
Commentationes Mathematicae Universitatis Carolinae

Stanislav Žák
A Turing machine oracle hierarchy. II.

Commentationes Mathematicae Universitatis Carolinae, Vol. 21 (1980), No. 1, 27--39

Persistent URL: http://dml.cz/dmlcz/105975

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1980

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/105975
http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

21. 1 (1980)

A TURING MACHINE ORACLE HIERARCHY H '
Stanislav ŽÁK

Abstract: We continue the investigation of the com
plexity measures introduced in the previous paper "A Turing
machine oracle hierarchy I". Using the same principle of
diagonalization we construct complexity hierarchies on the
set of languages accepted by deterministic and nondetermi-
nistic Turing machines with oracles.

Key words: Diagonalization, Turing machine, oracle,
complexity, hierarchy•

Classification: 68A20

Introduction* This paper is a continuation of [23*

Here, we construct a complexity hierarchy on the set of lan

guages accepted by nondeterministic Turing machines of a

special type with an oracle according to the first measure,

introduced in L2], two hierarchies are constructed on the

set of languages accepted by deterministic Turinp machines

with an oracle according to two first measures mentioned in

Abstract of L23, and the last hierarchy is prcved on the

set of languages accepted by nondeterministic Turing machi

nes with an oracle with respect to the second measure.

+) An abridged version of this work can be found in Pro
ceedings of the symposium MFCS'79.

- 27 -

The results are of the form: If the set of pairs (T,u),

where T is a Turing machine without oracle and u is a word

accepted by T, is m-reducible (Ell) to A and if t is a recur

sive function with lim t * oo , then there is a language L

such that Lei* f Le ORACLB(t) and L$ U-CORACLE(t1) |

|lim inf(t(n) - t-̂ Cn+l) - d(n))>OJ, where d is a very small

function.

We conclude the paper by a comparison of our results with re

sults which follow from a simple diagonalization.

All preliminaries and definitions which are needed here

can be found in [2J. The continuity with [2.1 is so close that

we use a uniform numbering of theorems and lemmas common for

both papers.

Let 9> be the x-th function in the standard numbering

of the partial recursive functions and ! yx(m) means that y>

ia defined on the natural number m. We are ready to prove the

following lemma.

Lemma 5 (for i=l,2). If K^mA then for eachk, k e N,

k£l, there is an (i,d/k,A)-recursive function d such that

(1) d is nondecreasing and unbounded, d---id,

(2) Val d =-u-.'fd(n)|neN} is a recursive set,

(3) for each nondecreasing and unbounded recursive func

tion c the inequality d4c holds.

Proof. Let us define, for m€N,

wt-A
f(m) =-..SQ f(i)+ 2 *tyx(m)|0-*x^mA! 9x(m)} + m.

We see that f i s an increasing function and that for each re

cursive function c the inequality c4 f holds. We define for

a l l n«N g(n) = min{m|n^f(m)|. Since f i s increasing, g i s
- 28 -

a nondecreasing surjection. Now, we are gding to prove that

for each nondecreasing and unbounded recursive function c

the inequality g^c holds.

Suppose g^c for such a c. Then there are infinitely

many n such that c(n)-<g(n). Let cp be a recursive function

such that for eftth m c N cp(m) = max-Ji|c(i)^ m}. Clearly

^>(c(n))£n. Now, we have infinitely many n s N such that

min{m(n ^ g>(m)} ̂ c(n)< g(n) = min{m)n£f (m)}

which yields a contradiction since <$> =-£ f.

It is clear that there is a deterministic machine M

with oracle A which constructs g i.e. for all ncN M(l)=

= lg^n' and two increasing recursive functions h-j, hg such

that for all n c N h .jg(n) = o r a c l e . J (l n) . This is ensured by

the fact that for rewriting the word l n into lg^n' M needs

to compute the numbers f(0), f(l), f(2),..., f(g(n)) only.

Hence the number oracleid) depends on the number g(n).

Let us define, for all neN, d(n) = k-h^gfn). We see

that d is nondecreasing and unbounded since both h^ and g are

nondecreasing and unbounded, and that Val d is a recursive

aet because h^ is increasing and Val d = Val k-h^g = Val-k h^

since g is a surjection. We also see that d is (i,d/k,A)-re-

cursive since, for all neN, the oracle1 complexity of the
d(n) k#nig<n)

construction of iuv"' = l is the same as the comple

xity of the construction of l^n-* which is equal to hig(n) =

= (d/k)(n).

Now, we must prove that d satisfies the condition (3)

of the lemma. Let c be a nondecreasing and unbounded recur

sive function. Let us define for all neN,
- 29 -

h7 (n) =- max{m|hi(m)< nj

if there is such an m and h^di) = 0 otherwise. We have

h.h.7 £ id. Let us write c. = hi [c/k] where t 1 denotes

the integer part. Such a function a. is recursive, nondecre-

asing and unbounded. Therefore g-4 c^ and also

d = k.hig4k»hici = k h-h^lc/kJ 6 k.tc/k^c. Q.E.D.

Definition. We say that a machine with an oracle is an

r-machine if each its infinite computation contains infini

tely many questions to its oracle.

Lemma 6. If K ̂ mA then there is a mapping F, F:S—•> S,

such that:

(a) For each s^S, %(«) *s a n r-machine.

(b) If M is an r-machine/then for each u e {0,1? the

equality oraclep/ x(u) = 1+2 oracles(u) holds.

(c) The set F(S) = 4F(s)|s&S} is recursive.

(d) F is realizable on a TM.

Proof (sketch). % (s \ computes in the same way as M

except that Mp, N asks of A some special questions. M w s)

puts one of these questions before it starts processing the

innut word n ni then again each time immediately after it has

asked A when simulating M . These questions are of the form:

"Is there an infinite continuation of computation of M with

out asking A ?" (Here the K5nig's lemma is implicitly used.)

If the answer is yes then M«/ * stops else it continues to

simulate M . t Q.E.D.

* Let us fix the mapping F from the lemma. We shall also

write F(Ma), F(Ma) =df MF(g)._ ^ _

Lemma 7. Let A be an oracle, K £ A. If t is an A-re-

cursive bound then the languages -(sulu € L^(s), 3£F(S)J and

-tsu|u £ Lr(a\ 9 £ S*\ are A-recureive.

Proof. We have to conatruct a determinietic Turing ma

chine R with oracle A which decides whether the words from

4.0,l,b} + belong to the language *3ulu e L£(s), seF(S)J or

not. Working on an input word, R start3 its computation with

checking whether the input word is of the form su, where

seF(S), ue-l'0,li • Then R computes t(lul) and constructs

the tree of all computations of M on u with not more than

t(lui) questions asked of the oracle A (on a branch). Since

M is an r-machine (s^F(S)), R can construct the tree of

these computations in a finite number of steps. If among the

se computations there is an accepting one then ucLr(s), el

se u 4 I^(s).

The proof for the deterministic case is easy. Q.E.D.

Definition. For a bound t we define

F-ORAaE1(t)= -fL|C3s eF(S)) (L = L(s) = I^(s))},

F-CORACLE1(t) « <I^(e)ls6P(S)J.

Lemma 8. Let is A be an (A-)effective sequence of pro

grams, where the graph of -ia.l *
s (A-)recur3ive. Let e# be

a nondecreasing and unbounded (A-)recursive function, e'^id,

such that the set Val e* = •*e'(n)|n €N{ is (A-)recursive.

Then there is a set R of programs, a function e, a mapping

z and a machine M such that:

(a) R£l +, R = -Cr^icNi where for all i, ifcN, L
Г І

"V
(b) e is nondecreasing and unbounded, e . t e •

- 31 -

(c) z:R~^Nf (VrcR) CVj, 0^j<a(r)) («,(lrlJ|) »
z(r.)

» o(lrl), 1^1 x |< lri+1U

(d) If n « i r^+ z ^) then nGifiVal c') (e(n)^m<

< e'(n)), if n * I r^\ + j, j<a(r i), then Qm^Val e')(e(n)^

.£ m<e'(n)).

(e) M is a single-tape deterministic machine with two

final states f-,, fp such that L(M) = 1 and f0r all suffi

ciently large m, me N, If rewrites the word le ^m' to the

word: if e(m)<e'(m) then ̂ (mJ-l^e'UJ-eU) ̂ elB% ^ (m) ^

with using only the input cells and two adjacent cells and

with using the symbols l,b(,S) only. If m = I r. I + z(r.-) for

some icN, then M finishes its computation on l e in f-j

iff " i r ^ .

(f) R is an (A-)recursive set, e is an (A-)recursive

function.

Proof. We start by the construction of words v±»

Let Jm^ be any sequence of natural numbers. We define

v1 « [§ 8 1 § r i § x 1 § i § i m i § 3

where t 1 is a binary code of the alphabet {1,0,b,§} in

4b,l$, n-, is a natural number and if 1 c 1^ then x-̂ -= 1,

else x^ a 0.

If we have v i then we define
vi+l * [S^i^iSl^^Sxi+iSi+iSl^H^

where i+1 is the binary code of i+1,

(1) ni+1=minfn|(Jm € Val e') (lvil & m <e'(n))Jf
n-i-i.i

and if 1 -1 x £1^ then x i + 1 * 1, else x i + 1 * 0.

It is clear that !••!>< l^+i' *°* all i € H.

We define
- 32 -

(2) R M l 1 ! i c N { and L _ = La .
, n i 8 i
X

Obviously, we have (a).
Let us define for a l l m, mcN,

(3) k^ = n i a x U J i v ^ e ' U t t and e(m) = \v^ I •

We can easily see that (b) holds.

We define a mapping z by putting for a l l i , i e N f

(4) z(r .) = min^z I e'(n.+z)?|v.U .
1 z(r .) x x , z(r .)

I t i s clear that \T±1 I -c I ^ i+i 1 a n d a l s o e (1 ^ 1 I)«<
<< e ' (l r i + 1 |) - c f . (l) .

Now, we are going to prove (c) . Let us choose r^c R and

a number j f 0 ^ :j< z (r i) > arbitrarily. We see that

\r^\> e '(\r i l +:j) (since j< zOr^), cf. (4)).> e'(l r^[) >

> • ' (l * i _ 1 l + » (r i _ 1)) 2 Iv^-,.. I t i s clear, that e d r ^ l) =

= edr^l) = l ^ i . i ^ Obviously, we have (c) .

If n = \TA + z (r i) then v ^ = v i since lv i l ^ e ' (n i +

+ z (r i)) < n i + 1 < iv^+il - see (1) and (4) . Further e '(n) =

« e ' ^ + z(r .)) i s the f i r s t mcVal s >which i s not smaller

than Iv^ = I v. \ • e(n). «

Therefore iGmfcVale ') (e(n)^m< e ' (n)) .

If n = \T^\ + j , j < z (r i) l then •• = •. , sшce
l T i - l ' - e ' * n i - l + z ^ i « i)) < e # t n i) 1 4e ' (n i + j) < l v i l -

the last inequality holds for j < z (r i) . Let us put m =

= e ' (n i , • z (r i - 1) X . We see that

e(n) = lv f c I = lv^-,1 6 m<e'(n) and that mcVal e ' .
n *

We have proved (d). \

Let us describe the main features of the action of M.

- 33 -

During the computation on the input word la, ac N, M con
structs the words v^, | v « N a , step by step. After construc

ts V

tion the elements -«4+1Jf -
ni+i^» ^xi+l^» ^ «J+1 >̂ M chooses

m^+1 large enough so that all squares used during the con

struction of these elements or having contained the symbols

of the word v. are now occupied by the symbols of the word

v..-, • Let v. be the last v. of length not greater than a.

M finishes its computation by writing the word
|v, 1-1 a-|v. I |v. \

1 J bl «& if IT. k a or 1 ^ otherwise, and it
Ja

finishes in f, iff x. = 0. If a = e'(m) where m =lr.| +
x Ja

+ z(r^), then v. = vi and M finishes in f^ iff x^ = x^ = 0
a a*

iff T ^ ! ^ .

For proving (f) it suffices to fix the sequence of the

words v. from the construction of the machine M. Q.E.D.

Theorem 3* Let t be a recursive bound and d a

(l,d/8,A)-recursive function from Lemma 5» If K- m
A and <*-=*

then there is a language L such that (1) LSI ,

(2) L6F-0RACLB1(t),

(3) L4Shadow F-C0I^CLB1(t')

where t'(Q) = 0 and t'(n) = t(n-l)-d(n-l) for n>0.

Proof. The idea of the construction of a machine X

whose language has the properties stated in the theorem is

similar as in the proof of Theorem 2.

Let us put Q = S and, for qeQ, L = Shadow L£, (F(q)).

Such a set Q is recursive and the graph of the relation lQ

is A-recursive (Lemmas 6 and 7)*

- 34 -

Let ieA be an effective sequence of programs from S in

which each s, s^S, occurs infinitely many times.

Let us put, for all ie N, LQ » Shadow L*, (F^)) and
/ i \ x

e' = log © d. We see that the sequence is^J and the func

tion e' satisfy the conditions of Lemma 8. therefore there is

a set R, a function e, a mapping z and machine M with proper

ties (a) - (f) from this lemma.

It is clear that the set R and the graph of the relation

!--/are A-recursive languages (cf. Lemmas 6,7,8) and that no

program from Q diagonalizes R (Lemma 1). We also know that e

is noadecreasing, unbounded and A-recursive and that e^id.

Therefore we may apply the rtp-lemma and we are allowed to

choose an rtp with e on Q,R which is constructive in the

sense of this lemma.

Now, we are ready to construct the machine X and to pro

ve that its language has the properties (1),(2) from .Bheorem 1.

X starts to process the input word ln by constructing the

number tin). .During no computation on 1 X asks A more than

t(n) times. We have L(X)cl+ and L(X) € ORACLE1(t).

Then X constructs the word.l6 ^ - this is not of the

1-compJexity greater than d(n)/S - and then X computes in the

same way as the machine M from Lemma 8. It constructs the num

ber e(n) - this is not also of the 1-complexity greater than

d(n)/8.

(1) If T(3i6Vale')(e(n)-li<e'(n))

(2) then X accepts iff M has finished its computation

on le (n) in the state flt

(3) else X computes further as follows: X writes the
- 35 -

program q * RTP(e(n))eQ « S (this is of the 1-complexity

not greater than d(n)/8). Then, after having nondeterminia-

tically rewritten the input word to any word from •CO-.lS11 ,

X computes according to the program F(q) as the universal

machine U from Lemma 3* X accepts iff there is an accepting

computation of U on some word u from 40,ljn+1 of the i-com-

plexity not greater than t(n) - d(n). Formally:

(4) lneL(X)<-^(3u€-eo,ltn+1)(oracle1(F(q)u)^tn -

- d(n)).

We can easily see that X is an r-machine and that

L(X)e ORACLE1 (t - 5-d/8).

Now, we want to apply Theorem 1. We have defined the

sets Q, R and the mappings RTP, e, z.

First, we shall verify that rl z (r) € L(X) +-> -i rlr holds

for all sufficiently large r € R. Let us choose r^6H arbit

rarily and put n = lr.^1 + *(r.). During the computation oa

the input word, ln X finds that ~i (3meVal e')(e(n)£m< e'(n))

according to Lemma 8 d. Therefore X accepts iff M has finish

ed its computation on le *n' in the state f, - see (2). Thus
Z(T.) X

according to Lemma 8 e X accepts r^l iff n r^ r^.

Secondly, we shall prove that for all sufficiently lar

ge r € R and for all numbers j y 0-& j-c s(r), the condition

r l ^ L (X) ^ H.CP(e(r))!rl«*+1 holds. Let us arbitrarily choo

se a program r^€ R and a natural number j, 0^j<s(r^)t and

put n = I r. 1 + j. During the computation on the input word

ln, X finds that BmcVal e')(e(n) 4: *<e'(n)) according to

Lemma 8 d. Therefore X computes according to (3). Obviously,

the following statements are equivalent.

- 36 -

(i) r i l
j c L (X) ,

(i i) (3u6{0 , t f n + 1) (oracle1(F(q)u)^t(n) - d (n)) f

according to (4),

(i i i) (3ufi«[0,Hn+1) (oracle 1^) (u)*t (n) - d(n) *

* t '(n+D) - see Lemma 3 ,

(iv) (3u€- [0,« n + 1) (u 6 ^ (F (q))) ,

(v) l n + 1 £ Shadow I^(F(q)) - L̂ * I ^ ^ ^ ,) -

, s IWP(e(tr i l))»

(vi) RTP(e(lril))!r il*
1"1 .

The language L(X) satisfies the conditions (1)9(2) of

Theorem 1.

Hence

(5) L(X)$ E ifc(Q) = E Shadow F-CORACLEr^t').

We have constructed the machine X such that its langua

ge L(X) does not belong to the set E Shadow F-CORACLE1(t#).

For proving that L(X) belongs to F-ORACUT" (t) we construct

a new machine M« M works on the input word ln as the machine

X until before the moment when X computes as the universal

machine V on the words from |0,l}n according to the code

F(q) where q is the result of the testing process.

After having nondeterministically written any word from

-10,1} n , M asks a trivial (formal) question and then M also

works as the machine U but according to the code q. M accepts

iff there is an accepting computation of the machine M of

1-complexity not greater than (t(n) - d(n) - l)/2. We see

that each computation of M on ln is of 1-complexity not grea

ter than [d(n)/2 + (t(n) - d(n) - l)/23. Therefore each com

putation of the machine F(M) on the same word ln is of 1-com-

- 37 -

plexity not greater than 1 + 2 • [•••J =- t(n) - see the con

struction of the mapping F in the proof of Lemma 6. Hence

L(F(M))c F-ORACLE1 (t).

The fact L(X) = L(F(M)) can be easily seen by taking

into account the construction of F. The result of the appli

cation of the operator F on the tree of all computations of

the machine M is the same as the result of the application

of F only on the subtrees of all computations of the machi

ne M on the words from 40,lin+ .

We have L(X) =- L(F(M)) € F-CORACLE1(t). Q.E.D.

Theorem 4. Let A be an oracle, K^mA, and t a recur

sive bound. The following sets contain languages over the

alphabet il]i

(1) ORACLE^t) - Shadow CORACLE?(t'),

(2) D-ORACLE^t) - D-CORACLE1 (t'),

(3) D-ORACLE2(t) - D-CORACLE2(t'),

where t'(n+l) = t(n) - d(n) for all n«N, and d is a

(l,d/8,A)- or (2,d/8,A)-recursive function from Lemma 5, pro

viding d-t t.

The proof is similar as in the previous case. It suf

fices to delete all references to operator F in the previous

proof, to replace the words and symbols "oracle ", "ORACLE^",

"L1 " etc. by the words and symbols "oracle ", "ORACLIT".,
2 "L^# " etc, respectively, for case (1), and to omit all the

text after (5), Now, instead of "F-ORACI£1(t)", "I^,(f(q))"

and so on we write "ORACL.Er(t)", "L2,(q)" and so on.

For case (2) and (3), instead of "S" and "U" we write

"SD" and "Up*", respectively. After having tested, the new

- 38 -

machine X deterministically rewrites the word ln to the word

ln and computes in the same way as the machine U-^ X is de

terministic.

Remark. By application of Theorem 4, we can easily pro

ve that also the set

0RACLE2(t) - Shadow U-tORACLE2(t^) |t(n) - t-jCn+1) £ d(n)f

contains a language over ill. A similar corollary can be pro

ved for the case of oracle measure and the classes

F-ORACLB^(t) and also for the deterministic cases (without

-Shadow") for i=l,2.

Example. Languages over the alphabet il} are also con

tained in ORACLE2 (n+log(k)n) - Shadow 0RACLE2(n) for k>0 t

and D-ORACLEi(n+log(k)n) - D-ORACLE^n), for i=l,2, k>0.

A trivial diagonalization yields results such as

D-ORACLE1(2+2 n) - D-ORACLE1(n) + 0. Remark (b) after Lemma 4

gives trivial results for i=2.

R e f e r e n c e s

Ш ROGERS H.Jr.: Theory of Recursive Functions and Effec-

tive Computability, McGraw-Hill, New York, 1967.

1123 ŽІÍK S.: A Turing machine oracle hierarchy I, Comment.
Math. Univ. Carolinae 21(1980), 11-26.

Üstav v počtové techniky CVÜT

Horská 3

Í2800 Praha 2

бeskoslovensko

(Oblatum 4.6. 1979)

- 39 -

		webmaster@dml.cz
	2012-04-28T05:15:52+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

