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THE LATTICE OF INDISCERNIBILITY EQUIVALENCES
Petr VOPENKA

Abstract: In this paper we prove that the class of all
indiscernibility equivalences creates a lattice in alternati-
ve set theory. Every subclass of this lattice has supremum;
every countable subclass of it has infimum. Descending sequen-
ces ordered by type . have no infimunm.

Key words: Alternative set theory, equivalences of in-
d:l.sc@.»rmI bilit ’
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Clessification: Primary 02K10, 02K99
Secondary 02H20, 06A20

Indiscernibility equivalences (see [V1) play a very im-
portant role when we are building mathematics in alternative
set theory. The class of all indiscernibility equivalences is
ordered by inclusion. In this article it is shown that this
class creates a lattice and some properties of this lattice
are described.

The whole paper can be considered ax immediate continua-
tion of the book LV]. When referring to that took we shall
cite only the section and the chapter in question.

In the § 1 Ch. III. the notion of an indiscernibility
equivalence is defined. The fact that the intersection of
countably many indiscernibility equivalences is an indiscer-
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nibility equivalence is also proved in the mentiomed chapter.

Every indiscernibility equivalence is a #'-class and
that is the reason why the class of all indiscernibility equi-
valences is codatle.

In this paper we shall deal with various indiscernibi-
lity equivalences. Thus we shall denote e.g. the figure of
the class X in the equivalences g, 2, ete. by Fig*(X),
Figt(X), etc. respectively. We also use the notation Mon*(x),
Mon*(x) etc.

We use the notation Figh(X), Mon“(x) also in the case

if the equivalence % s not an indiscernibility equivalence.

We use this notation in the following natural sense
Mon*(x)= { y;y¥x¥, Figt(X)={y;(3 xe X) (yEx)¢.
We say that a codable class %! is a closed base for the

indiscernibility equivalence i if 7 has the following pro-

perties:
(1) 7 is at most countable.
(2) Every X e W is closed in t,
(3) For every X,Ye % , XnYe W.

(4) If X is closed in £ then X=N{Y;X<cYe Mt}.

Theorem, If k4 is an indiscernibility equivalence then
there is a %! which is a closed base for =,

_I:r_g_c;_fz In the § 2 Ch, III it is proved that there is a
class Z which is at most countable and such that for every-
closed figure X the following holds: X=l’\{Fig"(u),'Xs—Fig"’(u)8<
%uczt. We put B, ={Figt(u);ucz3. Now it is sufficient
to put W to be the least class such that W, ¢ WU and
such that for Y,X ¢ % the formula XnYe 7! holds,
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Theorem. Let ¥ be an indiscernibility equivalence.
Let 7l be a closed base for ¥, For every disjoint closed fi-
gures X,, X, (in % ) there are ¥,,¥, ¢ Wl such that the for-
mulas XS Y, XS Y,, XnY,=8, X,n Y,=@, Y u Y,=V hold.

Proof: X,, X, are disjoint ar-claeses. Thus there is &
set-theoretically aefinable class Z such that X, & Z, an2=¢
hold. Evidently Fig*(z)r\X2=¢. Let us put ’m.oﬂY; Fig*(ZS <
€Y e W3, We have Figh(z)= N 7N . If for every Ye@l
the formula Ynxz*ﬁ holds, then N mOA X,*%# - a contra-
diction. Thus there is an Y; € %1  such that Fig*(Z)c ¥, %
%Y;n X2=¢ holds. The proof of the existence of the class
Y, ¢ M having the properties Fig¥(V-2)cY,, ¥,nX;=F is a-
mlogous. Evidently X, & Z<SFig¥(2)€Y, and X, =Y, hold. We
have V=2 u (V-Z) € Fig®(2) u FigX(V-2) €Y, v ¥,.

Remember that if for any x, y the formula x‘;y.—_; xgy

holds then the equivalence % js called finer than 3.

Theorem. Let % be an indiscernibility equivalence, Let
% pe finer than . If for any u the class Fig¥'(u) is a o=
class then ¥ is an indiscernibility equivalence.

Proof: % is compact because it is coarser then Z, Let
9 ve a closed base for %. ILet X)X, « @ be such that X v
U X,=V. We put R=(Fig+(xl))2 v(Fig*(Xz))Z. As X & WL the-
re is a u such that X,=Fig*(u). Thus Fig*(Xl)=Fig+(u) and
Fig*(X;), Fig*(X,) are sr-classes. It follows that R is a
r-class. As there are at most countably many pairs Xl,X2 €
e 71 , there are at most countably many relations R having
the mentioned ’properties. We prove that the equivalence 2

is the intersection of all such relations R and thus we pro-
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ve that ¥ is a s-equivalence. Let xty. If xe X, then y ¢
& I-‘ig"'(xl), thus {x,y> € R. For x €X, the proof is analo-
gous. To prove the opposite implication, we suppose
Mon' (x)~ Mon*(y)=#. Using the previous theorem we obtain
xl,xz € M having the following properties Xy U X7V,

n*(x)< X;, l(on"’(y)sxa, X, n Mon*(y)=p, X,n Mon*(x)=g.
Thus we have x ¢ Fig"'(xz), y#Fig*(Xl) and <{x,y) ¢ (Fig*(xl)){
u (Pig*(x,))2,

Theorem. lLet = % be an indiscernibllity equivalence., Let
N be a closed base for %, 1¢ ¥ is finer than T and if for
every x the class Mon*(x) is a ar-class then the following
holds

ty= WXeP)(xePigH(X)=ye Figt(X)).

Proof: The implication = is evident. To prove an
opposite implication let us suppose Mon'(x)n Mon*(y)=#. The
classes Mon*(x), Mon*(y) are figures in the equivalence £
and are also & -classes. Thus there is X € 91 such that
Mon*(x)S X, XnMon¥(y)=@, It follows that x e Fig*(X) and

y ¢ Fig*(x).

Theorem. Let 4=z, ; « €1} be a class of indiscerni-

bility equivalenees If there is an indiscernib1lity equiva-
lence & such that = is finer than s, for every oc t.hen there
is ¥ ¢ 1 such that N{=g;x e.().} = Ni=, ;xeynl
In this case N{= ;¢ €3 is an indiscernibility equiva-
lence.

Proof: We can suppose that o< (3 ==> =, is finer
than = . (Remember that the intersection of at most count-

ably many indiscernibility equivalences is an indiscernibi-
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lity equivalence.) Let 73 be a closed base for T, etws
choose X € WL , then {Fig (X); 0 € 0.3 is a descending se-
quence of closed figures in the equivalence : and thus using
§ 2 Ch. III, we obtain a 2 € Q. such that for y< o € O the
formula Fig,, (X)=Fig, (X) holds. Because %7 is at most coun-
table, we can suppose that there is a 9o € O such that for
every X¢ %L and for every 3 <o € {1 ‘the formula Fig d(X)=
=I":i.g,r (X) holds. Using the previous theorem for y < ox € &
we obtain that Mon_ (x)= N{Fig, (X);X e %t & xeFig  (X3=
=N {Fig,r(x);x € M & x6Fig, (X)§=Mon , (x). Thus =, , =,
are identical. We have proved N{ =, ;x € 0% = =,

Theorem. For a class §=, ; « € L% of indiscernibility

equivalences there is an indiscernibility equivalence £ ha-
ving the following properties.

(a) For every € ) we have =, is finer than i,

(b) If ¥ is an indiscernibility equivalence suech that
for every o« € the equivalence "8“ is finer than ¥ then ¥
is finer than ¥,

Proof: Let Wl be the class of all indiscernibility e- -
quivalences % such that for every o« , the equivalence =
is finer than %¥. ( W is codable as it is a subclass of the
class of all sr-classes and V2& %% ) N is en indis- °
cernibility equivalence. (To prove it we use the previous
theorem.) N7 has evidently the properties required in

the theorem.

In the last part of the paper we suppose the reader to
be familiar with § 1 Ch.'V.
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Theorem. Let F be an automorphism. If R is an indis-
cernibility equivalence then F " R is an indiscernibility
equivalence, too.

Proof: F " R is evidently an equivalence. The image of
a d-class is a ¥ -class because the image of a set-theore-
tically definable class is a set~theoretically definable
class, Now it suffices to prove the compactness of F " R,
let u be an infinite set, put v=F-1"u. v is obviously an in-
finite set. Using the compactness of R we obtain x,y€ v such
that x+y and {x,y>¢ R. Thus F(x), F(y)e u, F(x)3+F(y),
{F(x), F(x)?> = F(<{x,y>)eF " R,

Let us put x § y iff for any set-formula g¢(z) of the
language FLy the formu]a @ (x) = ¢ (y) holds.

The set y is said to be definable using parameters from
the class X iff there is a set-formula ¢ (z) of the language
FLy such that the formulas (3 !z)g@(z) and ¢ (y) hold. We
use the notation Defx for the class of all sets definable
using parameters from the class X.

If a class X is countable then for the class Defy and
for the equivalence % the analogues of assertions concerning
the class Def anl the equivalence = £ hold. Espec:.al]y is a

totally disconnected indiscernibility equivalence.

Theorem:

(a) XeDefy.

(b) YE Defx ?;_DefY QDefx.

(¢) For any aet-fomula of the language FLDef there
is an equivalent aet-formula of the language FLx

(d) The equivalence % is finer than € iff Defy< Defy.
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(e) Let F be an smutomorphism. The image of the equi-
valence i is the equivalence F % x and F > Defx=DefF..x holds,
Theorem. For any class X which is at most countable
there is a set u such that the formula X.C.Def{u} holds.

Proof: Let G be a function such that X=G "FN, Let g
be a prolongation of G. We prove X& Def{gi. Let xeX, let .
n¢ FN be such that x=G(n). Thus x=g(n). We have geDef_ig}
and neDefisi . Thus xs'Def{g} .

Theorem. For any indiscernibility equivalence 4 there

is & set u such that {é} is finer than i’.

Proof. Let {R ;ne FN} be a generating sequence for £,
As R are set-theoretically definable classes, there is a
class C which is at most countatle and a sequence {g,(x,y);
n e FN} of set-formulas of the language FL, such that R =
={{x,¥? ; ¢p(x,y)3. Let {v,;ne FN{ be a sequence such that
v, is a maximal R -net on V. For every n the set v, i8 fini-
te. Using the previous theorem we obtain a set u such that
Cuivyine FN3c Daf{u! . We prove that {5} is finer than % .

o
Let x 2 ¥ and ﬂxgy hold. In-this case there is an n such
that {(x,y> ¢ R,. Thus there is ze v ,, such that ('x,z)eRn+1,
{y,27 & Ry,7. Thus Pp+1{x12) and 1@ 1 (y,2z). But the
formula Cfnﬂ(x,z) is equivalent with a set formula wy (x) of

the language PL{n}. Thus xn%sy - a contradiction.
mq following theorem is a special case of the previous
one.

Theorem., For any indiscernibility equivalence ¥ there

is an indiscernibility equivalence & having the following
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properties.
(a) ¥ is finer than I,
(b) ¥is totally disconnected.
(¢c) Every clopen monad in the equivalence ¥isa sing-

leton.
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