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DEGREES OF INTERPRETABILITY
Vitézslav SVEJDAR, Praha

Abstract: T is a fixed theory containing arithmetic,
For sentences ¢,y in the language of T,g 4y means that

T with the additional axiom ¢ is relatively interpretable in
T with the additional axiom ¥ . The structure VT of degrees

induced by éT.is considered and various algebraic properties

of Vp are exhibited. For example, if T is essentially refle-
xive, then V., is a distributive lattice with O and 1 and no
element excegt C and 1 has a complement.

Key words: Interpretability, axiomatic thecry, preor-
der on theories.

AMS: Primary 02G99, 02D99 - Secondary 06A20

1. Introduction. In this paper we consider formal
axiomatic theories. Intuitively, some of these theories are
stronger than others. This is certainly related to the que-
stion of consistency. As is well known, all the famous re-
sults concerning the consistency of the axiom of choice,
continuum hypothesis and their negations were reduced to
finding some interpretations. In this work we use interpre-
tations as a mean to explicate the notion that a theory 3
is stronger or more complex than a theory T: it is just in
the case that T is interpretable in S. In this way we have
defined a (partial) preorder on theories and we may sask

what properties this preorder has, In particular, is it den-
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se?, are there incomparable elements?, etc.

First of all, let us restrict ourselves to theories of
the form (T, ) arising by adding one new axiom to a fixed
theory T. Hence we define the ordering only for sentences
of T: @ £y iff (T, ) is interpretable in (T,y ). The res-
triction to theories of this form is convenient because we
may consider only one fixed language, and it is also natural
becauwse it corresponds to the situation that we work in some
theory and we are interested in the strength of additional
axioms, Sentences ¢ and 3 have the same degree (notation
@ =y ) if both ¢ £y and ¢ & ¢ . Vp is the set of all
degrees. V 1is a partially ordered set with greatest and lo-
west element and it is a lower semilattice where meet is the
disjunction of sentences,

Now there are two kinds of questions we have to solve.
Firstly, questions concerning algebraic properties of the
semilattice Vp: are there incomparable elements in Vpy is Vo
a lattice?, are there complements in VT ?, etc. Secondly,
the questions on syntactical complexity: what is the simplest
sentence in a given degree?

As .o the first kind of questions,it follows from the
r'esults' of R.G. Jeroslow [J] that for reasonable theories the
ordering on V.I'. is dense and that there are many incomparable
elements. We shall further show that for every degree d 4 0,1
there are degrees incomparable with d. If T is essentially
reflexive then V  is a distributive lattice. No element in
VT distinet from O and 1 has a complement.

If the theory T is essentially reflexive then, further-

more, in every degree in V, there is an arithmetical ‘n‘z and
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a :;2 sentence. There are degrees containing neither ny
sentences nor 21 sentences, but TT., sentences are in Vg
cofiral whereas X, sentences are not.

J. Mycielski’s work [M] is motivated similarly as the pre-
sent paper but the author makes no restrictiom on theories.
In his structure every degree contains with each theory T
many "copies" of T with different language and the l.u.b.
of two degrees is simply the union of sets of representati-
ves with disjoint languages. If the theory T is essentially
reflexive then Vo is a substructure of Mycielski’s lattice
according to £ , but I was unable to decide whether also
l.u.b. s coincide.

This paper uses the method of arithmetization described
in the fundamental Feferman’s paper [F]. It is a continuation
of pavers of R.G. Jeroslow, M. Héjkovéd and P. Hdjek. It wgs
written under supervision of P, Hdjek. I would like to thank
P. Héjek for the time he spent with me during many valuable
discussions and for the help with translation of the work in-

to English.

2. Preliminaries. We shall use the logical system des-
cribed in [VH 1] Chapt. I, Sect. 2. The reader may omit the
following part concerning logic but he is supposed to under-
stand the statement "the theory T contains arithmetic". For
example, in the set theory we may use the arithmetical ope-
ration symbols +, +, ’, 0 and form arithmetical formulas.

The language L of a theory can contain variables of va-
rious sorts which are distinguished by indices ( xi ’ xi vhe-

re i, j are rnumbers of sorts in L). Every theory has one
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universal sort i such that for every term in L,T ¢ AP (t=
=.xi). We suppose to have fixed one sort as the arithmetical
sort, Variables withoyt indices will usually be variables

of the arithmetical sort.

The language of Robinson and Peano arithmetic has only
the arithmetical sort ami operation symbols + ,+,”’, 0 .

For the axioms see [F1,

We restrict ourselves to theories T satisfyimg the fol-
lowing:

(a) T has a finite language, i.e. finitely many predi-
cates, functions and sorts (we have of course at our dispo-
sal infinitely many variables x?,ug,.u of every sort i)

(b) T has a recursively enumerable set of axioms

(c) T contains Robinson arithmetic, i.e. its language
has the arithmetical sort and the arithmetical operation sym-
bols and all the axioms of Robinson arithmetic are prcvable
in T

(d) T is consistent.

The notion of interpretation is an obvious modification of
the corresponding notion for one sorted systems.

The knowledge of Feferman’s paper LF] is assumed. The
predicates Tm(n) (number n is a term),Fm(n) (n is a for=-
mula), Prfp(n,d) (n is a formula, d is a sequence of formu-
las and it is a proof of n in T) are primitive reeursive. The
predicate PrT(ty) (¢ is provable in T) is recursively enu-
merable and the relation "(T,¢ ) is interpretable in (S, y)"
is recursively enumerable whenever T is finitely axiomatiz=-
able, see Lemm 5 in [HE]. The definitions of T, and =i,

formulias can be found e.s. in [G] and PR-formulas are defin-
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ed in (F). The sets Tl'n and E“are closed under conjunc-
tion, disjunction and bounded quantificatiom; in addition,

T,

m
tification respectively . The negation of a TT,, formula is a

and S”Lis closed under universal and existential quan-

= nformla and vice versa. Théset PR is included in =,
and the conjunc tion, disjunction, negation and bounded quan-
tification of PR-formulas is always P-equivalent to a PR-for-
mula, where P is the Peano arithmetic. All formulas without
unbounded quantifiers are PR.

The definition of numeration and binumeration are known
(see [F]). A relation is primitie recursive iff it is binu-
merable by a PR-formula (in any theory). For every theory T,
a relation is recursively enumerable iff it is numerable in
T (by a Eq-formula). Every finite set A = {a;,...,a } has
a natural PR-binumeratiom x = 'a'lv ceeY X = En which is deno-
ted by [A].

We shall use the Feferman’s formulas Tm (x), Fm (x),
St (x), P?fh“(x,y), P?\-,uc(X)’ Con, which are real " x is
a (formal) term of L ", " x is a formula", "x is = sentence",
" y is a proof of the formula x", "the formula x is provable"
and "the theory described by ec 1is consistent". These formu-
las are formalizations of the relz;ted meta-mathematical no-
tions. First four of them are PR and binumerate the sets of
all terms, formulas etc., the formula P.r¢ is 51 and the
formula Cs;m°c is TT.‘ whénev'er o is a 21-formula.

Further we shall extensively use the Feferman’s diago-
nal lemma: for every theory T and for every T-formula -qr(x)

there is a sentence ¢ such that T + & g\y(c'}').
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3. The semilattice of degrees of interpretability and
its basic properties. In this section we shall give
the basic definition and collect the most obvious facts. I

include also some nontrivial results of general character.

3.1. Definition. Let T be a theory, let ¢ ,y be sen-

tences in the language of T. ¢ is said to be T-below ¥ if
the theory (T,¢) is interpretable in (T,;l'r).. This relationm
is denoted by ¢ & ¥ .

3.2. lemma. (&) € is reflexive and transitive.

(b) If T4y—» @ then @ &£ .

3.3. Theorem. If toth ¢ é.‘.\n and P& Yy then
PEXTVIV Yy

Proof., For simplicity, let us restrict ourselves to the

case that the language of T consists only of one sort and of
one binary predicate 6 . We have two interpretations x and a
of (T,¢) in (T,y,) and (T,Vx) respectively and we have to de-
termine a new interpretation L of (T,¢) in (T,q{' v ¥y ). Let
d;(x) be the definition of the sort x¥ in (Ty9, ), d;(x) be
the definition of the sort x%in (T,y, ) (the ranges of inter-
pretations o,x ). Let E,(x,y) and E,(x,y) be definitiors of €¥
and 2 in (T,¥,) and (T, ¥, ) respectively. Let us define a
new sort x) and new ¢ (in (T,v, v ¥, )) as follows:

Axt (kw2 ) m (& GO v (T & ¥, & S (x))

Lelatm (g R E (oL gt vy, &y, KE G 440

Now it is easy to check that for any formula g ,

TW gt m g

T-"V'.‘ L] v!. Lo ll‘&a
and that L is indeed an interpretation of (T,cf) in

(T,%V Vz )c-“
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The last theorem shows how & is related to the Lin-
denbaum algebra of sentences (with contradiction as the grea-
test element).

3.4. Definition. (a) We say that a sentence ¢ has the
same degree as y (notation: @ my ¢ ) iff both @ &,y and
YELP o

(b) The degree (@) of a sentence @ is the set
fvi @ E-r"f} . The set of all degrees is denoted by V.

() lgl & [yl iff o 4oy .

3.5. Lemma. (&) (Vp, &) is a lowér semilattice and
lglalyl=lovyl.

(b) 4.‘.- {ep; T 1 @} is its greatest element and
Or ={g; (T,9) is interpretable in T} is its least ele-
ment.

This is a consequence of Theorem 3.3 abd the fact that
if (T,y) is consistent and ¢ &, ¥ then (T,q) is also
consistent. The following lemma follows from Theorem 3.3 by
elementary logic,

3.6. Lemma. (a) Let @ %4 4 . Then there is a senten-
ce ¢’ such that ¢ we @’ and T, ¥ +~ @' .

(b) 1If @ by & g then @ & ¥ .

(¢) If @ éx yy then Ly — @l m 0 .

Proof. (a) It suffices to choose @‘'xe v v and use
3.3 and 3.2 (b).

(b) Iet @ &y ¢ & oy furthermore, we have @ &y &
% ¢ . By 3.3, we have @ ar (¢ &T@)v (¥ & @) and the
last formula is equivalent to W .

(e) 'ir—s? P by 3.2 and ¢ &y Y by assump-
tion. Obviously y—» ¢ &y 1y , thus by 3.2 (a) and 3.3 we
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have y— g éx v Vv ¥ and the last sentence is of
degree zero., —

Observe that the converse of 3.6 (c) does not hold. Choo-
se a refutable sentence fore¢ and let ¢ Dbe independent and
such that (T,7ly) is interpretable in T. Then [yl < lgl= 1r
by 3.5 (b), moreover T ¥ —> @ m Ty and the sentence ¥
is of degree zero by 3.5 (b).

The following two theorems were stated in the Feferman’s
paper LF]. Recall that we assume all theories to contain Ro-
binson arithmetic.

3.7. Theorem. Let © be arbitrary numeration « a theo-
ry T in some theory K. Then there is a finite subtheory F of
Peano arithmetic such that T is interpretable in KuF { 09n13 .

3.8, Theorem. Let K be a theory and let T be interpret-
able in S, Then to every numeration € of S in K there is a
numeration % of T in K such that

Pr c-onc‘ - c‘.’“’g ¢
Moreover, ¢ is a 21-formu1a whenever € is. If T is finite-
ly axiomatized we may choose @ xLTJ] .

3.9. Definition -~ lemma. Let ¥(x) be an arithmetical
formula. Then (2 ,% ) is an abbreviation for the formula
¥(X)vX = z . This formula has the following properties:

(a) P+ St (2) & Fm (4)— (Br, (o> ) m By, ) (g ¥

(formalized deduction theorem)
(b) If ¥ (bi)numerates T in K then (¥ ,% ) (bi)nume-
rates (T,g) in K.

3.10. Definition. A theory T is X, -sound iff each
21 -gsentence provable in T is true (in the structure N of

natural numbers).
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3.11. Theorem. Let T2P and let 2~ be a 21 -nu-
meration of T in T, Then}
(8) If ¢ is consis:tent (i.e. if (T, ) is consistent)
then ¢ <r iy 5) -
(b) If T is =, -sound and both ¢ and g is consist-
& Con

ent then Con is a consistent upper bound of

%)
the set 4 ¢, ¥3 .

() [Con, 1% Oy, ['\Cg'm,ngO.r.
(@) o wm (@ &7 C’?"’('v,{i)) .
(e) If T is finitely axiomatized and @ &, % then

T+ c.o‘ﬂrc,t’?‘-' b d cfm‘t't:,g) .

Proof. (a) By 3.9 and 3.7 (T,¢ ) is interpretable in a

%)

certain theory Tu Fu'ic.onh‘?’ which is equivalent to
k)

(T,Coney,gy ) because FEPET. So we have ¢ & Con 75y and
it remains to prove anf@’.?) 44 ¢ . Assume C9n('t:,§) £ P
Then anw,‘.’.) is consistent because ¢ is, and by 3.8 (applied
to (¢ ,F )) there is a =, -numeration € of (T,Coney, 7))
such that T proves Cyna‘g)—-» Conge . This is just the situ-
ation excluded by the second G8del’s theorem (see [F1): no
consistent theory S2 P can prove the formula Cpns. whenever
€ 1is a =,-numeration of S in any FES.

(b) By (a), Cpnw'g, & CQQ‘!,V) is an upper bound of ¢ ,

¥ . We show that (T,Cgm(.r'?, % Con y) is consistent. As-

A7
sume the contrary. Then THFr  (Jg)veEr, (Tw);.since the
last formula is =,, we have s Br, (Tg)vBr (Ty) by

=, -soundness. Then b= BT, (Tep) or e Pr, (Ty), for example,
let mPro(Tg). Let Ty =4xiE ¥ (). Then T, Ty and T,=T
(since each true 2'.'1 -sentence is provable in Q). Thus T+ lg

which contradicts the assumption that (T,¢ ) is censistent.
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(c) We know TrCon, = Cpnwl.—,-jq,-;) see [Fl, By (a) and

3.2 (b) we have

Cony, <p CoNy, T,y =y CoBy
80 indeed OT' <r C Con, J . Moreover from 'TCpnz, o an,z
and 71Con, <, 71Con, we get [Con,l = Op using 3.3 and
3.5 (b).

(d) is a direct application of (c) to the theory (T,¢ )
and

(e) is immediate from 3.8. —

Theorem 3.11 (b) shows that the greatest degree 4-,- is
not a l.u.b. of any two smaller degrees; hence there are no
"upper exact pairs". The existence of lower exact pairs is an
easy consequence of the next theorem 3.12. Another consequen-
ce of Theorem 3,12 is the existence of (infinitely many) in-
comparable elements in V4 .Theorems 3.12 and 3.13 were pro-
ved by R.G. Jeroslow in [J], the latter had to be slightly re-
worked for our purvose., Theorem 3.]}4 is my contribution to
the subject.

Theorem 3.12 requires some preliminaries. Let B be the
set of all propositional formulas built up from infinitely
many atomic formulas AyAp,eee by Boolean operations v, &
and 77 .The set B can be ordered by "¢ &p ¥ iff ¢ is a tau-
tological consequence of ¥ ". By a natural factorization si-
milar as in 3.4 B becomes an infinite countable atomless Boo-
lean algebra. By a positive element of B we shall mean a (e~
quivalence class:determined by) propositional formula not con-
taining the negation sign

3.12. Theorem. (a) If T is a consistent theory then the

countable atomle ss Boolean algebra can be embedded into VT .
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More precisely, there is a one-one function f from B to VT
pregerving greatest lower bounds. In particular, for x,ye B
x £y y iff £(x) £.£(y).

(b) If, moreover, T2P ami if = is a =, -numeration
of T in T then f maps all positive members T-below the for-
male: an'; .

For the proof see [J1,

3.13. Theorem. Let a theory T be essentially reflexive
or finitely axiomatized. Then for every a <Tb there is a c e
(3 VT such that a<,c<;b.

Proof., By 3.6 (a) we can choose 9, 58, @€ b such
that T+ @, — ¥4 . There is a finitely axiomatized theory
FeT such that (F, @, ) is not interpretable in (Ty @, )e In-
deed, if T is finitely axiomatized, then we may choose FxT
and if T is essentially reflexive then F exists by Theorem
6.9 in [F] and by the reflexivity of (T, ¢, ). Recall that the
set of all <2%,4 > such that (F,2%) is interpretable in
(T,A ) is recursively enumerable. By the Feferman’s diagonal
lemma we can construct a self-referring sentence ¥ saying
"if (F, @, v (¢, & ¢ )) is interpretable in (T, @) then
(F, 9, ) is interpretable in (T, @ v (¢, & y)) . Then g =
=g Vg, % ¢ ) is ow required formula. Obviously LA
€r % € @, because ¢, -7 + @, . For the proof of 3 &, ¢
and @, ‘1. %  See the analogous proof in [J] Theorem 3.2,
Alternatively, if the reader has [J] not at his disposal, he
may extract some information from the proof of our next theo-
rem, —f

3.14. Theorem. Let T be essentially reflexive or fini-

tely axiomatized. Let a,b eV, be such that a#%1_, b#%O, .Then

-r’
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there is a ce V. such that ¢ £.a and b 4 c.

Proof. Let us choose ¢, € a, 7; 6 b. By the same rea-
son as in the proof of 3.13 there is a finitely axiomatized
theory FE T such that (F, 7, ) is not intermretable in T. Si-
milarly as in 3.13, there are primitive recursive relatioms
R1(S"' n) and R,(g ,n) such that

R (¢ ,n)v R, (¢ ,n) implies ¢ is a formula

in R(g ,n) iff (F,¢) is interpretable in (T, sy )

dn Ry(@,n) iff (F,y; ) is interpretable in (T,¢)

Let the formulas «(x,y) and 3(x,y) binumerate R,’ and Rl in
Q. Let us define a diagonal sentence ¢ by

(1) QF ¢ =Vy ( (P, ) —> Iz 2 4 (T, 2z

We shall prove that @ determines the required desree c. We
have to prove ¢ %1 g7 . We shall even prove that (F,e) is
not interpretable in (T,y;’ ). Assume that it is interpretab-
le by some interpretation ¥ . Then

Ty %+ g*
hence
(2) T,y Y (2 (G ™) = Jp*ax g ¥ 3% (5%, 2¥)
and, furthermore, R,,(so ,p) for some p. Let m be the least
auch p. Since o¢ binumerates R , we have

Qre (F,m) & Vu <m T (F, «)

Since interpretations preserve provability, we have
(3) T,¢ - c* (g%, Am*)
From (2) and (3) we obtain

T,% + (3z s p(Fz)*

We have proved that the sentence Jz < i 3(F,z) is consis-
tent with the theory (F,¢ ), hence it is consistent with Q.

But such a simple sentence is decided in Q (according to
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whether 3ném Rz(‘? sn) or not). So it is decided positive-
ly, hence
(4) 3n £m Ry (@, m) and
(5) Qr3z M p(F,2).
By (4), (F,q, ) is interpretable in (T,¢), but from (5) and
(1) we can prove ¢ in Q. This is a contradiction because F
was such that (F, 33 ) is not interpretable in T. Se we have
proved that (F,g ) is not interpretable in (T, g ), hence
R,,(? ,n) does not hold for any n, hence for each n
(6) Q+ Tec (3, ®).
It remains to prove that 7 ¥&-? . We shall again show that
even (F, y; ) is not interpretable in (T,¢). If it were inter-
pretable, i.e. if R (g ,m) for some m, then for this m,
(7 QF pB(s m).
From (6) and (7) we can prove % in Q, which is impossible by
the same reasons as above. —

If we choose a = b in Theorem 3.14 we see that to every
degree different from OT and 11- there is an incomparable de-

gree.

4. The lattice of degrees of interpretability given by an
essentially reflexive theory. All results of this sec-

tion concern only essentially reflexive theories. Analogous
moblems e.g. for finitely axiomatizable theories remain open.
As is known, both Peano arithmetic and Zermelo-Fraenkel set
theory is essentially reflexive.

4,1, Definition. We say that a theory T is reflexive if

Tor every n T+ Conp 4 "ﬂL]'T is essentially reflexive if every

extension of T with the same 1= nguage is refle xive.
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The following lemma utilizes the fact that if ~2(x) is
a binumeration of a set T in K then for every n

Kre(x)&xém s [Thm J(x),
see LF], Iem;xxa 4.14,

4,2, Lemma. Let T2P be a recursively axiomatized theo-
ry and let 2 be arbitrary binumeration of T in T. Then

(a) T is reflexive iff

TrConp .~ for each n.

(b) T is essentially reflexive iff for every T-sentence
% and for each n,

Ty9 - Conegyrm

In thdremaining part of this paper we assume that T2P,
T is essentially reflexive and recursively axiomatized and ¢
is a binumeration of T in T.

4.3. lemma. For arbitrary sentences ¢,y ¢ &,y iff
T,y anw@)rﬁ for each n.

This is a form of Orey’s arithmetical compactness theo-
rem, see [F) and [HH].

4.4, Theorem., Every pair of degrees in V.r has a 1l.,u,b.,
i.e. Vr is a lattice.

Proof., Let a, b be a given pair of degrees and choose
% ¢ azand @ € b. By the diagonal lemma there is a sentence
¥ such that'
(1) TrymVYy (Cong giry (D504 & Congz, 0y )
We shall prove that ¥ determines the required degree, i.e.
that Lyl = sup {a,b}.By the essential reflexivity of T (see
4.2 (b)) we have

(2) T,y cyﬂtg,?,,.n for each n .

The formula Con is the antecedent in the formula y ;

(X I¥1
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hence from (1) and (2) we have for each n
T,y r C?’Pcz.;wn & c!”"ce,’q}_)?ﬁ
Now ¢, €y and @, & ¥ Dby 4.3, hence ¥ is an upper
bourd. lLet 74 Dbe arbitrary upper boumd. By 3.6 (b) it suffi-
ces to prove ¥ &+ 7 & Ty . Let n be arbitrary. 4s 7 is an
upper bound we have (by 4.3)
(3) T3 F Conerzyra & Dragpra
Moreover, by (1),
(4) T,-l\y - .;fy.(c.d’nra'a,)hv’ &j(w(g'a‘)r“ & m(f,ﬁ)r* )’ .
From (3) and (4) we can prove
T,x &y 3y (B <y & Coney gipy)
hence
Tig &y F Cony rm
and we get v &y 3 &Y by 4.3. This comple tes the proof.
From 4.3 we canjprove that [gl = O iff for everyn T

proves Con This will be used in the proof of the fol-

(2, 3)M R
lowing lemma,

4.5. lemma. For every theory T, there is a sentence g
such that [¢J =« [1gl = Op

Proof. Let neg (x,z) be a formula that functionally bi-
numerates negation in Q, i.e. for arbitrary formuk ¢,
(1) Qrmeg (F,2)= 2z =Tg .
Let us define a diagonal sentence'gv by

Ty =Yy (C(_rnw’v)rv—) Vx (m.‘gg.(q,z)—y C‘m'('t,z)i"f ».
By (1) we have

By the reflexivity of the theory (T, ¢) we have

(3) T,9 = Cong mirm for each n .
From (2) we get
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(4) T, anw,eE’-"a for each n,
By the reflexivity of (T,7¢) we have
(5) T,7g F Congazyng -
By (4) and (5)

T ¢ (‘?PJ(‘UT-

AR
and indeed [1g@] = Op « Furthermore, by (2) we have

(6) T, b 3y (Congyzpny &1 CnieToong)

From (5) and (6) (using the fact that Z,< 2 & &ynﬂz—b 09""6"1«,1
2

we get

(D 1,79+ Wreang

And again by (3) and (7)

TrCon for each n,

,3)Mm
ice. [@) m Op o

If we apply Lemma 4.5 to the theory (T,y ) we get the
following

Corollary. In every degree Cv'] there are mutually con-
tradictory sentences of the form y& 9 and ¥ 3.19 N

4.6, Lemma. For arbitrary sentences g, ¥

Tr C’:”"r'r.m) = c?"‘(t,zj) v C‘.’”w,v) :

Proof., We know that for arbitrary sentences g, 4, ¥s s
BB (TT) = 1Can e, gy and BeTa, (8 7,)= Br, G4BT
Lemma 4.6 is an easy consequence of these facts, —

Having Theorem 4.4 in mind we can use in Vy the l'attice
overations v (least upper bound, join) and A (meet). Recall .
that if a,be V. and g € a, ¥ € b thengv y € anb (see 3.5
(a)) andlg & 1 z. avé by 3.2 (b).

4.7. Theorem. The lattice V.. is distributive.

Proof. It suffices to prove that av(&aclslavé)alave)

because the dual distributivity law follows from this one.
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Moreover, the inequality & holds automatically in every lat-
tice. Let us prove 2 . ChooSe 96 a % ‘1,, @ e c and de-
.fine diagonal formulas

= Vy vty 2 0on gy & Une, gy )

Yy = V’U‘(C‘-’"'(e,ﬁwg.“"c?’*ma,,)p,,, % Conie,g, 0y )
% = V’ (c”(f,z)r“—k (G?W(g’a“)r? & ceﬂa(,z,ws)hv_ .
By 3.5 (a) and 4.4 we have 9V, 6 bac, ¥y avl,yeave,
reavibac) andy,vy,elav&)a(ave). Wehave
to prove that
BuvVY, fr 2 -
By 3.6 (b) it suffices to prove
BV erx &y &y,
By 4.3 it suffices to prove that, for each n,
T2y oy, Ty, & C?"’(-,,m)bﬁ .
We shall prove
T2, 1 Ty v Cong g nm v e, gt m
and use Lemma 4.6. Let n be given. By the reflexivity of (T,yg
we have
Tya = Conppznm
By this and by the definition of  we have (using Lemma 4.6)
T1 - Cnagns & (Pagna v Gneg)
hence
LY A (c.’"’(‘lr,ﬁ)f% & c"”“'i?;_)”’-‘)v (Cgm«(.,’?’,mv C,onmi,)m)
From the definition of ¥, ¥; Wwe get
19 Qg re & regte - Conte, )0 7
T, 4, ajﬂ'@,a‘,wa‘ & c?n(‘?,?‘)rﬁ - c'ow(%ﬁ)riv )
Putting this together we indeed have

T, T, T, - Onegra ¥ egta -
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5. Simplest sentences in a degree. The sentence y pro-
duced in the theorem 4.4 was an arithmetical sentence. If we

take in the theorem 4.4 the same sentence far 9, and G Wwe
see that in every degree in Vy there is an arithmetical and
syntactically simple sentence. This contrasts with the fact
that in the Lindenbaum algebra e.g. of ZF there are degrees of
arbitrarily high arithmetical complexities and that there are
also non-arithmetical degrees, i.e. there are set sentences
non~equivalent to any arithmetical sentence. In this section
we shall further try to determine for some concrete formulas
their position in the lattice Vg .

5.1. Theorem, If T2P is essentially reflexive and recur-
sively axiomatized then

(a) In every degree in V; there are T, sentences.

(b) 1In every degree in V,r there are Zz sentences.,

Proof., (a) Let a degree [g] be given and let © te a
21 ~binumeration of T in T. Let us define a diagonal senten-
ce ¥ by

Ty = Yy (Come oy, = Pagibget, )
The formula y is 'rr2 and the proof that y =P is analo~-
gous to the proof of the theorem 4.4.

(b) Let ¢,y Dbe as above and let us take a sentence

X 3y (Comipgity, & Ty ) -
OMbviously 6 is a 22 sentence and T + 6 —p Yo So we have
to prove 6 &4 ¥, By 3.11 (d) ¥y !T'qr& pr(,z’?) « Further-
more, we have

T jcpﬂ«(ﬁ*) — 34!,1('.0‘"/(1,?)’* ’

T,y ¢ 1 cé”"(‘!,?)"oy. —- 6
and hence € ar ¥, —
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5.2. Theorem. Let T and S be theories containing Peano
arithmetic, let the induction for all Tfformulas be provable
in T and let T enable the coding of finite n-tuples of T-ob-
jects, Then to every interpretation x of S in T there is a
T-Sormule. ;u(x,x*) such that

(a) T+ ¥x3x¥plx,x*)

(B) T @ (x,%%) & @ (Xy,4%)—> Xy = %,

() Tr @(x,x*) & y*stu® — 3y o (y,4*)

(d) for every arithmetical 2‘,, -formuk @(X,...)

T @ X" & = (§x,...)— g% (x*...))

For the proof see e.g. [H],

If we apply Theorem 5.2 to a 21 -sentence @ we get
T — %* . The dual statement for TT',, -sentence @ claims
TrHa*_— & . This fact has important consequences.

5.3. Corollary. Let T have the properties required in
Theorem 5.2. If y is a T-sentence and ¢ is a T, -sentence
then @ &y implies T,y + @ .

5.4. Corollary., Let T have the properties from Thecrem
5.2 and let ¢;,¢) be TI;-sentences. Then

(g, &« 9,] = [V (g3 .

The following definition 5.5 and lemma 5.6 show the con-
nection that interpretability has to partially conservative
sentences (studied by D. Guaspari).

5.5. Definition [G]. A sentence ¢ is =aid tc be Tl
conservative over T if for every TT,l -sentence o ,T,¢@ » o
implies T ¥ or .,

5.6. Lemma [Gl. Let T be reflexive and satisfy the as-
sumptions of 5.2. Then ¢ is Tr,,—cvnr-ervative irf Lol = Cpe

Proof. T is easentialy reflexive hence 'r,qr-cm,(f‘v,,.ﬁ
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for each n. The sentence Con ... is TEI hence by the TT,-con-
servativity of ¢ we have T an{y@”n_b and by lemma 4.3 in-
deed [l = 0, .

Assume conversely [¢] = Or « Let T,¢+a and o € T\'1 . Ve
have to prove T ar, Let x be an interpretation of (T,p ) in
T, Then T, o  implies T + ar® , By Theorem 5.2 or Corol-
lary 5.3 we have T + o, —

5.7. Rosser’s sentences. In the rest of the paper assume

that T is P or ZF and ¢ is a PR-binumeration of T in T. Let
us define sentences P and ar (the former using the diagonal
lemma):

e=Vy (Bf (F,4)— w2y Bf, (ng,z))

ax Yz (Bef, (15,2)— Ay <z Bef, (§,4.)) .

To be more exact @ is defined using the formula neg (x,z) si-
milarly as in 4.5. The sentences  and v have the following
properties

(a) (ol = (7 OT’ C'Tgo_'! =[]l ().r

() (O] =CplAcla]

(e) [Com, ) =Ll v o]

(@) Lpl< Llomy 1, Larl < [Con ]

Proof, It is well known that

(i) The sentence @ is independent on T. The proof can
be formalized in (T,C‘ont) and since T+ "p —» o we have

(i1) Tr Cony — Conp 5y, T Gmy — Conyg, oy -

(iii) Tp—Oc_m%-So & @ . By Corollary 5.4 we have

LComy, 1= [@elv [x].

(iv) Tt @ —» Con,, , TH-o— Cony

otherwise we would reach a contradiction with the second G¥-~

del’s theorem (using (ii)).
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(v) T
otherwise we would have T - @ = Con,  (by (iii)) which con-
tradicts (iv).

(vi) L@l # OT’ Cord 4 Op
since @ and o are unprovable -'!T,' -sentences, see 5.3.

(vii) @ £p o, Tr s @
since by 3.11 (d), we have .ar&"len%m 4. and, by (ii),
we have o & 1 Comy, £ ov & 1Con(, »y -

In P,or &1 Com implies “lp by (iii). The proof of
T, @ is similar. Now it is clear that [@l=CTTor] and
[Nel=CLal since T+ 1@ — o .

(viii) The property (4) follows from (a),(b),(c). This
completes the proof. —

let us point out that 5.7 (a) shows that a degree diffe-
rent from O, lT can contain both Tl",l and 21 sentence.

5.8, The negation of the Rosser’s sentence informally
says "there is a proof of my negatiom such that no my proof is
less or equal”, Let us slightly change this sentence and de-
fine

8 3x (Byf, (T6,x) & Yy & x TRF, (TComy, , 4. ))
This sentence has the following properties

(a) 6 &, 09'"’%,—0;1«;)

(b) &« Con,

Proof, (i) If Ty 76 then T+ TCom, . By the for-
malization of this fact we have

(i1) T+ C?“’Cc,a;;) - O-m’(c.'i) !
and by 3.11 (a) we have 6 & m(r'ﬁ'y) .

(iii) T ¥ Com, — 16
since by Theorem 5.5 in [F]l we have T,G’b—-?pz (%) and by
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the definition of 6’ we have T, & |- By, (7e)
plies T,6 71 Con,
(iV) -4 ‘T cplv‘, .

Assume € & Con, . Llet x be an interpretation of (T,6 )

’ which im-

in (T,C9ng). The theory (T,Con ) is consistent and it remains
consistent after adding the axiom of formal inconsistency.
Thus it will be sufficient to find a contradiction in the the-
ory (T,ang,ltr'(m)). Let us work in the last theory in-
formally. let y be least such that P;f,,('ﬁ?ﬁ;,y). The formu-
la Prf ... is PR, hence it is 2, and by Theorem 5.2 we have
B X (m", n*), where y* is such that @ (y,y*). We know
that 6€* , hence

Bx*(B M (TEY x%) & Vg * 4 x* TR0 (TCon%, %)) .

Every such x* must be <* y* and by 5.2 (c) there is an x such
that @ (x,x¥). By 5.2 (4) Pre* (8% ,x® implies P_rf,a,ﬁ?,x),
since Prf ... is a TI, -formula in P. By (iii) there is a y & x
such that Prf, (71 Con, ,¥') and for this y’ we have y'<y.

But y was least such that Pre, (1 Conz,y). This is a contradie-

tion, —
5.9. A truth definition for a theory T is a T-formula

¥ (x) such that for every T-sentence ¢ T+ ¢ = y (F)., As
is known, no consistent theory has such a truth definition.
On the other hand, the Peano arithmetic has partial truth de-
finitions. More precisely, for every n there is a = ,-formu-
la Tr,(x) such that for every =, -sentence @ Pro=Tn (7).
Let us define the sentences w,, using the formulas Tr, (x) and
the natural binumeration & of axioms of the Peano arithmetic:
oy x Vx (ﬁft,_”(m«) & Ty, (x)— %m:u))
("every =, -true =, -sentence is consistent with & "),

These senterces have the following properties:
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(a) @, €T

(b) If 6 is a H,-sentence then

P, w,,6H cf"‘(m?) .

(¢) If & is a X, -sentence then

P,y +~ €& implies P, @, + Cnipw) -

(d) There is no =, -sentence & such that P&+ <, .

(e) Pr oy, m Cong -

(f) Each @, is consistent with P.

Proof. (a) is obvious, '(b) follows from the definition
and from the fact that P+ 6mTh, (F). (d) Assume P, 6 q) .
Then, by (b), P,6 i Con(, ¥, which contradicts the second
G8del s theorem. (e) The interesting direction is C'oana .
It is a consequence of the fact that Pl-ﬁtz’ (x) & Ti, (x) —
— By, (x) which is a generalization of the Feferman’s theo-
rem 5.5 and is proved by induction on complexity of formulas
(in P), (f) It is sufficient to prove ZF + @,, for each n.
let us work in ZF informally. Let N be ‘the structure of na-
tural numbers. N is known to be a model of the set {x; or (x)f.
By induction on comple xity of formulas we can prove (all in
ZF) that S"bzw(x)-» (Te, (x)m N = x) ., We see that e-
very = _-true =, -sentence x holds in N, hence N p (7, x),
hence Con(. .4+ —

We see that every «, is a TI, -sentence which is not

m

VP:

b in P, The a)1 and “’2 have analogous properties also in

5.10. Theorem. (a) There is no 2:1 -sentence 6 such
that o) £, 6 . In particular, the degree [an"J contains
no Zq ~-gsentence.

(b) The degree [uz] contains nc TT',‘ -sentence.
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Proof.” These are consequences of 5.3 and 5.9 (d). In
(a) use the fact that @, € 7, and in (b) that T & =,. ~

Now our picture is almost complete. Every degree con-
tains T, and =, -sentences. By 5.10 (b) not every degree
contains TI; -sentences, but by 3.11 (a),(b), TI, -satences
are cofinal in VT‘ On the other hand 5’,, -sentences are not
cofinal in Vg (by 5.10 (a)) and this can be generalized also
for V.. By 5.8 it is not true that every 2,1 -gsentence is
T-below the sentence anz . A degree containing a Tr,, -sen-
tence may contain a 2'4,1 -sentence (see 5.7) or may not (see

5.10 (a)).

6. Problems. The only question concerning simple formu-
las in a degree reads: must a degree containing a Z‘q-se‘
tence contain also a 1T1 ~sentence?

We close this paper by collecting sow= further open pro-
blems. The most important question we have left open reads:
Is V3 a lattice for finitely axiomatizable T ? In particular,
is VGB a lattice? As a consequence of the proof of the theo-
rem 3.4.1 in (VHZ] we have the following fact: If f(x) is
the natural binumeration of ZF and ZF + ¥ — Vix (Cgm(f"?w“—}
b d Q'm’(f@”‘“) then ¢ £;, ¥ . It follows that the sentence
produced in 4.4 is an upper bound also in Vgp « Other open
problems are: is every c€ Vp, c& 1 a l.u.b. of two smaller

degrees?, is every a#e O‘F’lT one member of a lower exact pair?
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