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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
20, 4 (1979)

APPROXIMATIONS OF & -CLASSES AND r-CLASSES
J. MLCEK

Abstract: This paper is a contribution to the develop-
ment of the alternative set theory. We define a-classes
{and €-classes similarly) relatively w.r.t. a codable class

W (80 called o®'-classes and 6P’ -classes). If Q is a

o ®C _class then there is a relation R € @ with dom(R)€ ¥
such that Q = N{ R"{n%¥;n < FN} (80 called ar-<string of Q).
Thie description of ar®l-classes enables us, in the case if
%l is rich enough, to approximate a o™ _class Q in the fol-
lowing sense: if Q has a property of a certain type then the-
re is a g-string Re W of Q such that the classes R"{ox 3

have an analogous one. An exact form of this proposition can
be found in the theorems 2.0.1, 2.0.2.

Key words: 4 ~-class, 6-class, standard system down-he-
reditary formula, up-herec!litary fox"mula, altermvtivé set theory.

Classification: 02K10, 02K99

Introduction. If Q is a o -semiset then Q is a "uniform

or "~class in the following sense: there is a set-relation r
with dom(r)e N such that Q= N{r"{n¥;nec FN3., (We say that r
is & or-string of Q.) This uniformity is very useful for a
work with I -semisetes. There is a matural questiom whether
every w -class Q is a "uniform oY "~-class in the sense that
there is a set-theoretically definable ar -string of Q. We pro-
ve that there is a 3 -class which is no "uniform sr “-class.
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Moreover, we shall define a mtion of Jj-clase relatively
w.r.t. a codable class @ (a0 called mPl_class) so that
each :ﬂm-class will have a & -string which is an element
of ML . Specifying %! as a rich enough class (the so call-
ed standard sys@em) we can treat arzk-classea with advanta-
ge. Note that every s -class is a al’m-claea where % is
any revealment of the codable class Sdy. (See 0.0.1, 1.0.4.)
Our description of @™ _classes enables us to approximate
each orma-claas Q in the following sense: if Q satisfies a
property of a certain type then there is a g -string of Q
such that R ¢ # and the classes R"{oec? satisfies an analo-

gous one. (See 2,0.1, 2.0.2.)

§ O. Preliminaries

0.0.0. The class of all natural numbers (finite natu-
ral numbers resp.) is denoted by N (FN resp,). We use < ,[3,
s &y §s7% (m,n,i,j,k resp.) as variables ranging over na-
tural (finite natural resp.) numbera. RN is the class of ra-
tional numbers. We shall use lower-case letters to denote
sets,

The operation of composition of relations is denoted by
©o , The symbol Id denotes the identity mapping. Writing H:
:X—> Y we mean that H is a function with dom(H) = X and
rng(H)< Y.

0.0.1. de denotes the codable class of all set-theo-
retically definable classes. Writing S.:l""7 we mean that Sd:;
is a revealment of Sdy. (See [S-V2].) The codable class of
all classes set-theoretically definable without parameters
is denoted by Sdo.
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0.1.0., Iet %% be a codable class, Writing FLm we mean
a language FLK such that there is a relation S so that <{S,K?
is a coding pair which codes the class 9% . It is obvious,
how is defined the satisfaction of the formulas of the langua-
ge FLm(cf. [S1]). Let ¢ be a formula of the language FL,, -
Writing g:(xo,...,xm) we mean that the formula ¢ has no free
variables distinct from XgreeesXpe Let Tjyeoo,T) be term; vof

the language FLm. We let

T T,
g (=2 o, =5)
io ik

designate the formula obtained from @ by replacing all free
occurences of xio,...,xik by To""'Tk resp. We shall omit the
subscripts Xio,...,xik when they are i@terial or clear from
the context, If there is no danger of confusion we shall not
make a distinction between a class Xe Z/{ and the constant de-
noting this class.

Let ¢ be a fomula of the language FLm « The symbol
(5)(33?,) denotes the formula resulting from ¢ by restriction
of all quantifiers binding class-variables to elements of #f.
Suppose that @ is a sentence of the language FLm . The sen-
tence "9;' holds in the sense of 9% " denotes that ¢ 2 holds.

0.2.0. Recall that a class X is a 6'-class (a gr -class
resp.) iff X is the union (the infersection resp.) of a count-

able sequence of set-theoretically definable classes.

§ 1. Gm-classes and -classes and their basic pro-
perties

1.0.0. A codable class %1 is called a standard system

iff the followi holds:
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1) vet

(2) Let @(x) be a normal formula of the language FLm.
Then ix; @ (x)¥ € %L.

(3) Let X « # be a class such that 03 X< N, Then the~
re exists the least element of X.

Evidently, the codable class de of all set-theoretical-
ly definable classes is a standard system. Moreover, deE @t
holds for every standard system %L .

Throughout this paper let #! denote a standard system.

1.0.1. Proposition. (1) No proper semiset is an ele-
ment of 7.

(2) Each axiom of GBy;, holds in the sense of #¢.
(GBf,in denotes the theory obtained from GB by substituting
the axiom of infinity by its negation.)

(3) Each class of 77§ is fully revealed.

Proof. (1) Let X% O be a semiset of { . We put
A = {f; £ is a one-one mapping % dom(f)e N rng(f)c Xf{.
Clearly, A e 9! holds. We define B = foc ;(3fe A)(dom(f)=cc )%,
We have B e %L and B is a semiset. Let % be the greatest ele-
ment of B, Thus, there is a one-one mapping f such that
dom(f) = 3 and rng(f)c=X. Suppose that rng(f)S X. let xeX -
- rng(f). Thus, the function fu{d{x,% >% is an element of A,
which is a contradiction. Consequently, X = dom(f) and X is &
set.

(2) It follows from (1) that only the following propo-
sition must be proved: If Fe ¥’ is a function and u is a set
then P™u is a set. Suppose that Fe 771 is a function and u is
a set. We put B ={vcu;(3At)(F'vet)., Clearly, Be 9 and
consequently, B is a subset of P(u). Let v be a & -maximal
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element of B, We deduce from the maximality of v that v = u,
Thus, there is a set t such that F*uSt. Moreover, F'u s Wl
anl, consequently, F"u is a set.

(3) Let X be a class of %% . Let S€X be a countable
class, Then there is a function f such that £/ FN is a one-
one mapping of FN on S. Put A =400 ¢ dom(f);f(x) € X3. We have
A e M and, consequently, A is a set. Clearly, Sc=f"A SX. We
deduce from this that X is a revealed class. Thus each class
of 7l is revealed and the proposition (3) follows immediate-
1y from this.

1.0.2, A string is a relation R such that dom(R) €N, A
string R is called & 6 (& resp.)-string iff R"{x % c R"{x+1}
{R" {« +1% ¢ R"{x%? resp.) holds for each «x+ledom(R). A
6 (o resp.)-string of a class X is a 6 (& resp.)-string' R such
that U{R"{ n¥;neFN3 = X(N{R™n3;neFN% = X resp.). |

Let R be a string. We shall write R(x) instead of R"{ci.

A class X is called 6P-class (o%!-class resp.) iff

there exists a string Re %! such that X = U{R(n);neFN 3
(X =N{R(n);neFN3resp.).
The following is obvious:
(a) X is a Sm-clasa (@ _class resp.) iff there exists
a 6-string (o -string resp.) Rof X and Re %2¢.
(b) X is a 6®_clase iff V - X is a aP-class.
(¢) Let X be a semiset. X is a 6'-class (4 -class resp.) iff
Xisa g% _c1ass (srm—class resp.). (For the notion of the
6~ (s -resp.) class see 0,2.0.)
1.0.3. Proposition . (1) Each 7P —class is revealed.
(2) A g% -clees X is a o -class iff X is a real class.
(3) A dm-class X is a ¢ -class iff X is a real class.
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Proof. (1) follows from the fact that each o1P’-class
is the intersection of a countable sequence of revealed clas-
ses8. (2) The part "only if" follows from the fact that each
gr-class is real. The part "if" follows from (1) and from the
following proposition: every real revealed class is a o -class.
(3) follows immediately from (2).

Remark. For the notion of a real class and the facts u-
sed in the previous proof see [&-V 1].

1.0,4. We shall write 6° (ar° resp.) instead of the symbol

G’de (Jl'de resp.). Thus, a class X is a 6° (7% resp.)-class
iff X is a Gm(arm resp.)-class for each standard system 77.
Iet Sd"vl be a revealment of Sdy (see [S-V 2]). We have Sdy <
ngf, and, for each sequence -ixn;nsFlﬂE Sd*v‘, there is a rela-
tion Re Sdy with (Vn)(R"in} = X ) (see [S-V 2] );. We deduce

say say
from this that each & (& resp.)-class is a 6 (ar

resp.)-
class.

We shall prove that there is a 6 -class which is not a
¢° -class, Let us recall that the following proposition holds:
there is no relation ReSdy such that (VYe Sdo)(ay)(Y = R"fy}).
(See [S-V 2].) At first, we shall strengthen it.

1.0.5. Proposition. (1) There is no relation R such

that (a) R is a &€°-class, (b) (V Ye 84,3(3y)(X = R"{y?).
(2) There is no relation R such that
(a) Ris a a-class, (b) (¥YeSd )(Iy)(Y = R"{y3).

Proof. (1) Suppose that there is a relation R such that
(a),(b) hold. Let & (x,y,z) be a normal formula of the langua-
ge FLy such that <{x,y>& R=(31n)d (x,y,n). Let {¥ ¥ cpy be a
numbering of S3,. Let us choose, for each ne¢ FN, a set y, such

that Y, = R*{yi. We have .xngs‘(i n)$ (x,y,,n). We shall
- 674 -



prove that there is a me FN such that xeYnz(Soc £ m)
o (x,yn,oo). Suppose that (¥ m)(3 x)(xe ¥, & (Yec £ m)
7 ® (x,y,,)). Let H be a function on FN such that, for each
m e FN, H(m)e ¥ & (Yoo £ m)7 & (H(m),y,, ) holds. Let h2 K
be a function which is a set. Thus, (Vm)(h(m)e Y, %
&( Ve 4m)7 @ (h(m),y,,c0)) holds. We deduce from this that
there is a y € N - FN, ¢ dom(h) and h( ) €Y, & (V< é‘y)
1® (h(7),y,,¢). Consequently, ( Vm)= @ (h('a"),yn,m) holds.
But this is a contradiction, because h(y )& Y,. Thus,
(A m)(VX)(xeY,—> (3 £ m) (x,y,,2¢)) holds and, finally,
there is a m<FN such that xe¥ =(Jec £ m) & (x,5,, ). -

Iet £ be a function such that dom(f);iyn}n and x€¥ =
=(3x £ £(y,)) & (x,y,y¢) holds for each n€FN, We define
the relation S as follows: <{x,y> € S=(3Je £ f(y))@(x,y,oc)f
Obviously, S<Sdy. We deduce from the construction of S that
(YYe Sdo)(ﬂ y)(Y = S*{y}) holds, which is a contradiction.
(2) follows from (1) immediately..

1.0.6. Proposition. Let —i!n?lnm be a numbering of Sd,
and let A = U{Y x fni;ne FN}. Then A is a &'-class which is
not a 6°-class.

i’roof' Clearly, A is a 6 -class. We havé (VYeSdo)

(3y)(Y = A"4y}). We deduce from the previous propositiom
that A is not a 6°-class.

1.0.7. The equivalénce 2 on V is defined as follows:
x £ y iff for each set-formula ¢ (z) in FL we have ¢(x) =
=@ (y). = is an indiscernibility equivalence and each
Yesd, is a clopen figure in the equivalence = . (See LV].)

Proposition. The equivalence = is not a o° -class.

Proof. Suppose that = is a %° -class. Let ¢(x,¥,2)
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be a set-formula of the language FLv satisfying: x=y =
=(¥n)g (x,y,n). We put {x,y> € S=(Jzey)(x =2). We have

{x,y>eS=(Azey)(VYn)¢g(x,z,n)=(Vn)(I zey)(Vec £ n)

9 (x,2,) and, consequently, S is a a#°-class. The < is
an indiscernibility equivalence. We deduce from this that for
each closed figure Y exists a set y such that Y = S™{y}. Each
class Y€ Sd  is a closed figure in £ , Thus, (YYesa)(Ay)

{Y = S"iy}) holds, which is a contradiction. (See 1.0.5.)

§ 2. Approximations of Gm-classes and :rwz-classes

2.0.0, A formula ¢ of the language FL,, is down-here-
dita_rx- (up-hereditary resp.) in a variable Z iff the general

closure of the following formula holds:

(VX,0) (XYL g(P) — ¢ @)
(Y XY (TeX & @) —> @ (§) resp.

Let ¢(X),...,X ) be a formula of the language FL and
let A be a constant denoting a class of #{ . Writing
g)® (Xy5¢00,X ) we mean the formula @ (A=-X),...,A=X ). Ob-
viously, for each i, 14i£Xk, the formula ¢ is down-heredi-
tary (up-hereditary resp.) in the variable X iff q® is
up-hereditary (down-hereditary resp.) in the variable X;.

Prdgoaition. Let ¢(2Z) be a normal formula of the lan-
guage FLm down (up resp.)-herediatry in the variable Z. Let
Re® be a 6-string (& -string resp.) of Q. Suppose that
@(Q) holds. Then there is a ne FN such that ¢ (R(n)) holds.

Proof. 1. Let R be a 6 -string of Q and let dom(Q) =f€.
We have (Ve § -FN) ¢ (R(e¢)). Put B = {xw e £; @(R(ec))i.
We deduce that B € #1 and §-FNSB. Thus BNFN+0 and, con-
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sequently, there is a n<BNFN such that ¢(R(n)) holds.
2, Iet Rbe a & -string of Q. Let {x,w>€ S={x,>¢R.
Then Se€7% and S is a G -string of V-Q. We deduce from
Cj® (V-Q) and from 1. that there is a ne FN such that
g7® (V-R(n)) and, consequently, g (R(n)) holds.

We say that a formula ¢ of the language FL,, is {X,Y)-
hereditary iff ¢ is down-hereditary in the variable X dnd
up-hereditary in the variable Y. Evidently, ¢ is <X,Y)>-
hereditary iff ¢® is (Y,X> -hereditary.

2,0,1. Theorem. Let ?(X,Y) be a normal formula of the
language FL% which is {(X,Y) -hereditary. Let Q be a ojm-
class and suppose ¢(Q,Q).

Then there is a 6-string R of Q, Re %L , such that
the formula ¢(R(ec},({cc+1)) holds for each « +1 ¢dom(R).

Proof. Let S be a ¢ -string of Q, S e®? and let
dom(S) = f . We deduce from the previous proposition that
(Vm)(3An)(n>m & (S(m),S(n)). (%)
Thus, there is a 1% ¢ N-FN with (Ve € P)(3B e £ )(B >c&k
& @(S(¢),S(3)). We put for each o € ¥ : G(cec) = min{fle
€g; B> 0c&g(slc),S(B)).

The G is a function, G:2—> § , and Ge % . Thus, G is
a set. We deduce from (> ) that G"FNSFN, Let H be a func-
tion defined recursively on FN as follows: H(0) = 0, H(n+l)=
= G(H(n)). Let h2 H be a function. We have (V¥ n)(h(ntl) =
= G(h(n))& h(n) € ¥ ). Thus there is a « & N-FN such that
(Ve € 0" )(h(c +1) = G(h(c ))& h(t) € 2% . We obtain from
this that, for each o« € J,

¢ (S(h(ec )),S(h(+1))) (% %)

holds. Put {x,x> € R=x €L <{x,h(c)d><c S, Ris a G-
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string and R ¢ %7 ., We have G"FNC FN and, consequently,
h*FNCS FN holds. We deduce from this that R is a 6 -string
of Q. Finally, we deduce ¢(R(cc),R(xx+1)), for each <+l e
€ dom(R), from (kx),

2.0.2, Theorem. Let (X,Y) be a normal formula of the
language FL,, which is <X,Y) -hereditary. Let Q be = Pt
class such that ¢(Q,Q) holds,

Then there is & Jr-string Rof Q, R € @ , such that the
formula ¢ (R(cs +1),R(c¢)) holde for each «+1¢dom(R).

This follows from the previous theorem considering the
class V-Q and the formula g® x,Y).

2,1.0. Iet kcFN, Let, for each i<k, R be a a(i)+l-ary
relation, Ry € #* and a(i) € FN. We denote by LR , (X,Y) the
formulm

e Oeyg ., ama®ey,

Obviocusly, ﬂ'Ri'lluk(l,!) is a normal formula of the language
PLgy , which is <X,Y) -hereditary.

Propositiom. Let k, By, i£k, be as above and let BEQ<S
E A be classes such that ' BFe %t , & % and IRT, . (Q,Q)
holds.

(1) let Q be a 6m-claas. Then there exists a 6 -string
S of Q such that S ¢ 7t , S(0) = B, S(dom(S)-1) = A and’
TR, ., (S(x),Sct1)) holds for each «c+1 e dom(S).

(2) let Q be a o™ -class. Then there exists a a -string
S of Q such that S ¢ 9, S(0) = A, S(dom(S)-1) = B and
FRJ,, , (S(cc+1),S(cc)) holds for each c+1¢ dom(S).

Proof. (1) Let ¢(X,Y) designate the formula
IR, (X, T)& BE XX YS A, We deduce from 2.0.1 that there ex-

ist a number § ¢ N and a € -string R of Q such that R« @ ,
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£= dom(R) and @(R(e¢),R(c+1)) holds for each «+1€ § .
Let S be a reiation with the following properties: dom(S) = f,
s"{03= B, S"{g -15= A and, for each 1£ < <{ -1, S"fc} =

= R"{ o« +1%., The 6 -string in question is the S. (2) follows
similarly as (1).
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