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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

20.2 (1979) 

PERIODIC SOLUTIONS TO THE INHOMOGENEOUS 
SINE-GORDON EQUATION 

Nina KLIMPEROVA 

Abstract: For a* and h sa t i s fy ing certain cond i t ions 
and for every e su f f i c i en t ly c lose to 0 i t i s shown that 
there e x i s t s a function U€Q2 
which f u l f i l s 
u t t " uxx = g Ch( t , x ) + cc s in u ) , u ( t , 0 ) = u(tfsrr ) = 0 
and u ( t + 2of ,x) « u ( t , x ) . 

Key words: Weakly nonlinear wave equation, periodic 
solutions, 

AMS: 35B10, 35L05 

In [13 , 0. Vejvoda derived su f f i c ient cond i t ions for 

the existence of 2 37-period ic solutions to the problem 

(1) u t t ( t , x ) - u x x ( t , x ) = e . f ( t , x , u , 6 ) f t c R , X € < 0 , J T > 

(2) u ( t , 0 ) = u(t,3T) = 0 , t c R 

and studied the problem with f (t,x,u, & ) = h(t,x) + oc u + 

+ fi> VL in detail. 

In this paper the same problem with f(t,x,u, e) = 

= h(t,x) + oc sin u is treated. In the sequel the functions 

u and f are supposed to be extended in x on R by 

u(t,x) = -u(t,-x) = u(t,x + 2 or ), f (t,x,u, s ) = 

= -f (t,-x,-u, i ) = f (t,x + 2jr ,u, s ). 
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The extended functions will be denoted again by u and f. 

Let us note that if u(t,x) = u(t, & - x) then u(t,x +3T) = 

= -u(t,x). Put 

cLr (R) = *S€C2(R).; s ( * + *> * ~s(x)Jf 

C2*(C0,2ar3 X R) M U C C2(i:of23rJ x R); u( t ,x) = 

= -u( t , -x) = u ( t , st -x)J , 

c | * e(R2) ^ u e C ^ R 2 ) ; u( t ,x) = u(t • 2or ,x) = 

= -u( t , -x) = u( t ,x + 2if) = u(t ,ar -x) ] 

and equip these spaces with the usual norms in which they 

are Banach spaces. 

Let us first recall the result which is the starting point 

of our investigation. 

Theorem 1 (cf. Theorem 4.1.3 in ClJ). 

(i) Let a function f be continuous together with its deri

vatives 

a «*+kf 
dxd u K 

on R x <Ofor> x R x < - £ o f 8 0 > , S 0> 0, 

( i i ) Let f ( t , 0 , 0 , e ) = f(tfi*r fOf g ) = 

3 / k (t,0,O f 6 ) - f f k ( t ,w ,0 , 6 ) = 0, 
ax J u* 3x J u* 

j + k - ? 2 , 

(iii) Let f(t,x,u,e ) be 2# -periodic in t# 

(iv) Let the equation 

.2* 
(3) G(s)(x) = f f(tf,x -<c, s(x) - s(2-e - x),0)dr = 0 
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have a s o l u t i o n s * e C?^ (R), 2JT 

(v) Let there exist . C G ^ S * XT 1* L(C|* (R), C|£ (R>) 

where C ^ (R)om(r), while 

,2.jr 
P (u, g )(x) = J fix ,x - T , u(tf ,x - v ), £)d-£ , 

0 

u€C2*(C0,2*J x R), se < - e0, e0> . 

Then for sufficiently small £ the problem (1),(2) has a so

lution u*£ c|^ e(R
2). 

Our aim is to prove the following theorem: 

Theorem 2. 

dh ^2. 
(a) Let h(t,x) together with its derivatives —— f

 a fi be 

continuous on R x < 0, jr > . 

(b) Let h(t,0) = h(t,.jr) = -2-& (t,0) = i-£(t,«T ) = 0 and 
dx dx 

h(t, 31 ~ x) = h(t,x). 

(c) Let h be 2 it -pe r iod ic in t . 

(d) I f H(x) = J hit ,x - t ) d ^ 0, then l e t 

oC > 2. it Hi2 . i J \/2.ilH||2 - H2(x)' dx}" 1, 

where &HiL = max l H(x)| . 

Then for sufficiently small B the problem (1),(2) with 

f (t,x,u, g ) = h(t,x) + oc sin u has a solution ue C2 e(** )• 

Proof; The assumptions (i),(ii),(iii) of Theorem 1 are 

immediate consequences of the hypotheses (a),(b),(c) of the 

present theorem. 
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(iv) Denoting I = J cos s(£ )d£ , we rearrange the equ-* 

ation (3) into the form 

(4) G(s)(x) =-06 I sin s(x) + H(x) = 0. 

For a while let us consider the functional I as a knoyfl-

constant. If H(x) s 0, put s * ( x ) m. 0. In the opposite case 

let us suppose that lH(x))< \cc I) and put s(I,x) = -arcsijn 

(ocI)~HH(x). Clearly s is a solution to (4) i f and only i f 

(5) I = / *cos S (I f f )df = /23r(l-(ocI)""2H2(x))1/2d x s p d ) . 

Evidently p (23r)-c2w and (d) implies piv/Toc"1)! HliQ) ̂  

£ VYoC H H(i0 . So (5) has at least one solution I « I* sa

tisfying |I*| £ a T 1 ! HiiQ. Setting s* (x) * $(I* ,x) € 

€ C ^ (R) we obtain a solution to (4) and the assumption (iv) 

is verified. 

To prove (v) it suffices to show that for every 

0 fe Cg^ (R), the equation 

Gg(s* ){0)(x) js ocl* $-(x) cos s*(x) - oc J sin s*(x) • 

= f>(x)fcC2*(R), 

where J « f~ sin s* ( | ) . 6* ( £ )d £ , has a unique solution 

^ ( x l i C ^ i R ) with ficfU^C l ip l 2 , C being a constant. We 

obtain easily that 

tf(x) * (JD (x) + oc J* sin s * (x)> (ocl*cos s * (x))* 1c 

*4*,(R) 
with 

J*= (ocl* (1 - J^ain 2 a*(§ )(I*cos s*(£ ))"1d£))"1. 

•£*(? >>tgs*(|)df « 
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- ( o c f 2 / (l-2(=cI*)"2H2(p)(l-(ocI*)'2H2(f ))~1/2df)--. 

•/, ř ( ř ) t g 8 * < ř ) d f 
(by (d) this expression has sense). 

Evidently HgřílgéC 1f> ^ * T h ^ 8 c o m P i e t e s t h e proof. 
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