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REVEALMENTS
A. SOCHOR, P. VOPENKA

Abstract: In this paper the notion of revealment
is defined. We investigate properties of revealments, es-
pecially it is shown that every class has a revealment.
The obtained results are applied to a very important ca-
se, namely we deal with properties of a revealment of the
codable class of all set-theoretically definable classes.
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Endomorphic universes are copies of the universal
class conveniently put in the universal class. In miny ca-
ses there are natural (called "standard") extensions of
all subclasses of the endomorphic universe in question.

A lot of properties is transferred from a class to its
standard extension, however, all standard extensions have
some additional convenient properties (e.g. they are fully
revealed). These results described in [S-V] correspond in
\some aspect to the approach of Robinson’s non-standard
methods.

A standard extension of a class is a superclass of
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the original class but the standsrd extemnsions can be defi-
ned only for subclasses of the investigated endomorphic uni-
verse. In many cases it is convenient to associate with eve-
ry class a fully revealed class fulfilling the analogical
properties as the original class. Such a class is called a
revealment of the original class. By this approach we have,
of course, to get over the loss of the assumption that the
original class is a subclass of its revealment. On the other
hand, it is very advantageous that the notion of revealment
does not depend on the choice of an endomorphic universe.

This article is devoted to the investigation of the no-
tion of revealment. It is useful to conceive the method a
little more generally and to deal with revealments of codab-
le classes.

The first two sections deal with the study of various
properties of revealments, in particular, we show that every
class has a revealment. In the third section we give a full
classification of codable claseses with respect to the fact
how many different revealments they have.

In the last section, the results of previous sections
are applied to the codable class of all set-theoretically de-
finable classes. It is shown that revealments of this codab-
le class remove the disadvantage of this codable class which
consists in the fact that for set-theoretically definable
classes no analogue of the prolongation axiom holds. This
fact seems to justify the expectation that using revealments
of the codable class of all set-theoretically defimable clas-
ses, we will be able to extend the results obtained for sets
even to set-theoretically definable classes.
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This article is a continuation of the book LV] and it
uses the results of the paper [S-V]. However, in accordance
with the aim of this article the results of that paper are
used only in proofs and in auxiliary statements and they are
not used in the main theorems.

The article has arisen in the Prague seminar of alter-
native set theory on the basis of discussions held between

both authors.

§ 1. Fully revealed codable classes. Let us recall

that a class X is called revealed iff for every countable
YS X there is a set u with YSEu& X, Further let us remind
that a class X is called fully revealed iff for every normal
formula ¢(z,2) of the language FL the class {x; ¥ (x,X)} is
revealed. ‘

A codable class %! is called fully revealed iff there
is its coding pair {K,SY which is fully revealed (more pre-
cisely we require that the class Kx{i03uv Sx{1% is fully re-
vealed),

Thus a class Y is fully revealed iff the codable class
{X; X = Y} = {Y} is fully revealed.

Irg is a formula of the language Flv and if 7 is a
codable class then Q(ZII.) denotes the formula resulting from
¢ by restriction of all quantifiers binding class variables
to the elements of W (quantifiers binding set variables are
let without change). Thus e.g. the symbol ((IX)(Vy)(ye x)) @
denotes the formula (X e M )(Vy)(ye X).

Let us assume that a coding pair {(K,S) code a codable
class @1 . Thus the formulas (X ¢ M) @(X,27,...,Z,) and
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AxeK) @ (S*{x},2y,...,Z, ) are equivalent. Hence to every
formula ?(zlv'“'zk) of a language FLC we are able to con-
struct a normal formula $(Z;,...,%y,5) of the same langua-
ge by induction so f.hat the equivalence ¢ W")(Zl,....zl) =
=§(Zy,...,2,,K,5) holds.

In the course of the first two Sections we shall see
that a codable class B! is fully revealed iff ! satisfies
the following two conditions:

Rv, If ?(z,Zl,...,Zk) is a formula of the language
FL, and if Xyy++. % are elements of 71 then the class
{x;?m(x,xl,...,xk))} is fully revealed.

Rv, If £qn(z,z1,...,z%);nem§ is a sequence of for-

mulas of the langusge FLy and if {X ;ne€FN{ is a subclass of
9L then we have

w0 &...8 ¢\ )
V) GX 6 B (G (K% 00 Ty V&0l P (K, k )

—>Qxe M)(vn)q,“”(x,xl,...,xkn).

Let us realize that if a codable class satisfies the
condition Rv, then all its elements are fully revealed. Fur-
ther let us note that according to § 2 [S-V] the condition
va_ is equivalent to an illusorily weaker condition -~ namely
to the condition va in which only formulas of the language
FL are taken into account and in which the words "fully re-
vealed” are replaced by the word "revealed".

Theorem. Every codable fully revealed class satisfies
the conditions Rv, and Rv,.

Proof. Let a fully revealed coding pair {K,S) code a
codable class % . Assuming that @(2,2,,...,2,) is a formu-
la of the language FLy and that 11,...,xk are elements of
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M , we can choose xl,...,xksl( 8o that for the normal for-
mula § described above we have {x;(g(w (x,Xl,...,Xk)} =
= {x; @7(:,3”{!13 yooeyS™X ,K,S)}. Hence the investigated
class is fully revealed because the coding pair (K,S) is ful-
ly revealed and because @ is a normal formula. We proved
Jjust now the condition va.

Let {X,;n eFNISC W eand let {cgn(z,zl,...,zkn);ne FN§

be a sequence of formulas of the language FI.v such that for
every ncFN the formula (3X sm)(cgf,“"’(x,xl,...,xk )&...
(]

ceo qff’m(x,xl,...,xkn)) holds. For every &’€ FN we define

the class Y, by
Y, = {ixek; @g””(sn{x},xl,...,xko)&...

b m(s“{xl,xl,...,xhn ) = §xeK; §,(S"x},X ...

n
""xk ,K,S)& coe & qn(sn'k%pxlﬂ"’xkn’xps)} o
o

Thus {Yn;ne FN} is a descending sequence of nom-empty reveal-
ed classes and therefore there is x € N{Y ;neFNt by § 5
ch. II [V]. This finishes our proof since S"{x} e P! and
for every neFN we have cygm(S"{x},Xl,...,an) according to

the definition of !n.
We say that codable classes ¥ and L satisfy the sa-
me restrictions of formulas of the language FLc iff for eve-

ry closed formula ¢ of the language FLC the equivalence
™= ¢ nolgs.

If F is a function and if %% is a codable class then
the codable class {F"X;X € @L} is called the F-range of %
and denoted by F"%1 .
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Theorem. If codable classes B! and 71 fulfil the con-
ditions Rv, and Rv, and if 7% end 9L satisfy the same res-
trictions of formulas of the language FL then there is an
automorphism F eso that @t = F 21 ,

To prove the theorem we shall yse the following auxili-
ary definition.

Let £ be a mapping of a subclass of 9L into #L . We
say that a function F is a similarity regarding J iff for
every formula g(zl,...,zk,zl,...,zm) of the language FL,
for every Xyyeeas Xy € dom(F) and for every xl""’)ﬂn elements
of the domain of ? we have
q(m("l'"""x-xy-"rxn) - gm(li‘(xl),...,?(xk).

F(X))yeeep F X))

Claim. If &+ is a mapping of 3 onto @t and if F is
an automorphism regarding JF then %% = F*7¢ .

Proof. According to our auxiliary definition we have
x eX=F(x) e F(X) for every X « 9. and hence we get even
F"X = & (X). Therefore the equality ¥ =fF(X);Xe 21} =
= {F"X;X € 213 holds.

Claim. lLet F be a mapping of a subclass of 9L into #f
and let F be a similarity regarding J . Let us suppose that
F and F are at most countable and that % and @ satisfy
the condition va. Then for every u there are v and w se
that Fudi{v,u>} and Fuidu,wd} are similarities regarding
F.

Proof. Let u be given. We are going to prove the first
statement, the second one can be proved quite analogically.

Iet (L be the codable class consisting of all classes of the

form
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ix; QM)(x,F(xl),...,F(xk),J(Xl),..., F(X;))3 where

Cj(z,zl,...,zk,zl,...,zm) is a formula of the language FL,
Xyree.yX € dom(F) and xl""”ﬁn are elemets of the domaim
of & such that the formula cy(m)(u,xl,...,xk,xl,...,xm)
holds. Every element of UL is revealed by the conditiom
va. Thus (L is a system of non-empty revealed classes which
is at most countable and which is dually directed (w.r.t.
inclusion) and hence there is ve N{X;X € A% according to
§ 5 ch. II [V], Such a v fulfils our requirement.

Claim. Let J be a mapping of a subclass of 9L into
7% and let F be a similarity regarding ¢ . Let us suppose
that ¥ eand F ere at most countable and that 91 and 0 ea-
tisfy the condition Rv,. Then for every Y e N (Z e BL res-
pectively) there is Z € @1 (Y ¢ 7L respectively) such that
P is a similarity regarding J v £{(2,Y¥>% .

Proof. Let Ye 2L be given and let 'frh;ne Q? and
£X,;n€Q’} be enumerations of the domains of F and J res-
pectively (Q and Q° being either finite natural numbers or
FN). Let us assume that 1%, ;n€FN} is an enumeration of
all formulas @(Z,2;,..¢,2y,%9,.0+,2,) of the language PL
such that the formula c_y(w)(r,xl,...,xk,xl,...,Xm) holds.
Thus for every n € FN we have
@axe n)(rgg’”(x,xl,...,xko,xl, Xy ) B

coe & ?!(lat) (;’xlq,--o,xkn,xl,oqoo,&n))

and hence for every n € FN we get even

AX & ) (@ (X, Plx), oo ey Flxy )y F(X))yeney FlEy Moo
oo cg’(‘m(X,F(xl),...,F(xkn),!(xl),...,f()gnh))) because
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TN,

F is a similarity regarding J . Hence by the conditiom Rv,
there 15 Z 6 M with (m) 9 (2,F(x)), ..., Flxy ),

.f"(xl),...,.f'(xnn)). The second statement can be proved in
the same way.

To prove our theorem let us suppose that {ch; x €Q%
emd 1Y ;< € 23 are enumeratioms of codable classes 7%
and 7L respectively and that {a_ ; o € 2§ is an enumerati-
on of the universal class (the case Wl =71 = 0 is trivial).
Evidently O is a similarity regarding O since %t amd 7
satisfy the same restrictions of formulas of the language
FL. Hence using the previous claims we are able to construct
by transfinite inductiom sequences {F ;¢ « 1} amd
1f, ; £ €03 80 that for every v € 2 , F, is a simila-
rity regarding df,(c , both F, and %, are at most count-
able, J: is a mapping of a subclass of 9 into 7, a, €
€ dom(Fy )N rng(F, ), Y, and Z, are elements of the domain
and of the range of J, respectively and U<{Fg ;e n s
EPy- bk UL S jpeccnNISF, | mus Uir, ;e €0} is
an automorphism regarding U{d, ;c€ 0Nl am 90 ana 7t
are the domain and the range of U4{ &, ;¢ €« 1% respecti-
vely. Therefore the use of the first claim proves our theo-

rem.

§ 2. Revealments of codable classes. A codable class
2L is called a revealment of a codable class 20 iff 7991 is

a fully revealed codable class satisfying the same restric-
tion of formulas of the language FL as the codable class Jf.

A class X is called a revealment of a class Y iff the codab-
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le class {X} is a revealment of the codable class tY%.

Let us note that if a codable class 9! is a revealment
of a codable class 91 then 7% fulfils the conditions Rvy
and Rv,. Moreover let us realize that in this case the for-
mke (3X €1) @(X) and (AX € M1 ) ¢ (X) are equivalent for
every normal formula ¢(Z) of the language FL.

We say that classes X and Y satisfy the same normal fer-
mulas of the language FL, iff for every normal formula &(Z)
of the language FL, we have ¢ (X) = ¢(Y).

A class X is a revealment of a class Y iff X is a fully
revealed class satisfying the same normal formulas of the
language FL as the class Y.

lemma. Let F be an endomorphism and let Ex denote a
standard extensiom on F"V (cf. [ S-V]). If a coding pair {K,S’
codes a codable class 97 and if the coding pair ¢ Ex(F"K),
Ex(F"S)) codes a codable class Wl then %! is a revealment
of 2( . In particukr, for every claess Y, the class Ex(F"Y)
is & revealment of Y.

Proof. The coding pair { Ex(F"K),Ex(F"S)) is fully re-
vealed by § 2 [S-V]. Let ¢ be a closed formula of the langu-
age FL and let t_?ﬁ be the corresponding normal formula descri-
bed in the first section. Then
@ ®= G (Ex(F'K) Ex(F*s)) 2T V(FK,F'S) = § (&,5) = 9@
by the definition of standard extension and by the secomd the-
orem of § 1 ch. V[V]., We have proved that % and 9 satisfy
the same restfictions of formulas of the language FLAand the-
refore M is a revealment of 91 .

The following statement seems to be the most important
consequence of the lemma. To prove it it is sufficient to
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realize that § 3 [S-V] assures the existence ef an endomor-
phism such that there is a standard extensiom on the ende-
marphic universe F"V,

Thecrem. Every codable class has a revealment.

lemma. If a coding pair (K,S) codes a codable class

W and if F is an automorphism then the coding pair

{P" K,F"S) codes the codable class F"#)i and moreover @l
and F*7l satisfy the same restrictioms of formulas of the
language FL.

Proof. Assuming F to be an automorphism we have obvi-
ously
£(P s)"{x¥;xe F"K} = {(F"SY{F(x)} ;xeK} = {P*(S"{x}); xeKi=
= {P"X;X & W} . Moreover if ¢ is a closed formula of the
language FL and if f'} is the corresponding normal formula
then we have q(F"M):- % (FK,F"S)= & (K,S)E-c_p(m accord-
ing to the second theorem of § 1 ch., VLV],

Theorem. let a codable class %% be a revealment ef
& codable class 3L . Then a dodable class M’ is a reveal-
ment of 9. iff there is an automorphism F with 29¢° = F"79%.
In particular, if a class X is a revealment of a class Y
then a class Z is a revealment of Y iff there is an auto-
morphism F with Z = F*X,

Proof. The implication from left to right is a trivi-
al consequence of the second theorem of the paper. To prove
the converse implicatiom it is sufficient to use the last
lemma and to appreciate that automorphisms transfer fully
revealed classes onto fully revealed ones.

The following result which is a strong form of the con-
verse of the first lemma has important consequences.
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lemma. Iet a codable class WL fulfil the conditions
va and Rva, let a coding pair {K,S? code a codable class
N eatisfying the same restrictions of formulas of the lan-
guage FL as 7)1 . Then there is an endomorphism F such that
there is a standard extensiom Ex on the endomorphis univer-
se F"V so that the coding pair {Ex(F"K),Ex(F"S)) codes %¥.

Proof. Let G be an endomorphism such that there is a
standard extensiom Ex’ on the endomorphic universe G"V and
let the coding pair ¢ Ex (G"K),Ex°(G"S)> code a codable class
9’ . By the first lemma of this section 7%’ is a reveal-
ment of 1 and hence both %! and A%’ fulfil the conditions
Rvy and Rv,. Moreover 70 ,% and 7L’ satisfy the same res-
tricition of formulas of the language FL and therefore by
the second theorem of the paper there is an automorphism H
with %% = H" %L’ .

Let F be the composition of H and G. Then F"V is an en-
domorphic universe and we define an operation Ex for all its
subclasses by Ex(X) = H"Ex’(H~1"X). Thus for every normal
formul @(2y,.0092y,2,004,2;) of the language FL, for eve-
TY Xp,eee,X € F"V and for every xl,...,xms: F"V we have
?F"v(xl, ey, X)) =g l‘I“G"v(xl,. e Xy g Xy, ee ey Xp)=
= TV (xp) 0 B ) BTN BTN ) =
=@ x)), 00 B x ) B HTIX)), el BT H TN )) =
=@(xy,000,x,Bx(X)),...,Ex(X )) according to the defini-
tion of standard extension and to the second theorem of § 1
ch. V LV]. Therefore we have proved that Ex is a standard
extension on F"V. Moreover the coding pair { Ex(F"K),Ex(F"S)>=
={H"Ex "(G"K) ,H"Ex"(G"S)) codes W! by the last lemma.

Consequence. If X is a fully revealed class satisfying
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the same ncrmal formulas of the language FL as a class Y
then there is an endomorphism F such that there is a stan-
dard extension Ex on the endomorphic universe F"V so that
X = Ex(F"Y).

Theorem. A codable class is fully revealed iff it ful-
fils the conditions Rv, and Rvy.

Proof. According to the first theorem of the article
we have to prove only the implication from right to left.
However, this is an easy consequence of the last lemma (ap-
plied to the case o = %L ) and of § 2 (S-VI.

We say that a coding pair {K*,5*) is a revealment of a
coding pair {K,S)> iff the class K*x<fOtu S*x {1} is a reve-
alment of the class Kx$0kuSx{13.

Theorem. Let a coding pair <{K,S> code a sedable class
A . Then a codable class %! is a revealment of 91 iff the-
re is a coding pair which codes ! and which is a revealment
or{K,S).

Proof. The first and third lemmas and the consequence
of this section obviously imply our statement.

Let us suppose that we have a class and its revealment.
The following two theorems enable us to construct aome other
pairs of classes so that in every pair the second class is
a revealment of the first one.

Theorem. Let q(Z) be a formula of the language FL and
let a codable class M1 be a revealment of a codable class
7 . Then the class {x; gm (x)} is a revealment of the class
{x;cg(u)(x)}. In mrticular, if y(2,Z) is a normal formula
of the language FL and if a class X is a revealment of a
class Y then the class {x; y(x,X)} is a revealment of the
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class {ix; ¢ (x,Y)3.
Proof. The class {x; ?(m (x)} is fully revealed by the

property Rv,. If 2%(Z) is a normal formula of the language

(o)

FL then according to the definition of @ we have
x5 c’ow(x)’x )= Mix; g (x)} )) @ (Mix; @ (x)3))) =
=P HEx; q:m)(x)}) since 7 and 71 satisfy the same rest-
rictions of formulas of the language FL. Therefore we have
shown that é‘x;qm(x)’s and {x;q:m)(x)} satisfy the same
normal formulas of the language FL.

Theorem. Let ¢(Z) be a formula of the language FL and
let a codable class 0 be a revealment of a codable class
7 . Then the codable class {X & M ; g @0 (X)} is a reveal-
ment of the codable class {X ¢ 7 ;c_g(?‘) (X)%.

Proof. Let a coding pair {K,S> code 2! and let its re-
vealment (K*,5*> code M . Thus the class K] = {xck*;
@(S‘“-ﬁx},x",s*)} is a revealment of the class K, = {x¢K;

& (S"ix3,K,S)} by the last theorem and moreover {Kf,S*) is
a revealment of {K;,S». To finish the proof it is sufficient
to realize that the coding pairs (K{,S“) and {K,,S) code the
classes {X e Wt ; qm(x)} and {X e ; cy(q‘)(x)} respective-
1y.

At the end of this section we are going to deal with the
indiscernibility equivalence £ defined in § 1 ch. V[V).
Let X denote the closure of X in this topology. Thus T is the
intersection of all classes of the form ¥x; @ (x)} where ¢ (z)
is a set-formula of the language FL with (VxeX)@ (x).

Theorem. X =U{Y;"Y is a revealment of X"}.

Proof. If x¢X then there is a set-formula g(z) of the
language FL with - ¢ (x) &(Vyex)q(y). Assuming that Y is a
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revealment of X we have (Vye Y) @ (y) since X and Y have te
satisfy the same normal formulas of the language FL and the-
refore we get x4 Y in this case.

To prove the converse inclusion let us suppose that
xe X and that Y is a revealment of X, If ¢(s) is a set-for-
mula of the language FL such that @ (x) holds then there is
yeX with @(y) (otherwise X S{z; 7@ (2)} and this contra-
dicts the assumption xeX). Moreover since X and Y satisfy
the same normal formulas of the language FL there is qeX
with @(q). The class {z€Y; ¢(z)} is revealed because Y is
fully revealed. The codable class consisting of all classes
of the form {z€Y; ¢(z)f where @ is a formula of the langu-
age FL such that & (x) holds is a dually directed (w.r.t. im-
clusion) system of non-empty revealed classes and hence the-
re is a set z¢Y 80 that the equivalence @(z)=@(x) helds
for every set-formula ¢ of the language FL. Thus we have
shown that there is z€Y with z 2 x. Terefore by § 1 ch. V
[V] there is an automerphism F with F(z) = x. The class F"Y
is a revealment of X and moreover x¢ F"Y.

Theorem. For every XS u € Def the class X equals to the
class N{ve Def;X< v},

Proof. If veDef and XSv then there is a set-formula
?(z) of the language FL so that the statement ¢(v) &.

& (3 1q) @(q) holds. Let Wy (z) denote the formula (3q)(@(q)&
&z<cq). We have (¥YxeX)y(x) and thence even (Vx&X)y(x),
Therefore we have proved XSv from which the inclusion
X¥cN4{veDef;Xc vl follows. A

On the other hand, let us assume that x4X i.e. that
there is a set-formula So(z) of the language FL such that
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1 ¢ (x)&Wy€eX)@(y) holde. The set v = {yeu; ¢(y)t is an
element of Def and moreover XS v. Thus to prove the converse
of our inclusion it suffices to realize that we have x&v.
The following result is a trivial consequence of the
above mentioned statements (since Def = V by § 1 ch. VIV]).
Theorem. 4c¢c;(Vve Def)(FNSv—> o6 € vi=U4 Y;"Y is

a revealment of FN"§},

§ 3. Codable classes with uniguely determined revealment.
If C is an arbitrary class then a class X is called set-the-

oretically definable with parameters in C iff there is a set-
formula ¢(z) of the language Fl; such that X = ixy @(x)].
In agreement with [ V] we define that a class is set-theore-
tically definable iff it is set-theoretically defindble with
parameters in V. The system of all set- theoretically defin-
able classes is a codable class by § 5 ch. II LV]. Hence for
every class C, the system of all set-theoretically definable
classes with parameters in C is a codable class and we are
going to denote them by the symbol Sdc. We say that a class
is set-theoretically definable without parameters iff it is
an element of Sdo.

Let us note that the formula XeSdy is equivalent to
Vop¥nka ‘s predicate Sd(X).

We say that a codable class is Sdo-codable (set-theore-
tically codable without parameters) iff there is its coding
pair {K,S) such that both K and S are elements of Sd.

Thus Xe€S4, iff the codable class £X% is 54 -codable.
Moreover if X is an element of a Sdo-codable class then the-
re is y € V and a set-formula gz(zl,zz) of the language FL
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so that X =4{x; q(x,y)} and hence X is set~theoretically de-
finable. Thence we have proved that every Sdo-codable class
is a subclass of Sdy.

Theorem. If 7 is a S3_-codable class then

a) there is a normal formula ¢ (Z) of the language FL
such that W ={X; @(X)3;

b) for every codable class 91 we have 9t = 99 ire 2
and 7! satisfy the same restrictions of formulas of the
language FL.

Proof. Let K,S€Sd  and let the coding pair {X,S> code
A . Then there are set-formulas 1 (z) and 7%(z) of the lan-
guage FL with K =4 x; 4(x)} and S = ix; }(x)}.

a) We have evidently 771 = 1X;3x)(y(x) &(Vy)(ye X =
= P Ky, x»))N3.

b) Let 9V and 99 satisfy the same restrictions of for-
mulas of the language FL and let ¢ (Z) be the nhormal formula
guaranteed by the first statement. Thus the formula
((¥X) @ (X)) ® nolds and hence we get ((VX) ¢ (X))@ from
which the inclusion 70 & 791 follows. Further we have
(W) @X) by(x) —> (¥y) (y € XT=((y,x> 1)) P ana tnerefore
we obtain even ((Vx)(@3X)@y(x) — Wy)(ye Xz'a}((y,x)))))(w.
However, the last statement means that (YxeK)S"{xfe 7! and
thence we have proved the equality %7 = 27t .

Theorem. If 9% is a Sd -codaltle class then % itself
is its sole revealment.

Proof. Let K,SeSd, and let the coding pair {K,8? co-
de 7 , Then this coding pair is fully revealed and hence
9N itself is its revealment. Thus the use of the last the-
ox;em finishes the proof.

- 12 -



Theorem. A codable class has exactly one revealment iff
it is Sdo—codable. In particular, a class has exactly one re-
vealment iff it is an element of Sdo.

Proof. The last theorem assures the implication from
right to left. To prove the converse one let us suppose that
a codable class #! is the sole revealment of a codable class
7L . Moreover let us assume that a fully revealed coding pair
{K,S) codes M,

At first we are going to show that %! € Sdy. If F is
an sutomorphism then the codable class F"2/ is a revealment
of 71 by the last section and therefore we get Fr¥t = 97¢.
If X is an element of % then {F"X; “F is an automorphism"{
is a subclass of the codable class 2. and hence even this
class is codable. Thus according to § 1 [-V], X is a real
class. Further the class X is fully revealed because X1 sa-
tisfies Rv; and thence both X and V-X are revealed. Using
§ 5 ch, IILV]and again § 1 [&-v] we get that X is set-the-
oretically definable. Therefore we have proved the inclusiom
M = say.

Let Ul be the codable class consisting of all classes
of the form iz eK; 1 (Jy)(S"42} = ix; y(x,y)})} where jz(z,,z,)
is a set-formula of the language FL. Then the elements of Ci
are revealed classes because the coding pair {K,S> is fully
revealed. Further Ol is dually directed (w.r.t. inclusion)
since the formulas (Iy)(s"{z% = ix; ¥, (x,y)¥) v (Ay)(S"E2} =
= {x; ¥,(x,y)}) and Qy)(S"¥z} = {x;3q)((y =<{q,0> &

& 1,(x,a)) v (y =<q,1> & 7,(x,q)))}) are equivalent. More-

over N{X;Xe& (% = 0 according to the previous part of the

proof. Therefore O € X by § 5 ch. II LV) and hence we can
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fix a set-formula 7y (27,2Z,) of the language FL such that the
formula (VX e 1) Qy)(X = {x; y(x,y)}) holds.

Put M = {y;{x; y(x,y)%e 2 3. Thus M ={y; (BX)(¥x)(xe
e X = %(x,y)))(M)} and hence M is fully revealed according
te Rv,. Moreover the coding pair <M, $4x,¥7; 1(x,¥)3) codes WL .

If F is an automorphism then ye M={x; 3 (x,y)% e W =
=F{x; x(x,y)% e A =1x; 3 (x,F(y))§ € A =F(y)e M. How~
ever, this means that M is a figure in the equivalence £ .
Further this figure and its complement are closed by § 2 ch.
IITI[ V] and therefore Me Sd, according to §1ch. V[LV].

We proved just now that 92t is Sd ,-codable. Since 7L
and 91 satisfy ’ghe same restrictions of formulas of the lan~
guage FL one can conclude the whole proof of our theorem us-

ing the first theorem of this section.

Theorem. If a coding pair {K,S) with K,S ¢S4y code 2t
then 71 is its revealment and coding pairs of the form
{(F"K,F*S) where F i's an automorphism code all revealments
of 71 and hence every revealment of 7! is coded by a coding
pair which is an element of the codable class {{L,R);L,R€SdyJ.

Theorem. If 2! cannet be coded by a coding pair (K,S»
with K,S ¢ Sdy, then there is no codable class (L such that
every revealment of 7] can be coded by a coding pair which
is an element of (I .

Proof. Let 21 be a revealment of 37 . If there is X €
e 9 - Sdy, then by § 2 [8-V] the system of classes of the
form F"X v-rhere F is an automorphism is not codable. Therefe-
re we can suppose that L& de. Thus a part of the proof of
the ¥st but one theorem shows that there are S¢Sdy and a
fully revealed class K such that the coding pair (K,S) ex-
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tensionally codes Wl . By the assumption of our theerem
K¢de. Thus K is not real and the class {P"K; "F is an au-
tomorphism with F"S = S3 is not codable by § 2 [&-vV].

§ 4. Revealments of the codable class de. Set-theore-

e

tically definable classes behave in many cases analogically
as sets. On the other hand, the following theorem shows that
a very important property of sets, namely the prolongation
axiom, has no analogue in the codable class de.

Theorem. No coding pair {K,S) with S €54, codes Sa,.

Proof. Let us suppose that a coding pair (K,S) codes
Sd, and that there is a set-formula 99(11,12,23) of the lan-
guage FL and a convenient parameter a so that S = {{x,y);
¢ (x,y,8)}. Put Y ={<{y,2z%;1 9 (y,2%y,z)}. Thus Y€ 54, and
thence there would be y, €K such that the equality 'Y = S"-fy’}
holds. In this case we would have (y ,a?€Y =16 y,,8),¥,
a)=<{y,,82,7,? ¢ S=(y,,a74S"{y 3={y,,a7¢ Y which is a
contradiction.

Further as a consequence of the last theorem we get that
the codable class Sdy does not fulfil the condition Rv, (as
the required formulas can serve the formuias Z, = X1 &...
«-+% 2 = X"{n} where {(FN,X) is a coding pair of Sa,) and
hence Sdy is not fully revealed. By the last section there
are many revealments of Sdy. Up to the end of this section
the symbol Sd"v‘ denotes one of them.

Theorem. dec Sd; .

Proof. Let a set-formula @(Z,2y,...,%;) of the lan-
guage FL be given. We have ((Vy;)...(Vy, )(3X)(Vx)(xeX =
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and hence we obtain even the sta-
(sdy )
tement ((Vyl)...(Vyk)GX)(Vx)(xeXEg:(x,yl,...,yk))) .

(
= @(X,y790009¥y)))

Therefore we have proved that for every Y1see¢,¥ the class
4%; P(X,¥7 400497 )% is an element of Sd’; .

The following theorem (which is a trivial consequence
of the property sz) is an analogue of the prolongation axi-
om holding in Sd’; . The next theorem summarize some results
which show that Sdj keeps those properties of Sdy in which
set-theoretically definable classes look like sets.

Theorem. If {X ;n€FN}c Sdy then there is ReSdy
with (Vn)R"in% = X .

Theorem. a) The universal class is the sole class X
of Sdy for which the formula O€ X& (Vx)(Vy)(xeX —»

—> (xuiyl) € X) holads.

b) The intersection of each element of Sd’; with a set
is a set

¢) If ¢(z,Z) is a normal formula of the language FL
and if XeSd; then the class {ix; ¢ (x,X)} is an element of
Sdi‘; , too. In particular, the formula (VRe Sd"‘, ) (¥x) (R"tx}e
€ Sdy ) holds.

Proof. The formula (VXe€ Sdy)((0€X& (Vx)(Vy)(xeX—>
—> (xuiyt)eX))—> X = V) was accepted as the precise ver-
sion of induction (cf. § S5ch. II LV]); moreover assuming
that ¥ is a normal formula of the lsnguage FL we get formu-
las (VX € Sdy)(Vx)Set(Xnx) and (VXeSdy) AT eSday)Y =
= {x; @ (x,X)}. Therefore all statements of our theorem are
implied by the assumption that Sdy and Sd} satisfy the sa-

me restrictions of formulas of the language FL.
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The following theorem describes a holding in Sd"‘, ana-
logue of an important consequence of the prolongation axiom.

Theorem. Let Ud{a ;neFN} = dom(R) and let (vn)(RMaye

(3 de& a, € 3m»1)' let & be a countable system of normal formu-
las of the language FL with one free variable so that we ha-
ve (V@ € $ )(¥n)@(RMa ). Then there is R*€Sdy such that
the formulas (¥n)R*} a, = RMa and (Vpec ) ¢ (F¥) hold.

Proof. For every ne FN there is a set-formula %n of
the language FLy with (Vye a )(@,(x,y) =<x,y> €R); moreover
we have R l‘ane Sd"; . Hence it is sufficient to apply the con-
dition Rv, to the countable class § v {(Vy € (ay ndom(2))

(@ (x,¥) =<x,y>€Z);ne FN of normal formulas.

Especially if sets a, in the previous theorem are fini-
te we can replace the assumption Rl‘ane Sdy by the condition
(Vxea,)R"ix} €S4y.

The last theorem substantiates that we are not able to
define (e.g. adding some additional requirements) a uniquely
determined convenient extension of the codable class de.

Theorem. ILet 9% ={X; @¢(X)} be a codable class with

(VX € 90 )(Vx)Set(XNx) where @ is a formula of the langua-
ge FL. Then M E Say.

Proof. Let us suppose that Y € %% -Sdy. For every auto-
morphism F we have F"Y & N since the formula (VX)(@(X) =
= @ (F"X)) holds. Therefore the system {F"Y;"F is an auto-
morphism”¥ is a subclass of 9N and hence it is codable. By
§ 1 [&-v] the class Y must be real. Moreover we have
(Vx)Set(¥nx) and hence Y is set-theoretically definable ac-

cording to the same section. This contradicts our assumption.
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