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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
20,2 (1979)

PERIODIC SOLUTIONS TO THE INHOMOGENEOUS
SINE-GORDON EQUATION
Nina KLIMPEROVA

Abstract: For o and h satisfying certain conditions
and for every € sufficiently close to O it is shown that
there exists a function uecz
which fulfils
Uy = v =€(h(t,x) +c¢sin u), u(t,0) = u(t,aor) =0
and u(t + 29 ,x) = u(t,x).

Key words: Weakly nonlinear wave equation, periodiec
solutions,
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In [1], O. Vejvoda derived sufficient conditions for

the existence of 237 -periodic solutions to the problem
(1) uy,(t,x) - u(t,x) = ef(t,x,u,¢ ), teR, xe<0,ar>
(2) wu(t,0) =u(t,osr) =0, teR

and studied the problem with £(t,x,u,e) = h(t,x) + <cu +
+ ﬁuB in detail.
In this paper the same problem with f(t,x,u, ¢) =
= h(t,x) + o« sin u is treated. In the sequel the functions
u and £ are supposed to be extended in x on R by
u(t,x) = -u(t,-x) = u(t,x + 2a), f(t,x,u,g) =

= -f(t,~x,~u,e) = £(t,x + 2¥ ,u, ).
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The extemnied functioms will be denoted again by u and f.
Let us note that if u(t,x) = u(t, o - x) then u(t,x +&) =
= -u(t,x), Put

*
3, (R) ={s eC®(R); s(x +%) = -s(x)3,

*
c2*(r0,271 x B) ={ue c?([0,2n] x R); ult,x) =
= -u(t,-x) = u(t, ¥ -x)j,
*
5 o (R = {ue C%(F); ult,x) = u(t + 201,x) =
= -u(t,=x) = u(t,x + 2%) = u(t,’r -x)}
and equip these spaces with the usual norms in which they

are Banach spaces.
let us first recall the result which is the starting point

of our investigation.
Theorem 1 (cf. Theorem 4.1.3 in L[1]).
(i) Let a function f be continuous together with its deri-

vatives
gtke | .
— % » J+ k%3, j£2
axd vt ’ ’
on Rx<0,m) x Rx<{-¢€,, 8,0, £,>0.
(ii) Let £(t,0,0,8) = £(t,7 ,0,¢) =

3% a%¢ -
m (t,0,0, ?) = m (tyar ,0,e) =0,

j + k =2,
(iii) Let f(t,x,u, ¢ ) be 2« -periodic in t.

(iv) Let the equation

23
(3) 6(s)(x) = f £(ar,x -, s(x) - s(2z - x),0)dz =0
(o]
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*
have a solution s* ¢ C%,r (R),

(v) 1let there exist [Gs'(s* N~1e L(CS:. (R), Cg: (R))

*
where C3_ (VSR (T'), while

2w
I (u, s )(x) =J flov,x -, uwlz,x ~¢), gldg
(4

ue¢ Cg*(LO,ZJrJ xR, e -g,€,7

Then for sufficiently small € the problem (1),(2) has a so-
lution u*e C2. (F)
2ar,e °

Our aim is to prove the following theorem:

Theorem 2.

. 9n g2
(a) Let h(t,x) together with its derivatives ——, _‘2‘. be
- ox ox

continuous on Rx < O, > .
% 3%n
(b) Iet h(t,0) = h(t,a) = L8 (1,00 = 2B(t, @) = 0 ana
2x ox
h(t, 31 = x) = h(t,x).
(¢) Let h be 2w -periodic in t.

2%
(a) If H(x) = J‘o h(x ,x -¢)dev & O, then let

27 —
wz2md L L0V g - B axll

where ﬂﬁuo = maa tH(x) .
x€

Then for sufficiently small € the problem (1),(2) with

*
f(t,x,u, g) = h(t,x) + « sin u has a solution uecgw e(Rz).
L

Proof: The assumptions (i),(ii),(iii) of Theorem 1 are
immediate consequences of the hypotheses (a),(b),(c) of the

present theorem.
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2
(iv) Denoting I = fo cos s(? )dg , we rearrange the equ~-

ation (3) into the form
(4) G(8)(x) =& I 8in s(x) + H(x) = 0.

For a while let us consider the functional I as a known
constant. If H(x) = O, put 8*(x) = O, In the opposite case
let us suppose that |H(x))< |« I) and put 8(I,x) = -arcsin
(e 1) YH(x). Clearly 8 is a solution to (4) if and only if

2
(5) 1= [ oos 81, gVag = [T Q-(aD) A2 xmplD).

Evidently p (2% )<2% and (4) implies p(VZu lHHI) 2
z V—Z—'oc'l IHll, . So (5) has at least one solution I = I* sa-
tisfying |I*| 2= <=1 Hll . Setting 8* (x) = 3(I* ,x) ¢
3 Cg_: (R) we obtain a solution to (45 and the assumption (iv)
is verified.
To prove (v) it suffices to show tl'\nat for every
Q€ 05:, (R), the equation
Gy(s* )(6)(x) = @ I* §(x) cos 8™ (x) - ocJ 8in s* (x) =
= p(x)e G (R),
where J = J':J'sin s* (g ). s‘(g )dg , has a unique solution

*
S(x)ccgm, (R) with leb,4c lp '2' C being a constant. We

obtain easily that

6(x) = (p (x) + o0 J* sin 8% (x)) (I*cos s*(x)) te
r ‘ ’

€ Cop (R)

with

2 -
J* = (I* (1 - _fvwa:‘m2 a*(g )(I* cos s*(g n°- dg)) 1

.f"’;.,(g).tgs*(g)dg =
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27
= (« 12 {720 1) P2 (§)) - (T 202 (g 1) "M 206) 72,

2 *
-fo g:(g)tgs (g) df
(by (d) this expression has sense).
Evidently ll6l,%C ﬂso I,. This completes the proof.
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