq y \operatorname{Prf}_{\tau}\left(\overline{T_{\rho}}, x\right)\right) \\
& \pi x \forall x\left(\operatorname{Prf}_{\tau}(\bar{\rho}, x) \rightarrow \exists y<x \operatorname{Prf}_{\tau}(\bar{\rho}, y)\right)
\end{aligned}
$$

To be more exact ρ is defined using the formula neg (x, z) similarly as in 4.5. The sentences ρ and π have the following properties
(a) $[\rho]=[7 \pi] \neq O_{T},[7 \rho]=[\pi] \neq O_{T}$
(b) $\left[0_{T}\right]=[\rho] \wedge[\pi]$
(c) $\left[\operatorname{con}_{\tau}\right]=[\rho] \cup[\pi]$
(d) $[\rho]<\left[\operatorname{con}_{\sim}\right],[\pi]<[\operatorname{Con} \tau]$

Proof. It is well known that
(i) The sentence ρ is independent on T. The proof can be formalized in (T, Con τ) and since $T \vdash 7 \rho \rightarrow \pi$ we have
(ii) Tr $\operatorname{con}_{\tau} \rightarrow \operatorname{con}_{(\tau, \Gamma)}, T \vdash \operatorname{Con}_{\tau} \rightarrow \operatorname{Con}_{(\tau, \Im)}$.
(iii) $T \vdash \operatorname{Con} \tau=\rho \& \pi$. By Corollary 5.4 we have $\left[\operatorname{con}_{\tau}\right]=[\rho] \vee[\pi]$.
(iv) TH $\mathrm{T} \rightarrow \mathrm{Con}_{\tau}, \mathrm{TH} \pi \rightarrow \mathrm{Con}_{\tau}$;
otherwise we would reach a contradiction with the second G8del's the orem (using (ii)).
(v) $T H T$
otherwise we would have $T \vdash \rho>$ Con $_{\approx}$ (by (iii)) which contradicts (iv).
(vi) $[\rho] \neq O_{T},[\pi] \neq O_{T}$
since ρ and σ are unprovable Π_{1}-sentences, see 5.3.
(vii) $7 \rho \leq_{T} \pi, \quad 7 \pi \leqslant_{T} \rho$
since by 3.11 (d), we have $\pi \& 7 \operatorname{Con}_{(\tau, \pi)} \leqslant T \pi$ and, by (ii), we have $\pi \& 7 \operatorname{Con}_{\tau} \leq_{T} \pi \& 7 \operatorname{Con}_{(\tau, \pi)}$.
In $T, \pi \& 7 \operatorname{Con}_{\tau} \quad$ implies 7ρ by (iii). The proof of $7 \pi \leqslant_{T} \rho$ is similar. Now it is clear that $[\rho]=[7 \pi]$ and $[7 \rho]=[\pi]$ since $T \vdash 7 \rho \rightarrow \pi$.
(viii) The property (d) follows from (a),(b),(c). This completes the proof. -1

Let us point out that 5.7 (a) shows that a degree different from O_{T}, I_{T} can contain both Π_{1} and Σ_{1} sentence.
5.8. The negation of the Rosser's sentence informally says "there is a proof of my negation such that no my proof is less or equal". Let us slightly change this sentence and define
$\sigma=\exists x\left(P_{r} f_{\tau}\left(\overline{T_{\sigma}}, x\right) \& \forall y \leqslant x \neg P_{r} f_{\tau}\left(\overline{7 \operatorname{Con} n_{\tau}}, y\right)\right)$.
This sentence has the following properties
(a) $\sigma \leqslant_{T} \operatorname{Con}\left(\tau, \overline{\left.\operatorname{con} \tau_{\tau}\right)}\right.$
(b) $\sigma \leqslant{ }_{T} \operatorname{Con}_{\tau}$.

Proof. (i) If $T \vdash T \sigma$ then $T \vdash \neg \operatorname{Con} \tau$. By the formalization of this fact we have
(ii) $T \vdash \operatorname{Con}\left(\tau, \overline{C o n}_{\tau}\right) \rightarrow \operatorname{Con}_{(\tau, \bar{\delta}) \text {, }}$
and by 3.11 (a) we have $\sigma \leqslant_{T} \operatorname{Con}\left(\tau, \overline{\operatorname{con}} \tau_{\tau}\right.$.
(iii) $T \vdash$ Con $_{\tau} \rightarrow 7 \sigma$
since by Theorem 5.5 in [F] we have $T, \sigma \vdash B_{r_{\tau}}(\bar{\sigma})$ and by
the definition of σ we have $T, 6 \vdash \operatorname{Br}_{\tau}(\overline{7 \sigma})$, which implies T, $\sigma \vdash 7$ Cqn $_{*}$.
(iv) $\sigma \psi_{T} \operatorname{con}_{\tau}$.

Assume $\boldsymbol{G} \leqslant \operatorname{Con}_{T}$. Let $*$ be an interpretation of (T, σ) in ($T, C o n_{\tau}$). The theory ($T, \operatorname{Con}_{\tau}$) is consistent and it remains consistent after adding the axiom of formal inconsistency. Thus it will be sufficient to find a contradiction in the the-
 formally. Let y be least such that $\operatorname{Prf}_{r}\left(\overline{7 C_{0} n_{z}}, y\right)$. The formula Prf ... is PR, hence it is Σ_{1} and by Theorem 5.2 we have Buf τ^{*} ($\overline{\text { Conn }}^{*}, y^{*}$), where y^{*} is such that $\rho\left(y, y^{*}\right)$. We know that σ^{*}, hence

$$
\exists x^{*}\left(\operatorname{Buff}_{\tau}^{*}\left(\overline{\sigma^{*}}, x^{*}\right) \& \forall y^{*} 厶^{*} x^{*} 7 \operatorname{Prff}_{\tau}^{*}\left(\overline{\operatorname{Con}} * \tau, y^{*}\right)\right) \text {. }
$$

Every such x^{*} must be $<^{*} y^{*}$ and by 5.2 (c) there is an x such that $\rho\left(x, x^{*}\right)$. By 5.2 (d) $\operatorname{Prf}_{\tau}^{*}\left(\overline{7 \sigma^{*}}, x^{*}\right)$ implies $\operatorname{Prf}_{\tau}(\overline{7 \sigma}, x)$, since Prf... is a π_{1}-formula in P. By (iii) there is a $y^{\prime} \leqslant x$ such that $\operatorname{Prf}_{\tau}\left(\overline{7 C o n}_{\tau}, y^{\prime}\right)$ and for this y^{\prime} we have $y^{\prime}<y$. But y was least such that $\operatorname{Prf}_{\tau}\left({\overline{7 \mathrm{Con}_{\tau}}}_{\tau}, y\right)$. This is a contradiction. -1
5.9. A truth definition for a theory T is a T-formula $\psi(x)$ such that for every $T-s e n t e n c e \quad \varphi \quad \boldsymbol{T} \vdash \varphi \equiv \psi(\bar{\varphi})$. As is known, no consistent theory has such a truth definition. On the other hand, the Peano arithmetic has partial truth definitions. More precisely, for every n there is a \sum_{m}-formula $\operatorname{Tr}_{m}(x)$ such that for every \mathbb{Z}_{n}-sentence $\varphi \quad$ Pr $\varphi=T_{n}(\bar{\rho})$. Let us define the sentences ω_{n} using the formulas $\operatorname{Tr}_{n}(x)$ and the natural binumeration π of axioms of the Peano arithmetic:

$$
\omega_{n}=\forall x\left(S_{i t}^{\Sigma_{m}}(n) \& \operatorname{Tr}_{n}(x) \rightarrow \operatorname{Con}(\pi r, x)\right)
$$

("every Σ_{m}-true Σ_{m}-sentence is consistent with π "). These senteres have the following properties:
(a) $\omega_{n} \in \Pi_{n}$
(b) If σ is a Σ_{m}-sentence then

P, $\omega_{m}, \sigma \vdash C_{P}(\sigma, \sigma)$
(c) If σ is a Σ_{m}-sentence then
$P, \omega_{n} \vdash \sigma \quad$ implies $P, \omega_{n} \vdash C_{\rho} n(\pi, \bar{\sigma}) \cdot$
(d) There is no Σ_{m}-sentence σ such that $P, \sigma \vdash \omega_{n}$.
(e) $\mathrm{F} \vdash \mathrm{C}_{1} \equiv \mathrm{C}_{\rho} n_{\pi}$ -
(f) Each ω_{m} is consistent with P.

Proof. (a) is obvious, (b) follows from the definition and from the fact that $P \vdash \sigma=T r_{m}$ ($\left.\bar{\sigma}\right)$. (d) Assume $P, \sigma \vdash \omega_{m}$. Then, by (b), $P, \sigma \vdash \operatorname{Con}(x, \bar{J})$ which contradicts the second Godel's theorem. (e) The interesting direction is Con $_{r} \rightarrow \omega_{1}$. It is a consequence of the fact that $\operatorname{PrSt} \Sigma_{1}(x) \& T_{r_{1}}(x) \rightarrow$ $\rightarrow \mathrm{Pr}_{\mathrm{r}}(\mathrm{x})$ which is a generalization of the Feferman's theorem 5.5 and is proved by induction on complexity of formulas (in P). (f) It is sufficient to prove $Z F \vdash \omega_{n}$ for each n. Let us work in ZF informally. Let N be the structure of natural numbers. N is known to be a model of the set $\{x ; \pi(x)\}$. By induction on complexity of formulas we can prove (all in ZF) that $\operatorname{St}_{\Sigma_{m}}(x) \rightarrow\left(\tau_{m}(x)=N F x\right)$. We see that every Σ_{m}-true Σ_{m}-sentence x holds in N, hence $N F(\pi, x)$, hence $\mathrm{Cọn}_{(x, m)}-1$

We see that every ω_{n} is a Π_{n}-sentence which is not Σ_{n} in P. The ω_{1} and ω_{2} have analogous properties also in v_{p} :
5.10. Theorem. (a) There is no Σ_{1}-sentence σ such that $\omega_{1} \leq p \sigma$. In particular, the degree [Con $\left.{ }_{\pi}\right]$ contains no \sum_{1}-sentence.
(b) The degree $\left[\omega_{2}\right]$ contains nc Π_{1}-sentence.

Proof. These are consequences of 5.3 and 5.9 (d). In (a) use the fact that $\omega_{1} \in \Pi_{1}$ and in (b) that $\Pi_{1} \subseteq \Sigma_{2} \cdot \dashv$

Now our picture is almost complete. Every degree contains Π_{2} and Σ_{2}-sentences. By 5.10 (b) not every degree contains Π_{1}-sentences, but by 3.11 (a),(b), Π_{1}-setences are cofinal in V_{T}. On the other hand Σ_{1}-sentences are not cofinal in V_{p} (by 5.10 (a)) and this can be generalized also for $V_{z F}$. By 5.8 it is not true that every Σ_{1}-sentence is T-below the sentence Con τ. A degree containing a Π_{1}-sentence may contain a Σ_{1}-sentence (see 5.7) or may not (see 5.10 (a)).
6. Problems. The only question concerning simple formulas in a degree reads: must a degree containing a Σ_{1}-se. tence contain also a Π_{1}-sentence?

We close this paper by collecting soty further open problems. The most important question we have left open reads: Is V_{T} a lattice for finitely axiomatizable T ? In particular, is $V_{G B}$ a lattice? As a consequence of the proof of the theorem 3.4.1 in [VHZ$]$ we have the following fact: If $\xi(x)$ is the natural binumeration of ZF and ZF $\vdash \psi \rightarrow \forall x\left(\operatorname{Con}(\xi, \bar{\psi}) r_{x} \rightarrow\right.$ $\rightarrow \operatorname{Con}_{\left.(\xi, \bar{g}) \Gamma_{\alpha}\right)}$ then $\varphi \mathbb{E}_{G B} \psi$. It follows that the sentence produced in 4.4 is an upper bound also in $V_{G B}$. Other open problems are: is every $c \in V_{T}, c \neq I_{T}$ a l.u.b. of two smaller degrees?, is every $a \neq O_{T}, 1_{T}$ one member of a lower exact pair?

References

[F] S. FEFERMAN: Arithmetization of metamathematics in a general setting, Fund. Math. 49(1960), 35-92.
[G] D. GUASPARI: Partially conservative extensions of arithmetic, to appear.
[H] P. HAJEK: On interpretability in set theories II, Comment. Math. Univ. Carolinae 13(1972), 445-455.
[HH] M. HAJKOVA, P. HAJEK: On interpretability in theories containing arithmetic, Fund. Math. 76(1972), 131-137.
[J] R.G. JEROSLOW: Consistency statements in formal theories, Fund. Math. 72(1971), 17-40.
[M] J. MYCIELSKI: A lattice of interpetability types of theories, J. Symb. Logic 42(1977), 297-305.
[VHI] P. VOPĚNKA, P. HAJEK: The theory of semisets, North Holland, Amsterdam, and Academia, Prague, 1972.
[VH2] P. VOPĚNKA, P. HAJEK: Existence of a generalized semantic model of G8del-Bernays set theory, Bull. Acad. Pol. Sci. 12(1973), 1079-1086.

Matematický ústav ČSAV
Žitná 25, Praha 1
Ceskoslovensko

