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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROUNAE 
20,3 (1979) 

TENSOR PRODUCTS IN THE CATEGORY OF TOPOLOGICAL 
SPACES 

Juraj CINCURA 

Abstract: The category of topological spaces is known 
to be a closed category. We prove that there is (up to iso
morphism) precisely one structure of closed category on the 
category of topological spaces and also on the category of 
T -spaces. 

Key words: Closed category, tensor product, uniform 
filter, ultraspace, coreflective subcategory. 

AMS: 18D15, 54BЗO 

Introduction. The category f of all topological spa

ces and continuous maps is well known to be a closed cate

gory, namely for arbitrary topological spaces X, Y the ten

sor product X © Y is obtained by proving the set X x Y with 

the "topology of separate continuity** and (T(Y
f
Z) equipped 

with the topology of pointwise convergence is the value of 

the corresponding internal hom functor £ -,-3 at (YfZ) 

(f 0 g = f x gf Cgfh] (t) - h • t o g). in this paper we shall 

prove that ( ® , t-,-3) is (up to isomorphism) the only 

structure of closed category on the category T and also on 

the category 3*0 of all T0-spaces. 
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1. Preliminaries and notations. We shall always use 

the following notations: 

£KX,Y) denotes the set of all &-morphisms X — * Y . Cg deno

tes the Sierpinski doubleton on the set ̂ 0,1\ where cZiO} =-

= iOi, cj£{l$ = $0,1$. The forgetful functor T-.> Set is de

noted by U. We shall often write X instead of UX. If A, B 

are sets, Mc A* B, ac A and b eB, then aM = -Cy e B:(a,y)e 14 I 

and Mb = {xe A: (x,b)e ML}. Let A, B, C be sets, f : A x B - * C 

a map. Then f* is the map A — • C^ given by f*(a)(b) ~ f(a,b) 
B for all a«A, b 6 B. If g:A—>C is a map, then g^ is the 

map Ax B — > C given by g#(a,b) * g(a)(b) for all a & A, bcB. 

Let X, Y be topological spaces. Then the topology of 

the space X ® Y i.e. the topology of separate continuity <r 

on UXxUY is defined as follows: t is the initial topology 

with respect to the class f^y of all maps f :UX*.UY—y UZ, 

Z 6 $ , such that f(a,-):Y—* Z and f(-,b):X—> Z are con

tinuous maps for each aeX, b€Y. Equivalently, *z is the 

initial topology with respect to the set of all maps f:UXx 

>c UY — * UC.-» belonging to ^^Y* 

The notion of closed category is used in the sense of 

t7j p. 1803 and it coincides with the notion of symmetric 

monoidal closed category used in £3]» Recall that a triple 

(&»Q»H) is said to be a closed category provided that 

(CI,a) is a symmetric monoidal category [7; p. 180], H: 

: Q,0^ x & — ¥ d is a functor (called an internal horn func

tor) and there exists a natural equivalence ^ » ^ B ^ A B C ^ 

: & ( A a B , C ) — * GUA,H(B,C)). A tensor product is a symmet

ric monoidal structure extendable to a structure of closed 

category (= closed structure). 
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Cardinals are initial ordinals where each ordinal is 

the set of its predeces9ors. 

Any coreflective subcategory of T and 'TQ (see £43) is 

supposed to be full and isomorphism-clo3ed. It R e i (F, v 0\ 

and Q, is a class of 3 -objects or a subcategory of J3 , then 

the object class of the coreflective hull of Cb in B con

sists precisely of .B -extremal quotients of 3B -coproducts 

of objects belonging to d . Recall that any non-trivial co

reflective subcategory of the category 3 € { (T , T0l is bico-

reflective, i.e. coreflections are modifications (see [43)« 

2. Closed structures on the category $* . The following 

theorem considerably simplifies the study of closed structu

res on T . Recall (see £7; p. 263) that a concrete category 

is a pair (XSV) where % is a category and V: X—> Set is 

a faithful functor. 

2«1» Theorem £83. Let (3C,V) be a concrete category 

with the following properties: 

(1) For every constant map c:VA—>VB there exists a 

3C-morphism k:A—> B with Vk = c. 

(2) For every bijection f:VA—•> X there exists a % -

isomorphism s:A—> B with V3 = f. 

(3) There exists a % -object A with card VAS2. 

If there is a closed structure (O ,G) on % , then the

re exists a closed structure (o,H) on % isomorphic with 

(O ,G) with the following properties: 

(a) Card VI = 1 where I is a unit of Q . 

(b) V A X V B C V ( A Q B), 

(c) for any r, s :A Q B—> C, VrjVAxVB = Vs|VAxVB 
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implies r -= s, 

(d) V(f D g)lVA*VB =- Vf x Vg, 

(e) VH(B,C) = X(B,C), 

(f) if f : % (A a B,C) ~> % (A,H(B,C)) is the natural 

equivalence corresponding to (p >H), then Vtf(r) == (Vr)* and 

V^ - 1(s) a (Vs)^ for arbitrary .%-objects A, B, C and % -mor-

phisms f:A—-> A', g:B—>B #. 

If, moreover, 3C satisfies 

(4) XcVA implies that there exists a 3C -morphism j: 

:B—> A such that VB = X and Vj(x) ~ x for each x€ X , 

(5) for every % -epimorphism g Vg is a surjection, 

then 

(g) VAxVB = V(Ap B) for any % -objects A, B. 

The category T fulfils (1) - (5) of 2.1 so that with

out loss of generality we can adopt: 

2.2. Convention. All closed structures on T̂ will be as

sumed to satisfy (a) - (g) of 2.1. 

It is obvious that a closed structure (Q ,H) on T sa

tisfying (a) - (g) of 2.1 has also the following property: 

(h) The natural isomorphisms rx:X Q<{*5 — > X, lx: 

: {#} D X — > X and the symmetry c^^X a Y—> Y D X correspon

ding to a are given by (x,*. )i—> x, (* ,x) \—> x and (x,y) .->-

*—> (y,x) respectively for any topological spaces X, Y. 

If (a ,H) is a closed structure on T , then the tensor 

product a preserves 3"-coproducts and T-extremal epimor-

phisms (which coincide with the regular ones in T ). There

fore if CI is a class of topological spaces such that the co-

reflective hull of CL coincides with T , then any tensor pro-
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duct (more exactly its object function) is uniquely determi

ned by its values on & x Ct • 

It is obvious that the coreflective hull of the class 

of all ultraspaces in T coincides with *T • 

2*3» Definition C2). A filter $ on a set A is said to 
De uniform provided that for all P c ? card P = card A. 

By [21, if % is an ultrafilter on a set B, then there 

exists a uniform ultrafilter 1lv on a set A and a surjective 

map f:A—-L»B such that 01 =- 4fllV3:V6 V} . In fact, if % 

is principal, then it is evident. If QL is a non principal 

ultrafilter, then take an arbitrary uniform ultrafilter Itf 

on B. Then U * W (see £2; p. 1561) is a uniform ultrafil

ter on B x B (see [2; 7.21(a), 7.20(c)3) and U s 4 P^VJ : V e 

£ U • W \ where p-^BxB—> B; (x,y)i—» x is a projection 

(see £2; 7.21(b) and 7.19(a)!). Hence, any ultraspace is an 

extremal quotient of a uniform ultraspace (an ultraspace is 

said to be uniform provided that its corresponding ultrafil

ter is uniform) so that the coreflective hull of the class 

of all uniform ultraspaces in T coincides with T . Denote 

by ot the class of all uniform ultraspaces defined on cardi

nals. (Let oo be an infinite cardinal, 01 a uniform ultrafil

ter on cC . Then the corresponding ultraspace is defined on 

06 -f l as follows: ixi is open for all x £ os and -tV U 4cci : 

:V e %\ is the family of all neighbourhoods of oc .) Then we 

have: 

2.4. Proposition. Any tensor product a on T is uni

quely determined by its values on & x £ * 

Let A be an infinite set and T a free filter on A (i.e. 
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HJ' s 0 ) # Let a| A. Define the topology on A U4aJ in the 

following way: Vc A LU a"i is open if and only if Vc A or 

a&V and V - {a \ e $ . Such topological spaces we shall 

call filter spaces and denote by (A,a,^) or only by (A,a",. 

2.5. Proposition. Let (A,a), (B,b) be filter spaces, 

cJt , cZ . , C/£o closure operations of the spaces 

(A,a) €> (B,b), (A,a), (B,b) respectively and Mc(A U-Cai ) ~ 

X (B U -t b J ). Then 

(i) If (x,y)eAxB, then ( x , y ) e c . £ M if and only if 

(x,y)6 M. 

(ii) If ye B, then (a,y)e ci M - M if and only if 

BtC cX^Bfy. 

( i i i ) I f x e A , then ( x , b ) e CJ8 M - M i f and only i f 

bccXgXM. 

(iT) ( a , b ) e c . £ M i f and only i f ( a , b ) e M or stecZ^Mb 

or b e c£--.aM or a e c £pC where C = «£xe A:be cIBxM? or 

b e c i - jD where D = 4 y e B :ac c ^ M y J . 

Proof. Easy to check. 

It is easy to see that if (o ,H) is a closed structure 
i dXxY 

on T , then for arbitrary spaces X, Y, XQ Y -> X D Y 

is a continuous map (it is evidently separately continuous). 
l a c rx 

Obviously, the pro jec t ions p - ^ X o Y -* X D { * 5 — - ^ X; 
k n 1 1Y 

(x f y)*--* x f p2:X D Y -> €*l O Y—^> X; (x,y) \—> y a re 

continuous so tha t i d y ^ u Y 1 * 0 Y —* x > c Y * s a continuous map. 

Henc© X<3> Y*X D Y - S X X Y for a l l spaces X, Y, where ( X , c ^ x ) £ 

6 (Y tc-£y) i f and only i f X =- Y and c i ^ M c c^yM for each 

McX (X*Y i f and only i f X6Y and X*-Y), and then , evident

l y , H(X,Y).6CXfYl for a l l X, Y e T. 
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Let now (A,a), (B,b) be f i l t e r spaces and (x,y) e 

e ((A l K a * ) x (BU-tb?)) - i ( a , b ) t . Then (x,y) e c i t t in 

( A , a ) ® (B,b) i f and only i f (x ,y ) c cJLu i n ( A , a ) x ( B , b ) . 

Hence we obtain 

2 . 6 . Lemma. (A,a) £> (B,b) < (A,a) Q (B,b) {£{&,&)* 

x (B,b)) for a tensor product a on •T' i f and only i f there 

e x i s t s Mc (A l K a } ) x (BU-lb^) with ( a , b ) € c £ M in (A,a )o (B,b) 

and ( a , b ) ^ c i M i n (A,a)© (B,b) . 

Let oo be an i n f i n i t e cardinal and A c o C x o c a sym

metric ref lex ive re la t ion on cc such that for each x e oo 

card xA -< oc . Define the oc;-sequence a: cc —> co as fo l lows: 

a = 0; l e t M. = 4 x € oo : there existd y e oc , y .£a+ such 
o * w v 

that ( x , y ) e A | . Then a t + 1 i s the smalle3t element x e oc with 

Mtc x* I f t e o£ i s a l imit ordinal, then a t = sup 4 a : x < t l . 

Obviously. ( a w ) v ^ i s an increasing «o-sequence. Put R̂  = 
v * X XGoG X 

-= t a x , a x + 1 ) = *y 6 oo : a x ^ y < a x + 1 l . Then we have: 

2 .7 . Lemma. If (R^xR )nA4-0 , then x = y o r x = y + l 

or y = x + 1. 

Proof. Let x < y and (b,c) e (.P^x R ) 0 A. Since be i^ 

b < a + 1 and then c tiz € oo : there e x i s t s t < a x + 1 with 

( t , z ) e A$, i . e . c o ^ + g . Hence a
y + x ~ a

x+2 s o t h a t y ^ x * 1 # 

I f y < x , then we consider (b,c) & ( L x RJC) A A (A i s symmetric 

so that (.Pyx y n A i s non empty). 

Let now 06 be an i n f i n i t e cardinal and f the genera l i 

zed Pr^chet f i l t e r on oo (Ac & i f and only i f card (oc- A)< 

< oo ) . Denote by C(oo) the corresponding f i l t e r space d e f i 

ned on ot> + 1. Let D be a tensor product on T with 

C(o&) o C(c*)>C(o&) 0 C(crf). Then by 2.6 there ex i e t s 
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Mc (0* + l ) x (cc+ 1) for which (06, oc)ecXQM - c£& M (cia , 

CHQ a re the c losure opera t ions of C(o6 ) a C(cs) and 

C(o&) © C(o£ ) r e s p e c t i v e l y ) . I t i s easy to see tha t then 

ot> M and M06 a re closed in C(o$) and therefore kco\ x 06 M 

and Mot> x iocl a re closed i n C(o6 ) a C(ot ) . Hence (cc tac) e 

€ cZQ M' - C£Q M' where M' = MC\ (ocxoc). Since a i s sym

metr ic (o6 ,oc )ec .X Q M' - cJLfg M' i f and only i f (cctcc) e 

e c i Q (M'U(M')" 1 ) - c£0 (M'U (M')*"1). Thus we obta in : 

^•8* Lemma, If a i s a tensor product on CT* , then 

C(cc)^ C ( o 6 ) < C ( o 6 ) a C(oc) i f and only i f there e x i s t s a 

symmetric subset M c cc x ot5 ( i . e . M = M ) with (©c,o&) € 

€. cZQ M - cZ& M. 

2 . 9 . P ropos i t i on . Let ( c ,H) be a closed s t r u c t u r e on 

CT and cc an i n f i n i t e c a r d i n a l . I f C(cc)n C(o6)4=C(o&) <g> 

B C(o6), then (cc tcc) e c£a A^ ( A ^ = {(x,x) :x e at> j , 

cX D , c i ^ a re closure operat ions of C ( o O a C(oc) and 

C(cxiO® C(o6) r e s p e c t i v e l y ) . 

Proof. Let C(o&) Q c(o*)4= C(o->) ® C(oc) . Then by 2.8 

there e x i s t s a symmetric subset M'c oc X. 00 with Co£ ,os) € 

€ cJLQ M' - CyC^ M'. Since ( o d , o s ) ^ c X ^ M% the s e t A - -Cxc 

e oC : 06 € c i xM' = -Cx c oo : oc c c ^ M ' x ? i s closed in C(oc ) 

so t ha t (<*,oC)e c Zn M " - c£0 M " where M " = M ' -

" ( ( U x 6 A ( * x i * ( x M ' ) ) U ( U x 6 A ( M ' x ) x 4 x ] ) ) ) . Hence for each 

x € ac card xM# '-c CC . 

Suppose ( o ^ , o c ) # c ^ D A ^ „ Put M =- A^ U M " . Then 

(oC ,oc) € c £Q M - c i J ^ M and M i s r e f l ex ive symmetric r e l a 

t ion on ot x oc with card xM -c 06 for each x e oC . Put E = 
= ^ xfcd^^x* j^x) ^ s e e 2»?)» T^1 1 E i s a n equivalence relati-
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on on oc • Denote by e the n a t u r a l pro ject ion: oc —=> cC /.£• 

Define e ' : oc + 1 •—> (oc/E U«Coc5) by oC I—> oC , e ' l oC « e . 

I f C'(oC) i s an extremal quo t i en t space determined by the map 

e ' : C ( o - 0 — > ( o c / E U- toc l ) , then C'(oc) i s isomorphic with 

C(oC). The map e ' a e ' ;C(oc ) D C(oc )—> c'(ocr) a C ' (cc) i s 

continuous and the s e t M = (e a e ) [ M j has the fo l lowing por-o-

p e r t y : For each x 6 oc /£ "xMc^x- l , x , x +1$ i f 5c = y + 1 

and xMc\x ,x +1$ i f x i s a l i m i t o rd ina l where x = IL fo r 

each x £ oc . Since (oC ,oC ) e ciQ M, (or. ,oC ) e c i M in 

C'(co) O C(o6 ) . But M = M-̂ UM-, U 4 ^ / g where U^i (x + l , x ) : 

:x e oc /E j , M2 = -i (x,x + 1) :x eoo/E} and t h i s implies t ha t 

( cL% oo ) e c t A ,„ in C'(o</) a C'(oC) - a c o n t r a d i c t i o n . 

The f i l t e r ? on 06 corresoonding to C(oc-) i s the i n t e r 

s ec t ion of a l l uniform u l t r a f i l t e r s on oc (see C2J ) . Therefo

r e C(oc) i s an extremal quo t i en t of the CT-coproduct of the 

family cp^ of a l l uniform u l t r a spaces on oC + 1 (correspond

ing to a l l uniform u l t r a f i l t e r s on oo ) and the map e : 

: U s S —>C(oc ) with e)S = 1 ^ fo r a l l S e <£. i s an 

extremal epimorphism. Let C(oc)o C(oc ) + C(otf ) ® C(OCJ). S in 

ce l a e: CCooiatL^tfS) = ^s&i ^ ( ^ D s >—* c^o C> a c<<^> 

i s an extremal epimorphism there e x i s t s T € ^ with (oC,oc)e 

fccX A ^ in C(oc ) C T (because (c*r ,oc) 6 c i a A^ in 

C ( o c ) a C(oC)). Consider the b i s e c t i o n Jy(C( oC ) a T,C2) —* 

—> (T(C(oC ) ,H(T f C 2 ) ) ; t i—> t * . Since the map f :C(oC)a T--> 

—> C2; f C A ^ l = < 0 } , f (x ,y ) = 1 o therwise i s no t continuous 

((oc ,oc) c c>£ A ^ ) the corresponding map f* :C (<*>) —*• H(T,C2) 

i s no t continuous ( i t i s easy to see t ha t f* i s a map C(oc) -.• 

—>H(T,C 2 ) ) . Hence there e x i s t s a s e t KcC(oc) with 
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dC e eiK in Q(aC) and f * (oc)£ cff^E KJ. Let S be an arbit

rary non principal ultraspace on co + i for which X is a mem

ber of its corresponding ultrafilter and S4-T. Then f* :S—> 

—> H(T,C2) is not continuous. But the bisection 

f ( S D T,C2) —t>T(S9K(?tC2)} tr—> t* implies that f: 

:S a T—> C2 is not continuous so that (one can easily see) 

(*,,QC) € ciA^ in S a T. Evidently, S+T implies (oc9oc) # 

4c/£ A ^ in SxT so that S a Tj^SxT - a contradiction. 

Thus we have proved: 

2.10. Proposition. If (rj ,H) is a closed structure on 3", 

then for any infinite cardinal cc C(&) n C(c6) = 

=- C(ctO® C(o<0. 

2.11. Lemma. If D is a discrete space and ( Q ,H) a clo

sed structure on 3* , then for any space I H(D,Y) = CD,X3 • 

Proof. Immediate from the fact that X o D - U d€.D^ D 

o{d$) ̂ or any space X. 

Denote by ̂  the coreflectiye hull of the space C(oC) in 

CT . Evidently, X belongs to C££ if and only if the topology 

of X is determined by a convergence of oC-sequences. Clearly, 

C ? belongs to 3^ and ^ is closed under the formation of 

subspaces. Therefore if M is a subspace of the space X and 

x'. M^X, M#-—-3-Vli are the £ -coreflections of X, II res

pectively, then M' is the subspace of X' on the subset UM. 

Let X be a topological space such that C(oc) D X * 

« C(oG)6> X. Uien, obviously, T(C(oo),H(X,C2)) = ̂ (CCotf), 

CX,C23). Denote ty H^U,^) the 2£ -coreflection of H(X,C2). 

Since H(X,C2)-iCX,C2] and (T(C(<*),H(X,C2)) » <T(C(oc)9 

tX,C2l), H^XjCg) is also a Xc -coreflection of LX,C23. One 
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can easily see that the family J8 x of all sets H . ^ } . Vx 

where Vx are open subsets of C2 and care.ix£X:Vx * "fl̂ J*-

*< cc is a base of the topology of the 3^ -power (C2)^ 

which is a 7^ -coreflection of the J"-power (C2) . Since 

CX,C2] is a subs pace of all continuous maps X — > C2 of the 
ox 

3" -power (C2) t -^(XjCg) is a subspace of all continuous 

maps X — > C 2 of the £ -power (Cg)
1^. 

2.12. Proposition. Let oc be an infinite cardinal, K 

a uniform filter space on oC + 1 and C(o*) o K = C(oc )<g) K. 

Then H(KfC2) = CKfC2l. 

Proof. If X is a countable space, then [XfC2J is a 

first countable space so that Hd^(XfC2) « tXfC2J and there

fore H(X,C2) « rx,C2l. Let oo be a cardinal with H(KfC2) 4* 

-KK fC 23. Denote by 11^ the topology of the space H(KfC2)f 

% the topology of tKfC2l and 3 the base of 11 for which 

B 6 ft if ani only if B = ( n x g X Vx) H ̂ (K fC 2) where Vx are 

open subsets of C2 and the set-tx€K:Vx = -til} is finite. 

The family 33^ = -i&r\T{KfC2) :B € 3Bf̂ } (see 3 * above) is a 

base of H^OK,^). Let V e 1l„ - % • Then there exists a col

lection <f c J3^ with V = U Q ^ B . Put tfx » ./n J3 and if2 = 

s *̂ ~ $!• ^en there exists B0 € ^ 2 with BQ <$: U B ^ B (ot

herwise V € 11 ). For each B e tf put ̂  s «CxcK:t(x) * 1 for 

all t«B} and JU = E. Let e^E and p:K—?-EU-fe5 be the map 
o 

given by p(x) * x for each xc E and p(x) * e otherwise. Let 

L denote the extremal quotient space (factor space) on EU-feJ 

corresponding to the map p. If oc 4 %* *nen K - E is a neigh

bourhood of oG so that L is a discrete space. If oc e Ef then 

the subset «to6fe i is open and closed in L and the subspace P 
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of L on the set 4oG ,el is isomorphic with C2. Hence L = PUD 

where D is a discrete space (on E --foci ). The functor 

H(-,C2), [-,C23: T0^—f T preserves limits so that 

H(PUD,C2) is isomorphic with H(P,C2)*H(D,C2) = [P,C23 x 

x[D,C2l and this space is isomorphic with [ PiJD.Cn 3 (P is 

countable and D discrete). Thus, H(L,C2) = [L,C23. Now consi

der the map H(p,l) :H(L,C2) —-> H(K,C2) and put W = H(p,l)"
1[V3. 

Let teW with t(x) = 1 for each xcE and t(e) = 0. If B e *f 

and B4>BQ, then Eg - E-l-0 so that H(p,l) (t)£ B. If B D B 0 , then 

B e tP2. Let C be an arbitrary neighbourhood of t belonging 

to 3i . Then there exists a finite set IcE such that Of = 

= i S€ H(L,C2) :s(x) = 1 for each xell. The element o € C/ for 

which o(x) = 1 for all x£ I and o(x) = 0 otherwise does not 

belong to any B e tf with B D B . Thus (f cannot be a subset 

of W so that W is not open in H(L,C2). But H(p,l) is a conti

nuous map - a contradiction. 

2.13. Corollary. For any infinite cardinal oo , 

H(C(o6),C2) = [C(oG),C2]». 

2.14. Corollary. For any topological space X and any 

infinite cardinal co , X aC(o&) = X®C(oo)# 

Proof. From 2.13 it follows that T(X a C(oc),C2) = 

= 7 (X® C(oC),C2). 

2.15. Corollary. For any infinite cardinal oc and any 

uniform filter space T on oo + 1 H(T,C2) = [T,C21. 

Proof. Immediate from 2.12, 2.14 and the symmetry of 
a . 

2.16. Theorem. There exists (up to isomorphism) exact

ly one structure of closed category on the category T» 

Proof. Let X be a topological space and T a uniform fil-
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ter space. Then by 2.15, T (X a TfC2) = T (X 8> T,C2) and the

refore X Q T = X ® T. Thus the tensor products a and €> co

incide on oC x- & and by 2,4 o = <g> • 

2•3-7. Remark. Note that we have proved 2.16 without us

ing the associativity of D * 

3. Closed structures on the category TQ» The category 

T0 is an extremal epireflective subcategory of the category 

T (see e.g. 143,1153). Therefore TQ is productive and mono-

morphism-closed (i.e. if m:M —^ X is a monomorphism and X e 

e (fQ, then M e J? ). Hence, if X,Y are T0-spaces, then X €> Y 

(see C 61) and t X,Y3 are TQ-spaces and it is easy to see that 

the restriction of ( &,[-,-}) to the category JT is a closed 

structure on TQ» This closed structure on T will be again: 

(inaccurately) denoted by (<g),[-,-3). 

The category TQ fulfils the conditions (1) - (3) of 2.1 

so that without loss of generality we can suppose all closed 

structures on T to satisfy (a) - (f) of 2.1. 

Similarly as in (f we can show that in the category TQ 

the coreflective hull of the class £6 of all uniform ultraspa-

ces is precisely TQ. Hence, any tensor product on T is uni

quely determined by its values on X x £ . 

Recall that for any filter space (A,af^) the filter T 

is supposed to be free (i.e. H ? = 0). 

3.1. Proposition. Let (a ,H) be a closed structure on 

T0 and cC , (h infinite cardinals. Let K, L be filter spaces 

on 06+ 1, (I + 1 respectively. Then U(K a L) = UKx UL (U: 

: TQ —-* Set is the forgetful functor). 
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Proof. Let x c co . Then 4 x i i s an open and closed sub

se t of K so that K = ix} U K'. But then K a L = ( - { X 3 U K ' ) Q L = 

= (-1x3 a L) U ( K ' D L). Hence, 4 x j x (/3+ 1) i s an open (and 

closed ) subset of K a L for each x e oc . Similarly, for each 

y 6 (̂  (oc + l ) x 4 y ? i s an open sub3et of K Q L. Consequently, 

P = ((oC+ l ) x (|i + 1 ) ) - Hoc , (I ) \ i s an open subset of K a L 

and Q » (K o L) - P i s a closed subset of K a L. Put Q' = 

= cJtiioc 9(l ) L Clearly, Q'c Q. Define the maps fzK n L-—*C2 

by f ( t ) = 0 for each t e Q ' , f ( t ) = 1 otherwise and g:K a L—> 

—• c 2 b y g ( t * = ° f o r e a c h t e Q > 3 ^ = x f o r e a c h t 6 - p » 
Then flUKxUL = glUKxUL so that ly 2.1(c) f = g. Therefore 

Q = Q#. Let %€ Q - 4.(oc ,(b ) \ and 0^ = cX<fzL Since K a L i s 

a TQ-space, ( o C - ^ H Q g . The maps f:K O L—>C2; f£Q23c-iO}, 

f C(K Q L) - Qzl = -Cll and g:K a L—*C2; g ( t ) = 1 for each t 6 

6 K a L are continuous and fjUK^UL = g|UKxUL. Uierefore f = 

= g a n d Q = 4 ( o £ , ( 3 ) L 

Since any T -space X i s an extremal quotient of a copro-

duct of a . su i table family of f i l t e r spaces in the category 

TQf any extremal epimorphism in TQ i s a surject ion and any 

tensor product a on T preserves coproducts and extremal 

epimorphisms, we obtain: 

3 . 2 . Proposition. I f ( a ,H) i s a closed structure on T 

f u l f i l l i n g the cond itions (a) - (f) of 2 . 1 , then i t f u l f i l s 

a l so (g) and ( h ) . 

Final ly , one can eas i ly see that 2.5 - 2.15 remain val id 

a l so for the category T0 ( a l l spaces considered there are 

3"0-spaces, TQ<£ = S^ O T Q and for any T0-apace X the 

tf^-coreflection of X coincides with the T^ - coref lect ion 
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o f X ) . 

Thus, we can state: 

3»3. Theorem. There exists (up to isomorphism) exactly 

one structure of closed category on the category TQ* 
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