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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROUNAE 
20,3 (1979) 

SOME BAIRE CATEGORY TYPE THEOREMS FOR U(a>,) 
Andrzej SZYMANSKI 

Abstract: It is shown that if ^Gfr has an <k)-j-scalef 
then U( coj) can be covered by &)<* Qy closed and nowhere den
se subsets of U( 6)^) and that the union of count ably many of 
them is dense in U( co-^). On the other hand, we show that under 
MA+ 1CH, the union of count ably many Q ^ , closed and nowhere 
dense subsets of U( <o^) is nowhere dense in U ( < i > 1 ) . For these 
purposes we use the notion of K -matrices on 6>, • 

Key words* and , phrases: Ultrafilter, uniform ultrafilter, 
matrix, scale. 

AMS: Primary 04A30f 06A40, 54D40, 54D35 

Secondary 54F65* 54005 

In this note we consider families consisting of 0 closed 

and nowhere dense subsets of U(o>^). We are mainly interested 

in the question, what cardinalities hare such families, as abo

ve, which cover U(co^) or have a dense union. Some results in 

this direction are obtained. For example, it is shown (Theorem 

2) that if ^o) has an cJ-^-scale, then such a family of cardi

nality o>£ exists which covers U(&>-,) and, in addition, it eon-

tains a countable subfamily with a dense union. The sane con

clusions have been obtained by Balcar and Vopenka tBV3 when 
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2 * • o>2 nolda, however, without possibility to get G^-eets. 

Our result also shows that if *\p has an o^-scale, then the 

Novrfk number of UCc^j,), n(0(o>1))f is £ ca-^ Recall [KS3 that 

t*1* Wovsk number of a dense in itself topological space X, 

n(X), is the minimal cardinality of a family consisting of 

nowhere dense sets covering the whole space* For the short 

history concerning the NovAk number of Tarious topological spa

ces, ws refer toCBPSI. 

The existence of families consisting of 0 closed and no

where, dense subsets of U( 4>y) is closely related to the exis

tence of K -matrices on 6)^f as is shown in theorem 4, and the 

existence of tc-matrices on co-^ for K z 6> ̂  is related to the 

question whether /ic^ - co^ is homeomorphic to fta - co (The

orem 6). 

All of the abore results are independent of the ZPC axi

oms since if Q holds, then the union of countably many Oj-clo

sed and nowhere dense subsets of U( ti^) is nowhere dense in 

U(6>^) (Theorem 8). 

Conventions and notations» As usual, a cardinal is an 

initial ordinal and an ordinal is the aet of smaller ordinals . 

Cardinals carry the discrete topology* If A, B are seta, then 

*B is the set of all functions from A into B. If $> f y e **& f 

then <p g f means that |{n: g>(n) z yCn)} l< o • A subset F c 

c H a is dominant if for every $> s **& there is a ye? such 

that 9 £ Y • A scale is a well ordered by £ , increasing 

dominating family. If K, is a cardinal and AfB c K , then A 

and B are almost disjoint if I Al « K « t Bi and \ An B I < K . We 

denote by 0(6-^) the space of uniform ultrafi Iters on o) ^ 
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Results. We begin from the following simple 

Lemma 1. A set FCU(G>-,) i s G^ closed and nowhere dense 

in U(&>£) i f f for any sets Â  c co^ n < co f such that P • 

»rMcJ& L m < co}n U(<u.) there i s l O ^ m < <*>}l£<i> i f f 
/ley. " A n 

there are sets ^ c ^ such that P »n4eA6JLB
n*n< *>}nE(.a>*)f * 

B 1 3 B 2 3 # . . and H-C B^sn-c <wJ * 0# 

Theorem 2. If aco has an cj-^-scale, then U( c^) can be 

covered by ^ Ĝ  closed and nowhere dense subsets of U( <*.»). 

In particular, i f &co has an co-^-scale, then n ( U ( ^ ) ) « a?.. 

Proof. Let A y ^ f o c x ea l̂ be an e^-seale in **& • For 

eaeh n,m-< co we set AJ «-f 06: cp̂  (n)^mj. Observe that: 

(0) i fm<k<ci> andn<<v f then AjcAj, 

( i ) U-CAJJUI-C <u? « co^ for eaeh n < <-*> t 

( i i ) for each infinite a c < y anaijrs'o) , inA*^ 1 1 *: 

:n € • J1 £ co * 

The properties of •**'• stated in (0) and ( i ) are obvious. 

For the proof of ( i i ) let us assume on the contrary that 

I C\ iAj^me »il > co for some infinite • c <-> and f£ *o> • 

There exists an at <- co^ such that g> I s ;> y 1 s . Since 

^ ^ j ^ ( n ) J n £ s j i 8 u n c o i m t a D l e f there exists a jl 6 n -t A j ( n > : 

:ne s i such that c>1> (S > oc . Since f y^ : oc < 0}i i s a •••>» 

l e , 9 ^ 9^ # Hence there i s an n<ss such that $u (n)>Y'fo)* 

But this means that p> 4 a j J 8 contradiction. 

Now define the sets Fn and En in the following way: 

Fn «-{f £ U( o^) :Aj[ e> J for each m < co } and 

*£*{%€ Vio^ii^ € ^ for each n* nl* 

In the topological language, Fn * O i ci (C^^-AJJ) :n< <»} 
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<f (a) 
and *5f*f^<*&<-i *^* : » E n i . Of course Fn as well as ^ 

are Ô r closed subsets of U ( ^ 1 ) # From ( i ) and Lemma 1 i t f o l 

lows that Fn i s nowhere dense i n U(d>-,) for each n < co , and 

from ( i i ) and Lemma 1 i t fol lows that Eg i s nowhere dense i n 

U(«*>1) for each n < co and oo< <a>,# I t remains to show that 

U 4 F n : n < co} u U i l £ a i < co f oc < co £* Uio^. For t h i s , 

l e t | e u ^ ° i ) *• 8 U C h t h a t f + U 4 F n t n < « l . From (0) i t 

follow8 that for each n < co there e x i s t s y ( n ) < o such that 

An § • L e t ^ "* Q l b e 8 u c h t n a t 9oo ^ Y • T*1^8 B-eans 

that there e x i s t s an m<<-> such that %,(n) > f (n) for each 

n2m. Hence f s - ^ • 

The above theorem i s related to a re su l t by Balcar and 

Vopenka i BV3 who proved that i f 2 x « co2% then n(U(<i>1)) « tf>1# 

However, the following consistency resu l t s are known: 

( ^co has an Q , - s c a l e + 2 =* 2^ + 2 ^ arbi trar i ly large) 

coч 

<i>. 

CHJ, 

C]0co has an a-j-scale • 2 = <*>2) (* model for Martin's 

axiom + 2 ^ * ^ [ M S l ) , 

( ^cu has an cj-j-scale + 2 x = co^) (a model for GCH). 

In the proof of the Theorem 2, we have constructed a mat

r i x ^An:mfn < co} sa t i s fy ing conditions ( 0 ) f ( i , ) ( i i ) . Now we 

generalize th i s notion by saying that a matrix ^A^m < co f at < 

< K} of subsets of ^ i s a K -matrix on co^ i f the following 

hold: 

(0) i f m< n and oc < »c , then A*c A^f 

( i ) U -i A**:n < <*>$ * co. for each cc < ic > 
0 6 <-> 

( i i ) for each i n f i n i t e e c K and f 6 8G> f \Di A y ( o ( ; ) : 

: oo 6 s J I 6 o • 

Thus we have shown 
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Proposition 3» If *b has an o-j-scale, then there ex

ists an CD-matrix on <-->,. 

Now we shall give a topological reformulation of the ex

istence of K-matrices on &>-. 

Theorem 4> A K -matrix on 6>x exists iff there exists 

a family consisting of at least K Of closed and nowhere den

se subsets of U( co^) such that each union of infinitely many 

of them is dense in U(o>,). 

Proof. Assume ̂ A^:n < o> f oc < K, i is a \c -matrix on ci),. 

For oc < K we put F^ « -Cf € U( o>1) :A^ $ f for each n < o} . 

Obviously, each 1^ is a 0/ closed and nowhere dense subset of 

U(<-i>1)f in virtue of Lemma 1 and (i). Choose infinitely many 

of them, say -^ »-̂  >••» and assume on the contrary that F̂  u 

uF. u ... is not dense in U( o^,). This means that there exists 

an uncountable set Bc<a. such that c£n>1 BnP « 0 for each 
1 ^ <*n 

n < *> . Hence, by (0) and ( i ) , for each n -*s <y there exists a 
y < <4> such that IB - A " \ & co m Hence B contains an uncoun-

fn table subset C such that CcA for each n -< co . But then. 
<*n 

for some infinite set s « t cĉ , oc2f .##J contained in K and a 

y 6 s^ given by fioc^) « Y n > we have I O i A^°°*: <* e s 1 1 -T 

riCi« o.>lf which contradicts (ii). 

Let F^ , oc < ic f be G^ closed and nowhere dense subsets 

of U( cdj) such that each union of infinitely many of them is 

dense in U(CJ^), By Lemma 1, for eaeh cc < K there are sets 

B^, n < a f such that F^ »fU ciL^ B^nUC^-^m < ol t B* :.> 

3 ^ 3 . . . and O 4. B~:n < o I « 0. Setting A^ « o^ - Bg we see 

that the matrix 4A^:n < o f oc < *c ? fulfils conditions (0) and 

(i). We verify (ii)* Choose an arbitrary infinite set s c K 
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f€ *& . By the assumption, U-f F,: 06 e •} ie dense 

in Q(c»x)f so that n * e £ / W n U( 6 ) ^ : ot 6 ml is nowhs-

rw dense in U( o>1). Hence, by Lemma 1, Hi A^^iot e a 3 U 

Corollary 5« An <y-matrix on -s>̂  exi8t* *•** there is 

a countable family F consisting of Q<f closed and nowhere den-

•• subsets of U( C.J>1) such that U F is dense in U( <y-, ) # 

Proof* If F • ̂ E ^m < c*l f then letting F^ « B-̂  and 

F n « 1- u X2
 u • • • u -̂ n for 1< n < CJ f wo see that each Fn is a 

G^-closed and nowhere dense subset of U(6>-,) such that each 

union of infinitely many of them is dense in iKd)^), since it 

is equal to U F. 

The above topological equivalence of the existence of 

K -matrices on CJ1 seems to be rather p a t h o l o g i c a l . , for K ̂  

Z <•>*• For example, it cannot happen in topological spaces 

which haws a pseudobase of cardinality less than K • How

ever, we have 

Theorem 6, If M i * ^i i8 homeomorphic to fl & - co 

and there exists an almost disjoint family on o>1 of cardina

lity K , than there exists a K -matrix on £*>-,» 

Proof. Decompose «*>-, into o^ disjoint subsets B^ of 

cardinality &>lf say B^ » \ bj>: (I < <*> ^. Let F = 4f. : f < K i 

be a family consisting of almost disjoint subsets of «->-*• Let 

cec be an isomorphism between *-«>., and a well ordered set tc • 
* <?,(*) X f 

Then we put Cc * -ib^ % oc < &A+ Note that sets C? defin

ed in such a way are also almost disjoint and ICrA B^l - 1 

for each £ -< K and oc< *>1# 

Let <fp be a Boolean isomorphism between the Boolean al-
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gebras P(6>1)/mod fin and P(co)/mod fin. Choose fi£ 6 <j>(t%]) 

and Cg € <t> (CCjl). Then we define An * 4<* :B^ n c' c n\. The 

matrix iAn: ^ K , n < ^ H 8 a f c -matrix on <tf.,. To see 

this, observe that conditions (0) and (i) follow from the 

fact that B^ ani Cp are almost disjoint subsets of o> , for 

each oc -<- o^ and f < vc .We verify (ii). Let infinite s c 

c ic and if es<a be given. Assume on the contrary that 

I O i AT**': f 6 8 i i > o • Without loss of generality we may 

assume that s is countable. Let D' -* U 4 Cc - tjr(f): f * •} 

and choose D € 4> ([D*3). Since lCc - D#l< CO for each f e s, 

I Ce - D I <• a for each § e s. Since s is countable, there 

is a (i < ca.. such that Cg - U l B ^ s o t ^ (J.cD. Since the 

sets Cg are almost disjoint, there is a ^ -< <y-̂  such that 

the sets Ce - U-£ B^: <* < -j] are disjoint for each f € 8. 

Consequently, I U-£ Cg: f e slnB^I * a far each oc > jr* 

Choose ^ & O i A ^ ' : f c si such that ^ > /.> and i£ > y • 

Then I B ^ n D l * co and therefore I B,̂  A D't « <tf f too. Thus 

B' A C' (|: y ( p for infinitely many f . Hence %$ f\ i A ? ^ * : 

: £ e s}; a contradiction. 

Since there exists always an almost disjoint family on 

co^ of cardinality o^t w e have 

Corollary 7* If (Jw, - a;, is homeomorphic to fi& -«>9 

then there exists an ^-matrix o n ^1* 

The problem to distinguish topologically the spaces 

(16)^ - CJ^ and ftco - co is not yet solved; for partial so

lutions see CFJ, CBF1. 

Some theorems above show what kinds of conditions allow 

to get the existence of some »i-matrices on &••• The next 
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theorem refutes such a possibility. 

Q means that if F c *>& and I Fi -6 a^, then there is a 

Y c ̂  such that 9? <: y for each <p e F. 

Theorem 8. If Q, then there is no co-matrix on $>-.• 

Proof. Assume otherwise and let 4A*:n,m < <*>i be an o -

matrix on GO-^. For y e ^ o ) we let a^ « sup{b^:n < <i>? , where 

b^ * sup n 4.'Â * ':k2n!. Since 4A®:n,m < £>} is an ca-matrix 

on ca-|, a* < o). for each <jp * ̂  . Now, we claim that for 

each oc < o ^ there is a cp^e *>& such that m9oC > 00 .To 

sea this, we note that from condition (i) for K;-matrices it 

follows that for each n < co there exists <p <. co such that 
?m 

0C6 A^ . So, taking 5^ such that g?^ (n) » y n , we have 

a * £ oc . By Q, there exists a y 6 ̂ a> such that f^ < V 

for each <* < <»-,. Let (I -< ca^. Since 9% ^ Y » there ex

ists an n < CJ such that <$>p(K)< ^"(k) for k>n. Then, by 

(0) for K -matrices, A^(k*c A^ ( k ) for ken. Hence C\\ J^(]c): 

j k J n k O { A?(k):k>ni, and therefore b A £ b£, for each 

m > n . In consequence, /$ -fe a^ * aup-fb^ :n < o> I £ sup*b*£: 

:n < <i>$ » a1^ . Hence BF * o-^; a contradiction. 

It is well known that Martin 'a axiom + 1 CH implies Q 

([MSJ). So we have 

Oorollary 9 (MA + 1 CH). If F is a countable family 

consisting of G closed and nowhere dense subsets of U( co-±), 

then U F is nowhere dense in U( cOj). 

If F is a countable family consisting of disjoint clo

sed and nowhere dense subsets of U ( ^ o 1 ) , then U F is nowhe

re dense in U( CJ-^) . 

Proof. Assume otherwise. Then, by Corollary 5, some un-
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countable subset of co1 would have an co -matrix. But this 

contradicts Theorem 8. 

The second part of the corollary follows immediately 

from the first part. 

It may be worthwhile to point out that the assumptions 

on the family F in Corollary 9 are essential, since Balcar 
*l and Vopenka C BVJ showed that if 2 x « o2> then there exists 

a countable family F# consisting of closed and nowhere dense 

subsets of U( o>,) such that U F# is dense in U(*4>,). Also 

2 =- cd^ is consistent with MA • 1 GH. 

Question. Does the existence of K, -matrices on a),, for 

K > o^9 be consistent with ZFC? 
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