Commentationes Mathematicae Universitatis Caroline

Josef Mlček
Approximations of σ-classes and π-classes

Commentationes Mathematicae Universitatis Carolinae, Vol. 20 (1979), No. 4, 669--679

Persistent URL: http://dml.cz/dmlcz/105960

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1979

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

 20, 4 (1979)
APPROXIMATIONS OF ©-CLASSES AND $\boldsymbol{\pi}$-CLASSES J. MLCEK

Abstract

This paper is a contribution to the development of the alternative set theory. We define π-classes (and $\widetilde{\text {-classes similarly) relatively wir.t. a codable class }}$ of 8 -class then there is a relation $R \in 88$ with $\operatorname{dom}(R) \in \mathbb{X}$ such that $Q=\cap\left\{R^{\prime \prime}\{n\} ; n \in F N\right\}$ (so called $\pi^{\prime-s t r i n g ~ o f ~} Q$). This description of π_{0}-classes enables us, in the case if万ot is rich enough, to approximate a ortclass Q in the following sense: if Q has a property of a certain type then there is a $\boldsymbol{\pi}-\mathrm{string} R \in$ jor of Q such that the classes $R^{n \prime}\{\propto\}$ have an analogous one. An exact form of this proposition can be found in the theorems 2.0.1, 2.0.2.

Key words: π-class, σ-class, standard system, down-hereditary formula, uphereditary formula, alternative set theory.

Classification: 02KIO, 02K99

Introduction. If Q is a π-semiset then Q is a uniform or "-class in the following sense: there is a set-relation r with $\operatorname{dom}(r) \in \mathbb{N}$ such that $Q=\cap\left\{r^{n}\{n\} ; n \in \mathbb{F N}\right\}$. (we say that r is a $\pi-$-string of Q_{0}) This uniformity is very useful for a work with π-semisets. There is a natural question whether every π-class Q is a "uniform o "-class in the sense that there is a set-theoretically definable $\pi-s t r i n g$ of Q. We prom ve that there is a π-class which is no "uniform π "-class.

Moreover, we shall define a motion of π-clase relatively w.r.t. a codable class 肮 (so called ör-class) so that

 ed standard system) we can treat $\pi^{2 \beta \%}$-classes with advantage. Note that every $\pi-c l a s s$ is a $\pi^{\mathscr{H}}$-class where $\nsim 6$ is any revealment of the codable class Sd_{∇}. (See 0.0.1, 1.0.4.) Our description of $\sigma^{\mathscr{O}}$-classes enables us to approximate each or ${ }^{\mathscr{H}}$-class Q in the following sense: if Q satisfies a property of a certain type then there is a $\pi-s t r i n g$ of Q such that $R \in \mathscr{F}$ and the classes $R^{*}\{\propto\}$ satisfies an analogous one. (See 2.0.1, 2.0.2.)

§ 0. Preliminaries

0.0.0. The class of all natural numbers (finite natural numbers resp.) is denoted by N (FN resp.). We use α, β, $\gamma, \delta, \xi, \vartheta(m, n, i, j, k$ resp.) as variables ranging over natural (finite natural resp.) numbers. FN is the class of rational numbers. We shall use lower-case letters to denote sets.

The operation of composition of relations is denoted by - The symbol Id denotes the identity mapping. Writing $\mathrm{H}:$
$: X \rightarrow Y$ we mean that H is a function with $\operatorname{dom}(H)=X$ and ring (H) $£$.
0.0.1. Sa_{V} denotes the codable class of all set-theoretically definable classes. Writing $S d_{V}^{*}$ we mean that $S d_{V}^{*}$ is a revealment of Sd_{V}. (See [S-V2].) The codable class of all classes set-theoretically definable without parameters is denoted by Sd_{0}.
0.1.0. Le t. $X t$ be codable class. Writing $\mathrm{FL}_{2 x}$ we mean a language FI_{K} such that there is a relation S so that $\langle\mathrm{S}, \mathrm{X}\rangle$ is a coding pair which codes the class \neq. It is obvious, how is defined the satisfaction of the formulas of the langua-
 Writing $\varphi\left(x_{0}, \ldots, x_{n}\right)$ we mean that the formula φ has no free variables distinct from x_{0}, \ldots, x_{m}. Let T_{0}, \ldots, T_{k} be terms of the language $\mathrm{FL}_{\text {Jr. We let }}$

$$
\varphi\left(\frac{T_{0}}{X_{i_{0}}}, \ldots, \frac{T_{k}}{X_{i_{k}}}\right)
$$

designate the formula obtained from φ by replacing all free occurences of $X_{i_{0}}, \ldots, X_{i_{k}}$ by T_{0}, \ldots, T_{k} resp. We shall omit the subscripts $X_{i_{0}}, \ldots, X_{i_{k}}$ when they are immaterial or clear from the context. If there is no danger of confusion we shall not make a distinction between a class $X \in \mathscr{O}$ and the constant denoting this class.

Let φ be a formula of the language $F L_{\text {ar }}$. The symbol $\varphi^{\left(\partial \ell^{\prime}\right)}$ denotes the formula resulting from φ by restriction of all quantifiers binding class-variables to elements of 形. Suppose that φ is a sentence of the language FL ar . The sentence " φ ' holds in the sense of $\not \partial \%$ " denotes that φ (ar) holds.
0.2.0. Recall that a class X is a $\sigma^{\prime}-c l a s s$ (a $\pi-c l a s s$ resp.) iff X is the union (the intersection resp.) of a countable sequence of set-theoretically definable classes.
§ 1. $6^{88 \%}$-classes and $0^{8 \gamma}$-classes and their basic properties
1.0.0. A codable class of is called a standard system iff the following holds:
（1）$\nabla \subseteq \nsubseteq$
（2）Let $\varphi(x)$ be a normal formula of the language $\mathrm{FL}_{\nsim \varepsilon^{\circ}}$ ． Then $\{x ; \varphi(x)\} \in み$ ．
（3）Let $X \in \mathscr{Z}$ be a class such that $0 \neq X \subseteq N$ ．Then the－ re exists the least element of X ．

Evidently，the codable class Sd_{V} of all set－theoretical－ iv definable classes is a standard system．Moreover， $\mathrm{Sd}_{\mathrm{V}} \subseteq \npreceq \vdash$ holds for every standard system μ_{l} ．

Throughout this paper let $⿰ 豸 勺<$ denote a standard system．
1．0．1．Proposition．（1）No proper semiset is an ele－

（2）Each axiom of $\mathrm{GB}_{\text {fin }}$ holds in the sense of $\mathcal{J Y}$ ． （ $G_{\text {fin }}$ denotes the theory obtained from $G B$ by substituting the axiom of infinity by its negation．）
（3）Each class of $\partial \not \partial$ is fully revealed．
Proof．（1）Let $X \neq 0$ be a semiset of pri．We put $A=\{f ; f$ is a one－one mapping $\& \operatorname{dom}(f) \in N \quad \mathbf{r n g}(f) \subseteq X\}$ ． Clearly，$A \in \notin \mathcal{Z}$ holds．We define $B=\{\propto ;(\exists f \in A)(\operatorname{dom}(f)=\infty)\}$ ． We have $B \in \mathcal{H}$ and B is a semiset．Let γ be the greatest ele－ ment of B．Thus，there is a one－one mapping f such that $\operatorname{dom}(f)=\gamma$ and $\mathrm{rng}(f) \subseteq X$ ．Suppose that $\mathrm{rng}(f) \subseteq X$ ．Let $x \in X-$ －rmg（f）．Thus，the function $f \cup\{\langle x, \gamma\rangle\}$ is an element of A ， which is a contradiction．Consequently，$X=\operatorname{dom}(f)$ and X is a set．
（2）It follows from（1）that only the following propo－ sition must be proved：If $F \in \notin \neq$ is a function and u is a set then $P^{m} u$ is a set．Suppose that $F \in \mathcal{Z}$ is a function and u is
 consequently，B is a subset of $P(u)$ ．Let v be $a \subseteq$－maximal
element of B. We deduce from the maximality of v that $v=u_{\text {. }}$ Thus, there is a set t such that $F^{n \omega} u \subseteq t$. Moreover, $F{ }^{n} u \in \mathscr{H}$ and, consequently, $F^{\prime \prime} u$ is a set.
(3) Let X be a class of \nVdash. Let $S \subseteq X$ be a countable class. Then there is a function f such that $f(F N$ is a oneone mapping of FN on S. Put $A=\{\propto \in \operatorname{dom}(f) ; f(\alpha) \in X\}$. We have $A \in \partial \neq$ and, consequently, A is a set. Clearly, $S \subseteq f^{n A} \subseteq X$. We deduce from this that X is a revealed class. Thus each class of $3 f$ is revealed and the proposition (3) follows immediately from this.
1.0.2. A string is a relation R such that $\operatorname{dom}(R) \in N . A$ string R is called a σ (π^{\prime} resp.) -string iff $R^{n}\{\propto\} \subseteq R^{n}\{\propto+1\}$. $\left\{R^{n}\{\alpha+1\} \subseteq R^{n}\{\propto\}\right.$ resp.) holds for each $\propto+1 \in \operatorname{dom}(R)$. A σ (π resp.) -string of a class X is a σ (π resp.)-string R such that $U\left\{R^{m}\{n\} ; n \in F N\right\}=X\left(\cap\left\{R^{n}\{n\} ; n \in F N\right\}=X\right.$ resp. $)$.

Let R be a string. We shall write $R(\alpha)$ instead of $R^{\infty}\left\{\alpha_{0}\right\}$.
A.class X is called $\sigma^{\mathscr{H}}$-class ($\pi^{\mathscr{H} \text {-class resp. }) ~ i f f ~}$ there exists a string $R \in \mathscr{O}$ such that $X=U\{R(n) ; n \in F N\}$ ($X=\cap\{R(n) ; n \in F N\}$ resp.).

The following is obvious:
(a) X is a $\sigma^{\mu r}$-class ($\pi^{\mathscr{O}}$-class resp.) iff there exists
a 6-string (π-string resp.) R of X and $R \in \mathscr{H}$.
(b) X is a $\sigma^{\partial \partial t}$-class iff $V-X$ is a $\pi^{\partial \gamma}$-class.
(c) Let X be a semiset. X is a σ-class (π-class resp.) iff
 σ - (π-resp.) class see 0.2 .0.$)$
1.0.3. Proposition . (1) Each $\pi^{0 Z \ell}$-class is revealed.
(2) $4 \pi^{30 \ell}-$ class X is a $\pi-c l a s s$ iff X is a real class.
(3) $A \sigma^{\text {(oflclass } X}$ is a σ-class iff X is a real class.

Proof. (1) follows from the fact that each of $\partial Z_{\text {-class }}$ is the intersection of a countable sequence of revealed classea. (2) The part "only if" follows from the fact that each π-class is real. The part "if" follows from (1) and from the following proposition: every real revealed class is a π-class. (3) follows immediately from (2).

Remark. For the notion of a real class and the facts used in the previous proof see [C-V 1].
1.0.4. We shall write σ° (π^{0} resp.) instead of the symbol $\sigma^{S d_{V}}\left(\pi^{S d} V^{\text {resp. }}\right.$). Thus, a class X is a $\sigma^{0}\left(\pi^{0}\right.$ resp.)-class
 Let $S a d_{V}^{*}$ be a revealment of $S d_{V}$ (see $[S-V 2]$). We have $S d_{V} C$ $\subseteq S_{V}^{*}$ and, for each sequence $\left\{X_{n} ; n \in F N\right\} \subseteq S d_{V}^{*}$, there is a relation $R \in S d_{V}$ with $(\forall n)\left(R^{n}\{n\}=X_{n}\right)$ (see $[S-V 2]$). We deduce from this that each σ (π resp.)-class is a $\sigma^{S d_{V}^{*}}$ ($\sigma^{S d_{V}^{*}}$ resp.)class.

We shall prove that there is a σ-class which is not a σ^{0}-class. Let us recall that the following proposition holds: there is no relation $R \in S d_{V}$ such that $\left(\forall I \in S d_{0}\right)(\exists y)\left(Y=R^{\prime \prime}\{y\}\right)$. (See [S-V 2].) At first, we shall strengthen it.
1.0.5. Proposition. (1) There is no relation R such
that (a), R is a 6°-class, (b) $\left(\forall Y \in S d_{0} j(\exists y)\left(Y=R^{n}\{y\}\right)\right.$.
(2) There is no rulation R such that
(a) R is a $\pi^{0}-c l a s s$, (b) $\left(\forall Y \in S d_{0}\right)(\exists y)\left(Y=R^{m}\{y\}\right)$.

Proof. (1) Suppose that there is a relation R such that (a), (b) hold. Let $\Phi(x, y, z)$ be a normal formula of the language $F L_{V}$ such that $\langle x, y\rangle \in R \equiv(\exists n) \Phi(x, y, n)$. Let $\left\{Y_{n}\right\}_{n \in F N}$ be a numbering of Sd_{0}. Let us choose, for each $n \in F N$, a set y_{n} auch that $Y_{n}=R^{\boldsymbol{m}}\left\{y_{n}\right\}$. We have $x \in Y_{n} \equiv(\exists n) \Phi\left(x, y_{n}, n\right)$. We shall
prove that there is a $m \in$ FN such that $x \in Y_{n}=(\exists \propto \leq m)$ $\Phi\left(x, y_{n}, \infty\right)$. Suppose that $(\forall m)(\exists x)\left(x \in Y_{n} \&(\forall \propto \leq m)\right.$ $\left.\neg \Phi\left(x, y_{n}, \infty\right)\right)$. Let H be a function on FN such that, for each $m \in F N, H(m) \in Y_{n} \&(\forall \propto \leq m) \subset \Phi\left(H(m), y_{n}, \infty\right)$ holds. Let $h \supseteq H$ be a function which is a set. Thus, $(\forall m)\left(h(m) \in Y_{n} \&\right.$ $\left.\&(\forall \propto \leqslant m)\urcorner \Phi\left(h(m), y_{n}, \infty\right)\right)$ holds. We deduce from this that there is a $\gamma \in N-F N, \gamma \in \operatorname{dom}(h)$ and $h(\gamma) \in Y_{n} \&(\forall \alpha \leqslant \gamma)$
$\neg \Phi\left(h(\gamma), y_{n}, \infty\right)$. Consequently, $(\forall m) \neg \Phi\left(h(\gamma), y_{n}, m\right)$ holds. But this is a contradiction, because $h(\gamma) \in Y_{n}$. Thus, $(\exists \mathrm{m})(\forall x)\left(x \in Y_{n} \rightarrow(\exists \propto \leq m) \Phi\left(x, y_{n}, \propto\right)\right)$ holds and, finally, there is a $m \in F N$ such that $x \in Y_{n} \equiv(\exists \propto \leq m) \Phi\left(x, y_{n}\right.$,).

Let f be a function such that $\operatorname{dom}(f) \supseteq\left\{y_{n}\right\}_{n}$ and $x \in Y_{n} \equiv$ $\equiv\left(\exists \propto \leqslant f\left(y_{n}\right)\right) \Phi\left(x, y_{n}, \infty\right)$ holds for each $n \in$ FN. We define the relation S as follows: $\langle x, y\rangle \in S \equiv(\exists \propto \leq f(y)) \Phi(x, y, \infty)$. Obviously, $S \in S d_{V}$. We deduce from the construction of S that $\left(\forall Y \in S d_{0}\right)(\exists y)\left(Y=S^{\prime \prime}\{y\}\right)$ holds, which is a contradiction. (2) follows from (1) immediately.
1.0.6. Proposition. Let $\left\{Y_{n}{ }^{{ }^{n}}{ }_{n \in F N}\right.$ be a numbering of S_{0} and let $A=U\left\{Y_{n} \times\{n\} ; n \in \operatorname{FN}\right\}$. Then A is a σ-class which is not a σ°-class.

Proof. Clearly, A is a σ-class. We have ($\forall Y \in S d_{0}$) $(\exists y)\left(Y=A^{\prime \prime}\{y\}\right)$. We deduce from the previous proposition that A is not a σ°-class.
1.0.7. The equivalence $\stackrel{\circ}{=}$ on V is defined as follows: x ㅇ y iff for each set-formula $\varphi(z)$ in FL we have $\varphi(x) \equiv$ $\equiv \varphi(y) . \doteq$ is an indiscernibility equivale nce and each $Y \in S d_{0}$ is a clopen figure in the equivalence $\stackrel{0}{=}$. (See [V].)

Proposition. The equivalence $\stackrel{\circ}{=}$ is not a π°-class.
Proof. Suppose that \cong is a π^{0}-class. Let $\varphi(x, y, z)$

```
be a set-formula of the language FL| satisfying: x = y \equiv
\equiv(\foralln)\varphi(x,y,n). We put \langlex,y\rangle\inS \equiv(\existsz\iny)(x\geqslant渞). We have
<x,y>\inS \equiv(\existsz\iny)(\foralln)\varphi(x,z,n)\equiv(\foralln)(\existsz\iny)(\forall\propto\leqslantn)
    \varphi ( x , z , \propto ) \text { and, consequently, S is a } \pi ^ { 0 } \text { -class. The } \stackrel { O } { \| } \text { is}
an indiscernibility equivalence. We deduce from this that for
each closed figure Y exists a set y such that Y = S"{y}. Each
class Y & Sd o is a closed figure in O . Thus, ( }\forall\textrm{Y}\inS\mp@subsup{S}{0}{\prime})(\existsy
    (Y = S"{y}) holds, which is a contradiction. (See l.0.5.)
```

§ 2．Approximations of $\sigma^{\partial \ell}$－classes and $\pi^{\mathscr{2}}$－classes
2．0．0．A formula φ of the language $\mathrm{FL}_{\text {gre }}$ is down－here－ ditary（up－hereditary resp．）in a variable Z iff the general closure of the following formula holds：

$$
\begin{aligned}
& (\forall X, Y)\left(\left(X \subseteq Y \& \varphi\left(\frac{Y}{Z}\right)\right) \rightarrow \varphi\left(\frac{X}{Z}\right)\right) \\
& \left((\forall X, Y)\left(\left(Y \subseteq X \& \varphi\left(\frac{Y}{Z}\right)\right) \rightarrow \varphi\left(\frac{X}{Z}\right)\right)\right. \text { resp. } \\
& \text { Let } \varphi\left(X_{1}, \ldots, X_{k}\right) \text { be a formula of the language FL and }
\end{aligned}
$$ let A be a constant denoting a class of $\nsim l$ ．Writing $\varphi^{(0)}\left(x_{1}, \ldots, x_{k}\right)$ we mean the formula $\varphi\left(A-X_{1}, \ldots, A-X_{k}\right) .0 b-$ viously，for each i ，$l \leqslant i \leqslant k$ ，the formula φ is down－heredi－ tary（up－hereditary resp．）in the variable X_{i} iff $\varphi^{(\mathbb{4}}$ is up－hereditary（down－hereditary resp．）in the variable X_{i} ．

Proposition．Let $\varphi(Z)$ be a normal formula of the lan－ guage $\mathrm{FL}_{\text {zoh }}$ dow（up resp．）－herediatry in the variable Z ．Let $R \in O_{h}$ be a σ－string（ r－string resp．）of Q ．Suppose that $\varphi(Q)$ holds．Then there is a $n \in F N$ such that $\varphi(R(n))$ holds．

Proof．1．Let R be a σ－string of Q and $\operatorname{let} \operatorname{dom}(Q)=\xi$ ． We have $(\forall \propto \in \xi-F N) \varphi(R(\propto))$ ．Put $B=\{\propto \in \xi ; \varphi(R(\propto))\}$ ． We deduce that $B \in ⿰ 习 习$ and $\xi-F N \subseteq B$ ．Thus $B \cap F N \neq 0$ and，con－
sequently, there is a $n \in B \cap F N$ such that $\varphi(R(n))$ holds. 2. Let R be a π-string of Q. Let $\langle x, \infty\rangle \in S \equiv\langle x, \propto\rangle \notin R$. Then $S \in \not \partial t$ and S is a σ-string of $V-Q$. We deduce from $\varphi^{(0)}(V-Q)$ and from 1 . that there is a $n \in F N$ such that $\varphi^{(1)}(V-R(n))$ and, consequently, $\varphi(R(n))$ holds.

We say that a formula φ of the language $F L_{\partial r \ell}$ is $\langle X, Y\rangle$ hereditary iff φ is down-hereditary in the variable X and up-hereditary in the variable Y. Evidently, φ is $\langle X, Y\rangle$ hereditary iff $\varphi^{(A)}$ is $\langle Y, X\rangle$-hereditary.
2.0.1. Theorem. Let $\varphi(X, Y)$ be a normal formula of the language FL_{20} which is $\langle X, Y\rangle$-hereditary. Let Q be a $\sigma^{\infty} \ell_{-}$ class and suppose $\varphi(Q, Q)$.

Then there is a σ-string R of $Q, R \in \nVdash$, such that the formula $\varphi(R(\propto),((\alpha+1))$ holds for each $\alpha+1 \in \operatorname{dom}(R)$.

Proof. Let S be a σ-string of $Q, S \in \mathscr{O}$ and let $\operatorname{dom}(S)=\xi$. We deduce from the previous proposition that $(\forall m)(\exists n)(n>m \& \rho(S(m), S(n))$ 。
Thus, there is a $\vartheta \in N-F N$ with $(\forall \propto \in \vartheta)(\exists \beta \in \hat{\xi})(\beta>\alpha \&$ $\& \varphi(S(\alpha), S(\beta))$. We put for each $\alpha \in \vartheta: G(\alpha)=\min f \beta \in$ $\in \xi ; \beta>\infty \& \varphi(S(\alpha), S(\beta))$.
The G is a function, $G: v \rightarrow \xi$, and $G \in \partial \nLeftarrow$. Thus, G is a set. We deduce from ($*$) that $G^{N F N} \subseteq F N$. Let H be a function defined recursively on FN as follows: $H(0)=0, H(n+1)=$ $=G(H(n))$. Let $h \supseteq H$ be a function. We have $(\forall n)(h(n+1)=$ $=G(h(n)) \& h(n) \in \vartheta)$. Thus there is a $\propto \in N-F N$ such that $\left(\forall \propto \in \sigma^{\sim}\right)(h(\alpha+1)=G(h(\alpha)) \& h(\alpha) \in \vartheta$. We obtain from this that, for each $\alpha \in \mathcal{\delta}$,

$$
\varphi(S(h(\propto)), S(h(\propto+1))) \quad \text { (**) }
$$

hold s. Put $\langle x, \propto\rangle \in R \equiv \propto \in \delta \&\langle x, h(\alpha)\rangle \in S$. R is a \quad.-
 $h^{n} F A \subseteq F N$ hold s. We deduce from this that R is a σ-string of Q. Finally, we deduce $\varphi(R(\propto), R(\propto+1))$, for each $\propto+1 \in$ c dom(\$), from (**).
2.0.2. Theoren. Let $\varphi(X, Y)$ be a normal formula of the language $\mathrm{FL}_{\text {pr }}$ which is $\langle X, Y\rangle$-hereditary. Let Q be a roor cleas such that $\varphi(Q, Q)$ holds.

Then there is a $\pi-s$ tring R of $Q, R \in \nsim$, such that the formule $\varphi(R(\propto+1), R(\propto))$ holds for each $\propto+1 \in \operatorname{dom}(R)$.

This follows from the previous theorem considering the clase $V-Q$ and the formula $\varphi^{(1)}(X, Y)$.
2.1.0. Let $k \in \mathrm{FH}$. Let, for each $i \leqslant k$, F_{i} be a $a(i)+1$-ary relation, $\mathbb{R}_{1} \in \nVdash K$ and $a(i) \in F N$. We denote by $\mathbb{I} R_{i} \mathbb{I} i \leq k(X, Y)$ the formalea

$$
R_{0}^{u X^{a(0)}} \subseteq Y \& \ldots \& R_{k}^{\mu x^{a(k)}} \subseteq Y .
$$

Obviously, $\llbracket R_{i} \rrbracket_{i \leqslant k}(X, Y)$ is a normal formula of the la nguage $P L_{\text {ate }}$, which is $\langle X, Y\rangle$-hereditary.

Propoaition: Let $k, R_{i}, i \leqslant k$, be as above and le $t B \leq Q \leq$ ᄃ 4 be classee such that $B \in \mathcal{B}, \mathbb{A} \in \mathcal{H}$ and $\mathbb{T} R_{1} \mathbb{I}_{i \leq k}(Q, Q)$ hold 8.
 S of Q such that $S \in \mathscr{H}, S(0)=B, S(\operatorname{dom}(S)-1)=A$ and $\llbracket R_{1} \mathbb{I}_{i \leqslant k}(S(\alpha), S(\alpha+1))$ holds for each $\alpha+1 \in \operatorname{dom}(S)$.
(2) Let Q be a $\pi^{\infty r}$-class. Then there exists a $\pi-s t r i n g$ S of Q such that $S \in \mathcal{M}, S(0)=A, S(\operatorname{dom}(S)-1)=B$ and $\left.\mathbb{K} R_{i}\right]_{i \leqslant k}(S(\alpha+1), S(\propto))$ holds for each $\alpha+1 \in \operatorname{dom}(S)$.

Proof. (I) Let $\varphi(X, Y)$ designate the formula $\left.\llbracket R_{i}\right]_{i \leq K}(X, Y) \& B \subseteq X \& Y \subseteq A$. We deduce from 2.0.1 that there exist a number $\xi \in N$ and a σ-string R of Q such that $R \in \partial 广$,
$\xi=\operatorname{dom}(R)$ and $\varphi(R(\propto), R(\propto+1))$ holds for each $\propto+1 \in \xi$. Let S be a relation with the following properties: don(S) $=\xi$, $S^{\prime \prime}\{0\}=B, S^{\prime \prime}\{\xi-1\}=A$ and, for each $1 \leq \propto<\xi-1, S^{\prime \prime}\{\propto\}=$ $=R^{n}\{\propto+1\}$. The σ-string in question is the S. (2) follows similarly as (1).

References

[Č-V 1] K. ČUDA and P. VOPĚNKA: Real and imaginary classes in the alternative set theory, Comment. Math. Univ. Carolinae 20(1979), 639-653.
[S-V 2] A. SOCHOR and P. VOPENKA: Revealments, to appear in Comment. Math. Univ. Carolinae 21(1980).
[V] P. VOPĚNKA: Mathematics in the alternative set theory, Teubner-Texte, Leipzig, 1979.

Matematický ústav
Universita Karlova
Sokolovská 83, 18600 Praha 8
Československo
(Oblatum 4.6.1979)

