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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROUNAE 
20. 4 (1979) 

APPROXIMATIONS OF 3T-CLASSES AND *r-CLASSES 
J. MLCEK 

Abstract: This paper i s a contribution to the develop
ment of the alternative se t theory. We define ar'-classes 
{and ^-c lasses similarly) relat ively w .r . t . a codable c lass 
ttl (so called si***1 -c lasses and &*&-classes). I f Q i s a 
^ ^ - c l a s s then there i s a relation B & M with dom(R)c* 

such that Q « PK R"*n$jn c FN? (so called of -s tr ing of Q). 
This description of <sr^-classes enables us, in the case i f 
W i s rich enough, to approximate a or^-class Q in the f o l 

lowing sense: i f Q has a property of a certain type then the
re i s a ar -string R e 101 of Q such that the classes R*{oc| 
have an analogous one. An exact form of this proposition can 
be found in the theorems 2 .0 .1 , 2 .0 .2 . 

Key words: # - c l a s s , e'-class , standard system, down-he
reditary formula, up-hereditary formula, alternative set theory* 

Classification: 02K10, 02K99 

Introduction. If Q is a af-semiset then Q is a "uniform 

cf "-class in the following sense: there is a set-relation r 

with dom(r)€ N such that Q» fKr^n^jne FN J. (We say that r 

is si St -string of Q.) This uniformity is very useful for a 

work with 3f-semisets. There is a natural question whether 

every of -class Q is a "uniform or "-class in the sense that 

there is a set-theoretically definable of -string ©f Q. We pro

ve that there is a of -class which is no "uniform uf "-class* 
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Moreover, we shall define a notion of St -c lass re lat ively 

w .r . t . a codable class 03% (so called /^^-c lass ) so that 

each S7f^-class wi l l have a ar-string which i s an element 

of Wl . Specifying W, as a rich enough class (the so ca l l 

ed standard system) we can treat tf^-classes with advanta

ge. Note that every 3f -c lass i s m ^ ^ - c l a s s where 'ffi i s 

any revealment of the codable c lass Sdy. (See 0 . 0 . 1 , 1.0»4«) 

Our description of at u-classes enables us to approximate 

each •jy -c lass Q in the following sense: i f Q sa t i s f i e s a 

property of a certain type then there i s a of -string of 0. 

such that R e W, and the c lasses B*iorf sa t i s f i e s an analo

gous one. (See 2 .0 .1 , 2 .0 .2 . ) 

§ 0. Preliminaries 

0.0.0. The class of all natural numbers (finite natu

ral numbers resp.) is denoted by N (FN resp.). We use oc ,/3 f 

Xi <?$ f it^ (m,n,i , .j f lc resp.) as variables ranging over na

tural (finite natural resp.) numbers. HN is the class of ra

tional numbers. We shall use lower-case letters to denote 

sets. 

The operation of composition of relations is denoted by 

<- . The symbol Id denotes the identity mapping• Writing H: 

:X—> T we mean that H is a function with dom(H) = X and 

rag(H)£ Y. 

0.0.1. Sdy denotes the codable class of all set-theo

retically definable classes. Writing Sdy we mean that Sdy 

is a revealment of Sdy. (See E.S-V27.) The codable class of 

all classes set-theoretically definable without parameters 

is denoted by Sd . 
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0.1.0. let 1Ptt be a codable class. Writing -^-v we mean 

a language FL^ such that there is a relation S so that <S f .O 

is a coding pair which codes the class $t . It is obvious, 

how is defined the satisfaction of the formulas of the langua

ge FL^(cf. ESI]). Let Cf be a formula of the language FI-^* 

Writing gp(x0, • .• »x|a) we mean that the formula <p has no free 

variables distinct from x ,...,x^. Let T .••••TL be terms of 

the language Fh^y,. We let 

( To Tk \ 

xo xk 

designate the formula obtained from & by replacing all free 

occurences of X. ,...fX4 by T.,....^ resp. We shall omit the 
^•o xk ° * 

subscripts X* ,...,X. when they are immaterial or clear from 
xo xk 

the context. If there is no danger of confusion we shall not 

make a distinction between a class Xe'20t and the constant de

noting this class. 

Let j? be a formula of the language -?I*̂ v • ^ e symbol 

\4H.) <|enotes the formula resulting from cp by restriction 

of all quantifiers binding class-variables to elements of ®t. 

Suppose that <j? is a sentence of the language FL~* • 2he sen

tence " d? holds in the sense of Wl H denotes that cp *"^' holds• 

0.2.0. Recall that a class X is a g^-class (a sf -claee 

resp.) iff X is the union (the intersection resp.) of a count

able sequence of set-theoretically definable classes. 

§ 1. 6fm-clasaes and ar^-classes and their basic pro-

pertiee 

1.0.0. A codable claee 01 ie called a standard system 

iff the following holds: 
- 671 -



(1) ¥ £. W 

(2) Let 9>(x) be a normal formula of the language FL~^# 

Then ix; ^ ( x ) U ffll. 

(3) Let X effll be a class such that G+X.SN. Then the

re exist8 the least element of X. 

Evidently, the codable class Sdy of all set-theoretical

ly definable classes is a standard system. Moreover, Sdy-S %fc 

holds for every standard system 30t • 

Throughout this paper let ^t denote a standard system. 

1.0.1. Proposition. (1) No proper semiset is an ele

ment of <#t . 

(2) Each axiom of G^f^ holds in the sense of W . 

(GBB^n denotes the theory obtained from GB by substituting 

the axiom of infinity by its negation.) 

(3) Each class of Ufa is fully revealed. 

Proof. (1) Let X # 0 be a semiset of ftfl . We put 

A • if j f is a one-one mapping & dom(f)eN rng(f)c xf. 

Clearly, A e ^ holds. We define B « -Coo ;(3f e A)(dom(f ) = <*)?. 

We have B t > E and B is a semiset. Let y be the greatest ele

ment of B. Thus, there is a one-one mapping f such that 

dom(f) * y and rng(f)sX. Suppose that rng(f)£X. Let x e X -

- rng(f). Thus, the function fut<x, <y>J is an element of A, 

which is a contradiction. Consequently, X « dom(f) and X is a 

set. 

(2) It follows from (1) that only the following propo

sition must be proved: If F &7&t is a function and u is a set 

then F"u is a set. Suppose that F e /d7l is a function and u is 

a set. Is put B • iv£u$(3 t)(F"v£ t). Clearly, B e Wt and 

consequently, B is a subset of P(u). Let v be a <~ -maximal 
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element of B. We deduce from the maximality of v that v « u. 

Thus, there is a set t such that F*u£t. Moreover, F"u s Utt 

aid, consequently, F"u is a set. 

(3) Let X be a class of Offl . Let SSX be a countable 

class. Then there is a function f such that f^FN is a one-

one mapping of FN on S. Put A *{oo<5 dom(f );f (co) e X?. We have 

A e ffll and, consequently, A is a set. Clearly, S s f A S X . We 

deduce from this that X is a revealed class. Thus each class 

of fflfL is revealed and the proposition (3) follows immediate

ly from this. 

1.0.2. A string is a relation R such that dom(R)cN. A 

string R is called a 6* (tf resp. )-string iff RMao? s RMos+li 

'R" 4,oG +1$ £ R*-£a&l resp.) holds for each oo-Medom(R). A 

&(sf resp.)-string of a class X is a ^(tf resp.)-string R such 

that Ui R*i n1.jn€FNj » X(rKR"£n* $n em} = X resp.). 

Let R be a string. We shall write R(o&) instead of R"-£oc3. 

A.class X is called O^^class (.jr^-class resp.) iff 

there exists a string UeM such that X * U< R(n);neFN J 

(X * H i R(n) jn e FN § resp.). 

The following is obvious: 

(a) X is a 6^-class ( <xr^ -class resp.) iff there exists 

a € -string (ar-string resp.) R of X and R e ^ t -

(b) X is a 6^-class iff V - X is a ar^-class. 

(c) Let X be a semiset. X is a & -class (jr* -class resp.) iff 

X is a 6^-elass (ur^-class resp.). (For the notion of the 

6"- (jf-resp.) class see 0.2.0.) 

1.0.3. Proposition . (1) Each gr^-class is revealed. 

(2) A ar^-class Xis a of -class iff X is a real class. 

(3) A 6^-class X is a ti -class iff X is a real class. 
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Proof. (1) follows from the fact that each tfr^-elass 

ia the intersection of a countable sequence of revealed clas-

oee. (2) The part "only if" follows from the fact that each 

Jl*-class is real. The part "if" follows from (1) and from the 

following proposition: every real revealed c3as3 is a # -class. 

(3) follows immediately from (2). 

Remark. For the notion of a real class and the facts u-

©ed in the previous proof see L5-V ll. 

1.0.4. We shall write 6° (#° resp.) instead of tha symbol 
Sdv Sdv _ 

& (# resp.). Thus, a class X is a 6° (ir resp.)-class 

iff X is a # (^r^ resp.)-class for each standard system M^. 

let Sd^ be a revealment of Sdy (see [S-V 21). We have Sdy u 

cSdy and, for each sequence -CX^ne FN 3£Sd-», there is a rela

tion ScSd v with (Vn)(R*-£n$ « X) (see CS-V 21). We deduce 
7 n Sd* Sd* 

from this that each & (rt resp.)-class ia a & (or resp.)-

class. 

We shall prove that there is a & -class which is not a 

(T -class. Let us recall that the following proposition holds: 

there is no relation Re Sdy such that (VXe Sd0)(3y)(X « R"-fy})« 

(See [S-V 21.) At first, we shall strengthen it. 

1*0.5. Proposition. (1) There is no relation R such 

that (a^ R is a tf°-class, (b) (V Xc Sd 0MJy)(X * R"*yJ). 

(2) There is no relation R such that 

(a) R is a sr^-class, (b) (VXc Sd0)(3y)(X • R*4y$). 

Proof. (1) Suppose that there is a relation R such that 

(a),(b) hold. Let $> (x,y,z) be a normal formula of the langua

ge Fly ouch that <x,y>s Us(3 n)$ (x,y,n). Let -tYn?a€f»H be a 

numbering of Sd . Let us choose, for each ne FN, a set y n such 

that Xn * R"4yni. We have xdXn== (3 n)§ (x,yn,n). We shall 
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prove that there is a me PH such that xeY ssiBoc & m) 

$(x,yn,oo). Suppose that ( V m)(3 x)(xc Y n& (Vco 4* m) 

i (J> (x,y , o&)). Let H be a function on FN such that, for each 

me FN, H(m)£ Y n& (V^ & m)i $ (H(m),yn, oc) holds. Let h2 H 

be a function which is a set. Thus, (Vi)(h(i)€ Y Sk 

&( fo4ih $ (h(m),yn,o6)) holds. We deduce from this that 

there is a # e N - F N , >$ e dom(h) and h(^>€Y n&( va? * ? ) 

-i $ (h('3r),yn,oj). Consequently, ( Va)i <$ (h(3*)fyn,m) holds. 

But this is a contradiction, because h(^)eY n. Thus, 

(3 m)(V x)(x£ Yn~-> (3oc: ̂  m)$ (x,yn,o6)) holds and, finally, 

there is a m-eFN such that xc Y s(3o6 ̂  m)$ (x,yn, ). 

Let f be a function such that dom(f )-2iyn$n and x-e Yn s 

= (3cO ^ f (yn)) $ (x,yn, otv) holds for each ncFN. We define 

the relation S as follows: <x,y>£ SsCJoc 6 f(y)) $(x,yf cc). 

Obviously, ScSdy. We deduce from the construction of S that 

(YY€ SdQ)(3 y)(Y » S*-ty?) holds, which is a contradiction. 

(2) follows from (1) immediately. 

1.0.6. Proposition. Let *W n? n €™
 D e a numbering of SdQ 

and let A * Ui Yn* ̂ n^neFH?. Then A is a 6*-class which is 

not a 6°-clasa. 

.Proof. Clearly, A is a € -class. We have (VY€Sd 0) 

(3y)(Y == Aw4y})« We deduce from the previous proposition 

that A is not a €°-class. 

1.0.7. The equivalence & on V is defined as follows: 

x =L y iff for each set-formula 9>(z) in FL we have g>(x) as. 

2y(y)t -8- is an indiscernibility equivalence and each 

YeSd is a clopen figure in the equivalence S* • (See £VJ.) 

Proposition. The equivalence « is not a or0 -class. 

Proof. Suppose that -=- is a sr° -class. Let y(x,y,«) 
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be a set-formula of the language FL^ satisfying: x = y 2 

s (Vn>9 (x,y,n). We put <x,y> e S = ( J z c y ) ( x ^ z ) . We have 

<x,y> e Ss(3zey)(Vn)9(x,z,n)s(Vn)(3 2cy)(\/o^ ̂  n) 

q>(x,z,o&) and, consequently, S is a ar0-elass. The Jk is 

an indiscernibility equivalence. We deduce from this that for 

each closed figure Y exists a set y such that Y s Sniy} • Each 

class XcSd 0 is a closed figure in =- . Thus, (V Ye SdQ)(3 y) 

(Y * S"-ty}) holds, which is a contradiction. .(See 1.0.5.) 

§ 2. Approximations of 0^-classes and ar^-classes 

2.0.0. A formula <j? of the language F L ^ is down-here

ditary (up-hereditary reap.) in a variable Z iff the general 

closure of the following formula holds: 

(VX,Y)((XSY& 9(f)>—* <y(f)) 
(( v/X,Y)((YSX8<«y(|))~> <y(f)) resp. 

Let q>(X-j ,...,X. ) be a formula of the language FL and 

let A be a constant denoting a class of 3?t . Writing 

9 (xl»»»»t\) w e m e a n *-*« formula 9 (A-X-̂ ,..., A-X^). Ob

viously, for each i, l^i^k, the formula g> is down-heredi

tary (up-hereditary resp.) in the variable X^ iff g>^ is 

up-hereditary (down-hereditary resp.) in the variable X^. 

Proposition. Let y(Z) be a normal formula of the lan

guage FLu^ down (up resp.)-herediatry in the variable Z. Let 

R £ Z& be a ^-string (sf -string resp.) of Q. Suppose that 

<p(Q) holds. Then there is a neFN such that y(R(n)) holds. 

Proof. 1. Let R be a ^-string of Q and let dom(Q) **g. 

We have ( i* e f -FN) g> (R(o6)). Put B « ioo e f ; g>(R(oc))f. 

We deduce that B € W, and £-FN£B. Thus BHFN + O and, con-
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sequently, there is a ncBnHSf such that <j>(R(n)) holds. 

2. Let R be a 4T-string of Q. Let <x, o*>€ S s <x,oc>£R. 

Then S e Wt and S is a <o -string of V-Q. We deduce from 

cf (V-Q) and from 1. that there is a ne FN such that 

<y (V-R(n)) and, consequently, g?(R(n)) holds. 

We say that a formula y of the language FL-3* is <X,Y>-

hereditary iff <p is down-hereditary in the variable X and 

up-hereditary in the variable Y. Evidently, g? is <X,Y>-

hereditary iff 9 ® is <Y,X>-hereditary. 

2*0.1. Theorem. Let j>(X,Y) be a normal formula of the 

language FL^. which is <X,Y> -hereditary. Let Q be a 0 ^ -

class and suppose <j>(Q,Q). 

Then there is a ^-string R of Q, R e ^t, such that 

the formula <p(R(cc), ((cc+D) holds for each os+1 6dom(R). 

Proof. Let S be a tf -string of Q, S c®£ and let 

dom(S) * £ . We deduce from the previous proposition that 

(V/m)(3n)(n>m&cy(S(m),S(n)). (* ) 

Thus, there is a 1& e N-FN with ( S/oc e ̂ )(3f3c f )(/3 >oc<& 

& <y(S(a6),S((3 )). We put for each oc e 1? : G(oc) « min-C/3e 

e | . p > CS&CJ>(S(OC),S((3 )). 

The G is a function, G: t?—> £ , and fle^ . Thus, G is 

a set. We deduce from (#) that GWFNSFN. Let H be a func

tion defined recursively on FN as follows: H(O) » 0, H(n+1)» 

» G(H(n)). Let h2 H be a function. We have (V&)(h(atl) * 

» G(h(n))& h(n)c # ). Thus there is a oce N-FN such that 

( Vac € oT)(h(otf+1) - G(h(c&))&h(<*)<s <& . We obtain from 

this that, for each oc e <f> 

y(S(hU )),S(h(o*+l))) (**) 

holds. Put <x,oc> € Rsoc <scf& <x,h(cc) > * S. R is a 6.-
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string and R £ 101 . We have Q"FB£¥fl and, consequently, 

a"Flf cFN holds. We deduce from th i s that R i s a & -string 

of Q. Finally, we deduce g?(R(o<5) fR(ac,+l)), for each OG+1 e 

€ doa(P), from ( * * ) . 

2 .0 .2 . --he or am. Let g»(Xfx) be a normal formula of the 

language FL-* which ia <X,X> -hereditary. Let Q be m * r ^ -

claaa such that cp(QfQ) holds. 

Then there i s a iff-string R of Qf R e dfo , such that the 

formula* qp(R(otf+l),R(o$)) holds for each oc+lcdom(R). 

fhia follows from the previous theorem considering the 

class V-Q and the formula cj>®(XfX). 

2 . 1 .0 . Lit kcFtf, Let, for each i £ k f R̂  be a a(i)+l-ary 

re lat ion, \€ W and a ( i ) e F N . We denote by £%1i^k(XfX) the 

formulae 

^ ( o , S l 4 . M a i p f ( k , f i I . 

Obviously, IT^ll^^(X,X) i s a normal formula of the language 

F L ^ , which i a <X,X> -hereditary. 

Proposition. Let kt \ 9 i ^ k , be as above and l e t B£Q£r 

S i b i claaaea such thdtB^c ^ , i e ^ t and IR iJ iAk(Q fQ) 

holds. 

(1) Let Q be a 6™ - c l a s s . Then there exists a 6"-string 

S of Q such that S e m f S(0) * B , S(dom(S)-l) « A and 

fRjlijfrk(S(<i4,S(oc«fl)) holds for each o6+ledom(S). 

(2) Let Q be a ^-class. Bien there exists a sr -string 

S of Q such that S e Wl , S(0) = A, S(dom(S)-l) « B and 

fR i1 i6k(S(0c4-l) fs(oc<)) holds for each oc+le dom(S). 

Proof. (1) Let < (̂XfX) designate the formula 

£R il.Uk(X fX)ABSX8cXc A. We deduce from 2.0.1 that there ex-

ia t a number f c N and a 0 -etring R of Q such that R t£ M , 
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| = doa(B) and f(R(oO ,R(o6+l)) holds for each aC+l€ f . 

Let S be a relation with the following properties: doa(S) « £ t 

Sw-£03= B, S*-if -1§* A and, for each 1-£ oc < f - 1 , S"-£ccf * 

= R*i cc +13. The # - s t r i n g in question is the S. (2) follows 

similarly as (1). 
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