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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

21. 1 (1980) 

REVEALMENTS 
A. SOCHOR, P. VOPĚNKA 

Abstract: In this paper the notion of revealment 
is defined. We investigate properties of revealments, es­
pecially it is shown that every class has a revealment. 
The obtained results are applied to a very important ca­
se, namely we deal with properties of a revealment of the 
codable class of all set-theoretically definable classes. 

Key words: Alternative set theory, non-standard met­
hods ,"Tmomorphic universe, standard extension, codable 
class, fully revealed, set-theoretically definable class, 
revealment• 

Classification: Primary 02K10, 02K99 
Secondary 02H20 

Endomorphic universes are copies of the universal 

class conveniently put in the universal class. In many ca­

ses there are natural (called "standard") extensions of 

all subclasses of the endomorphic universe in question. 

A lot of properties is transferred from a class to its 

standard extension, however, all standard extensions have 

some additional convenient properties (e.g. they are fully 

revealed). These results described in [S-V] correspond in 

some aspect to the approach of Robinson's non-standard 

methods. 

A standard extension of a class is a superclass of 
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the original class but the standard extensions' can be defi­

ned only for subclasses of the investigated endomorphic uni­

verse. In many cases it is convenient to associate with eve­

ry class a fully revealed class fulfilling the analogical 

properties as the original class. Such a class is called a 

revealment of the original claas. B(y thi3 approach we have, 

of courae, to get over the I039 of the assumption that the 

original class is a subclaa9 of it3 revealment. On the other 

hand, it i3 very advantageous that the notion of revealment 

doea not depend on the choice of an endomorphic universe. 

This article ia devoted to the investigation of the no­

tion of revealment. It is ueeful to conceive the method a 

little more generally and to deal with revealmenta of codab-

le classes. 

Hie first two section3 deal with the study of varioua 

propertied of revealment3, in particular, we ahow that every 

class has a revealment. In the third section we give a full 

classification of codable classed with respect to the fact 

how many different revealmenta they have. 

In the last 9ection, the results of previous sections 

are applied to the codable clas3 of all get-theoretically de­

finable classes. It is shown that revealments of thi3 codab­

le class remove the disadvantage of this codable class which 

conai9t9 in the fact that for a et-theoretic ally definable 

classes no analogue of the prolongation axiom holds. This 

fact seems to justify the expectation that using revealments 

of the codable class of all set-theoretically defimable clas­

ses, we will be able to extend the results obtained for sets 

even to set-theoretically definable classes. 
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This article is a continuation of the book LV] and it 

uses the results of the paper [S-V]. However, in accordance 

with the aim of this article the result 9 of that paper are 

used only in proofs and in auxiliary statements and they are 

not used in the main theorems. 

The article has arisen in the Prague seminar of alter­

native set theory on the basis of discussions held between 

both authors. 

§ 1« Fully revealed codable clas3es. Let us recall 

that a class X is called revealed iff for every countable 

Y9X there is a set u with Y£u£X. Further let us remind 

that a class X is called fully revealed iff for every normal 

formula cy(z,Z) of the language FL the clas9 •fx;y(x,X)} is 

revealed. 

A codable cla33 W is called fully revealed iff there 

is its coding pair <K,S> which is fully revealed (more pre­

cisely we require that the class KxiOJu S.x-f U is fully re-

vealedl . 

Thus a clas3 Y is fully revealed iff the codable class 

{X; X = Y} = -CYj is fully revealed. 

If Cf is a formula of the language FJL. and if W is a 

codable class then c$^™*') denotes the formula resulting from 

cp by restriction of all quantifiers binding clas9 variables 

to the elements of ffll (quantifiers binding aet variables are 

let without change). Thus e.g. the symbol (C3X)(Vy)(y€ X ) ) ^ 

denotes the formula (3X e TfYl )(Vy)(y £ X). 

Let us assume that a coding pair <K,S> code a codable 

class Wl . Thus the formulas C3X & W,) cpU^,... ,Zk) and 
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GxeK)cp (S"-(xlfZ f̂ ...,Zk) are equivalent. Hence to every 

formula gKZ-,,. ..-Z-̂ ) ©f a language PI^ we are able to con­

struct a normal formula 9(Zlf...fZk+2) of the same langua­

ge by induction so that the equivalence Cf ' (Z..,.. • .Z,) s 

S^(Zlf...fZkfK,S) holds. 

In the course of the first two sections wfe shall see 

that a codable class ©fc is fully revealed iff IRtL satisfies 

the following two conditions: 

Rv, If g>(zfZ-^,... ,25̂ ) is a formula of the language 

PL-, and if X,,*..,-^ are elements of <#t then the class 

ix;9^tt(xfXlf...,-<!c))} is fully revealed. 

Rv2 If -C<yn(ZfZlf... fZ. );neFNi is a sequence of for­

mulas of the language PLy. and if -fX^neFN? is a subclass of 

fljl then we have 

W^GX^WJCcpJ^W,^,...,^ )*...& <dr^°(xfxlf...fxk ))--> 
o n 

^ . - ^ G X 6 ^ ) ( V n ) 9 ^ ( X f X l f . . . f X k ). 

Let us realize that if a codable class satisfies the 

condition Rv, then all its elements are fully revealed. Fur­

ther let us note that according to § 2 CS-VI the condition 

Rv, is equivalent to an illusorily weaker condition - namely 

to the condition Rv, in which only formulas of the language 

PL are taken into account and in which the words "fully re­

vealed" are replaced by the word "revealed". 

Theorem. Every codable fully revealed class satisfies 

the conditions Rv, and Rv2. 

Proof. Let a fully revealed coding pair <KfS> code a 

codable class W . Assuming that Cjp(zfZlf.. . ,2^) is a formu­

la of the language PLy and that X-p...fX-g are elements of 
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IJl , we can choose x l f . . « f x- c 6K so that for the normal for-

mula g> described above we have -tx; cj v ^ ' ( x f X l f . . . f.^£)J « 

• 4x,-9(xfS
H-tx1? f...9S

mixg fK fS)}. Hence the investigated 

class i s fully revealed because the coding pair<K fS> i s fu l ­

ly revealed and because J i s a normal formula. We proved 

jus t now the condition Rv-,. 

Let \Xn;neFH'i£m and l e t <<j n (Z f Z l f . . . f Z k ) ; ae FNj 
n 

be a sequence of formulas of the language FL^ such that for 

every ne FN the formula (aX6m)(«j^(X,X l f...X )fc... 

...& 9n
m)(XfX1,...fX. )) holds. For every #6FN we define 

the class YR by 

Yn = -CxeK; 90
3M)(Sw-ix},X1>...f3tk )&... 

. . . i < j . f ) ( S - t x } , X 1 , . . . f X )} = 4xeK; c|o(S"«ix}fXlf... 

...,Xk fK,S)&...& ̂ n(S"-£x^fXlf...fXk^fKfS)i. 

Thus (Y jneFN} is a descending sequence of nom-empty reveal­

ed classes and therefore there is x C H i Yn;n € FNl by § 5 

ch. II [V]. This finishes our proof since S"-txi e 30t and 

for every neFN we have g>n (S*4Lx^,Xlf. . # ,X. ) according to 

the definition of Yn. 

We say that codable classes ^t and 3t satisfy the sa­

me restrictions of formulas of the language FI.V, iff for eve­

ry closed formula cp of the language FI^ the equivalence 

qp -= & holds. 

If F is a function and if Ifltl is a codable class then 

the codable class -IF^XJX 6 2JXJ is called the F-range of ̂ t 

and denoted by F " ^ . 
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Theorem. If codable classes W< and 2t fulfil the con­

ditions Rv^ and Rv2
 a n d & m «*-<* 9t satisfy the same res­

trictions of formulas of the language PL then there is an 

automorphism F so that 30i » F"3t . 

To prove the theorem we shall use the following auxili­

ary definition. 

Let / be a mapping of a subclass of Dt into 3?fc . We 

say that a function F is a similarity regarding <¥ iff for 

every formula cf(zlf ...,«£, Zlf•..-Z^) of the language PL, 

for every x, f... fx. 6 dom(F) and for every X-^,...,^ elements 

of the domain of If we have 

^(W(xlf...fxk,Xlf...fXta) m 9<aW(P(x1)f...fPCxlc)f 

Jf(x1)f...9J
r(xm)). 

Claim. I f / is a mapping of & onto Art and if F is 

an automorphism regarding J? then fl# * F"2fc • 

Proof. According to our auxiliary definition we have 

x cXsP(x) 6 <P(X) for every X e H and hence we get even 

F"X • <f(X). Therefore the equality W ^{J^WfXe Til » 

* -£F"X|X eatl holds. 

Claim. Let / be a mapping of a subclass of #i into 1&L 

and let F be a similarity regarding <F . Let us suppose that 

Jf and F are at most countable and that it and $t satisfy 

the condition Rv,. Then for every u there are v and w so 

that Fu-£<vfu>} and Put<u fw» are similarities regarding 

J. 
Proof. Let u be given. We are going to prove the first 

statement9 the second one can be proved quite analogically. 

Let (X be the codable class consisting of all classes of the 

form 
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4x; 9(*)(xfF(x1)f...fF(xk),^(x1)f...f flxjn **•*• 

9)(*f*1f.. tzk>Zlf ...fZm) is a formula of the language FLf 
xlt...>xke dom(F) and

 xx»###»x
m
 a r e elemaits o:C> tke domaia 

of <f such that the formula <y^(ufxlf... fxkfXlf... ,^) 

holds. Every element of Ol is revealed by the conditio* 

Rv-̂ . Thus Cfc is a system of non-empty revealed classes which 

is at most countable and which is dually directed (ir.r.t. 

inclusion) and hence there is ve/UXjXe <X\ according to 

§ 5 ch. II £VL Such a v fulfils our requirement. 

Claim. Let / be a mapping of a subclass of #X into 

33t and let F be a similarity regarding Jr . Let us suppose 

that <f and F are at most countable and that 2t and #1 sa­

tisfy the condition Rv2. Often for every le 01 (Z e #t res­

pectively) there is Z e #t (X e 21 respectively) such that 

F is a similarity regarding Jr v -i<ZtY>} • 

Proof. Let Y e 2t be given and let -fx^ne Q J and 

-CX^neQ'} be enumerations of the domains of F and »f res­

pectively (Q and Q' being either finite natural numbers or 

FN). Let us assume that -t9n,*n6FNl is an enumeration of 

all formulas g?(Z,alf... ,zk,Z-,,.. .,Zm) of the language FL 

such that the formula <y^(Y,xlf... jX-̂ X.,,.. .,X^) holds. 

Thus for every n e FN we have 

(JXeat)(^)(Xfx1,...,xk fXlf...,^n ) &... 
_© o 

...&9n*
)c*>xi'-">xk ,x1,...,x^)) 

and hence for every n e FH. we get even 

(3X e^t)(<y^(X,F(x3),...,F(xk )f^(X^,...t^(X^ ) ) * . . . 

...ft Cff9(X,F(x1)f...fFCxkn)f ̂ (X1)t...f^(X^))) because 
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F i s a similarity regarding J • Hence by the condition Rv2 

there i s Z ^ a with tyn) <ym^(Z fF(x1)>. . . > F ( x ^ ) > 

i r ( X ^ ) > . . . > ^ ( X m ) ) . The second statement can be proved in 

the same way. 

To prove our theorem l e t us suppose that i Z ; oc €J2J 

and lY^ ; oo e 11$ are enumerations of codable classes # # 

and $1 respectively and that im^ ; cC e XL i i s an enumerati­

on of the universal class (the case ^ » 9t = o i s t r i v i a l ) . 

Evidently 0 i s a similarity regarding 0 since 1pft and 7t 

satisfy the same restrictions of formulas of the language 

FL. Hence using the previous claims we are able to construct 

by transfinite induction sequences iF^joc 6.1L? and 

^£c f ^ s i H a o that for every oo 6 i l , P^ i s a simila­

r i ty regarding J& f both F^ and ^ are at most count­

able, Jet i s a mapping of a subclass of 3t into ##, a^ e 

€ domtFoc, )n rng(Fo6 ) , Y^ and Z^ are elements of the domain 

and ©f the range of J^ respectively and Uit^ ; fi c cc nJl}£ 

S F ^ - i i U ^ / ^ ; / 3 € 0 C n i l J S ^ . Thus Uit^ ;oC6iL} i s 

an automorphism regarding U i ^ ; oC e £l\ anflflt and #3t 

are the domain and the range of U { ^ joe <sll$ respecti­

vely. Therefore the use of the first claim proves our theo­

rem. 

§ 2. Revealments of codable classes. A codable class 

#t is called a revealment of a codable class 9t iff W, is 

a fully revealed codable class satisfying the same restric­

tion of formulas of the language FL as the codable class ft. 

A class X is called a revealment of a class Y iff the cbdab-
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le class 4X$ is a revealment of the codable class -lYj. 

Let us note that if a codable class /ffl> is a revealment 

of a codable class 9t then 1$l fulfils the conditions Bv, 

and Rv'2* Moreover let us realize that in this case the for­

mula s (3X 6 3t )g>CX) and (2X e Wl )g?(X) are equivalent for 

every normal formula y(Z) of the language PL. 

We say that classes X and Y satisfy the same normal tor-

mulas of the language FI^ iff for every normal formula 9>(Z) 

of the language FÎ , we have g>(X) » g>(Y). 

A class X is a revealment of a class Y iff X is a fully 

revealed class satisfying the same normal formulas of the 

language FL as the class Y. 

Lemma. Let F be an endomorphism and let Ex denote a 

standard extension on F"V (cf. [S-VJ). If a coding pair <K,S> 

codes a codable class 9t and if the coding pair <l&x(F*K)t 

Ex(PwS)) codes a codable class W then 1Stl is a revealment 

of 71 . In particular, for every class Y, the class Ex(F"Y) 

is a revealment ©f Y. 

Proof. The coding pair <Ex(F"K)f,Ex(F
wS)> is fully re­

vealed by § 2 tS-Vl. Let (p be a closed formula ©f the langu­

age FL and let cp be the c©rresponding normal formula descri­

bed in the first section. Then 

eg W S $ (Ex(FwK) ̂ (F-S)) a §>P"V(F"K,F"S) s $ UC,S) ss <?&* 

by the definition of standard extension and by the secomd the­

orem of § 1 ch. V [VI. We have proved that 33fc and M satisfy 

the same restrictions ©f formulas %f the language FL and the­

refore '#t ia a revealment of til • 

The following statement seems to be the most important 

consequence of the lemma. To prove it it is sufficient t© 
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realize that § 3 [S-V3 assures the existence af an endomor-

phism such that there is a standard extension an the ende-

morphic universe F"V. 

Theorem. Every codable class has a revealment. 

Lemma. If a coding pair <K,S> codes a codable class 

1Bti, and if F is an automorphism then the coding pair 

<F"4K,F"S> codes the codable class F"$ft and moreover 3# 

aad F"33t satisfy the same restrictions of formulas of the 

language FL. 

Proof. Assuming F to be an automorphism we have obvi­

ously 

4(F"S)"€xl;xeF"K$ -= -f(F"SyifF(x)};x€K} « <F"(S"-£x*); x€Ki= 

* 4F*XfX fi ®tt>\ . Moreover if cp is a closed formula of the 

language FL and if 9 is the corresponding normal formula 

then wa have G ^ * " * ^ 2p (F"K,F"S) = 6} U9S)*zq>m accord-

lag to the second theorem of § 1 ch. VtVl. 

Theorem. Let a codable class fflt> be a revealment af 

a codable class Hi . Then a dodable class IQtl' is a reveal-

aent of Ttl iff there is an automorphism F with ffll' * Vffltl. 

la particular, if a class X is a revealment of a class X 

than a class Z is a revealment of X iff there is an auto-

aorphism F with Z » F"X. 

Proof. The implication from left to right is a trivi­

al consequence of the second theorem of the paper. To prove 

the converse implication it is sufficient to use the last 

laaaa and to appreciate that automorphisms transfer fully 

revealed classes onto fully revealed ones. 

The following result which is a strong form of the con-

varsa of the first lemma has important consequences. 
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Lemma. Let a codable class /X& fulfil the conditions 

Rv-j and Rv£, le t a coding pair <K,S> code a codable class 

9t satisfying the same restrictions of formulas of the lan­

guage FL as ®l • Then there is an endomorphism F such that 

there is a standard extension Ex on the endomorphis univer­

se F"V so that the coding pair <Ex(F"K) ,Ex(F"S)> codes # & . 

Proof. Let G be an endomorphism such that there is a 

standard extension Ex' on the endomorphic universe G"V and 

let the coding pair <Ex'(G"K),Ex'(G"S)> code a codable class 

W . By the first lemma of this section $#' is a reveal-

ment of 7ft and hence both fflt and 32i' fulfil the conditions 

Rv-̂  and Rv2« Moreover 3t , W and Wfl' satisfy the same res­

triction of formulas of the language FL and therefore by 

the second theorem of the paper there is an automorphism H 

with 9?t » H" 181' . 

Let F be the composition of H and G. Then F*V is an en­

domorphic universe and we define an operation Ex for all its 

subclasses by Ex(X) = H"Ex'(H~lwX). Thus for every normal 

formula ^(z-*,... ,z^,Z-.,.. .,Z ) of the language FL, for eve­

ry x,,...,!-^ FWV and for every X-^,... ,^-i FMV we have 

Cp '--it • • • f^f^if • • • î ||/ =r S> *xi» • • • »xk* 1* * * ** m 

~<£ °,,V(H"1(x3L),... - H "
1 ^ ) .H" 1-^,... ̂ " X ^ ) at 

s <J> (H"1 (Xl),... ,H~
1 (xk),Ex' (H"

l wX 1),... ,Ex' O T 1 ^ ) ) ss 

2 <j>(x, ,...,xk, Ex (X-^),..., Ex(X.)) according to the defini­

tion of standard extension and to the second theorem of § 1 

ch. V [V]. Therefore we have proved that Ex is a standard 

extension on FWV. Moreover the coding pair ( Ex(FHK),Ex(F"S)>» 

=*<H*Ex'(GwK),H"Bx'(GHS)> codes 4ft, by the last lemma. 

Consequence. If X is a fully revealed class satisfying 
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the same normal formulas of the language FL as a class Y 

then there is an endomorphism F such that there is a stan­

dard extension Ex on the endomorphic univerae F"V so that 

X * Ex(F-Y). 

Theorem. A codable claas is fully revealed iff it ful­

fils the conditions Rv-, and Rvp» 

Proof. According to the first theorem of the article 

we have to prove only the implication from right to left. 

However, this is an easy consequence of the la et lemma (ap­

plied to the case 31 » ffl ) and of § 2 CS-VJ. 

We aay that a coding pair <K*,S*> is a revealment of a 

coding pair <K,S> iff the class K*x£Olu S**.£lj i3 a reve­

alment of the claaa Kx *0l u Sxilj • 

Theorem. Let a coding pair <KfS> code a sedable claas 

Ot . Then a codable claaa 03t is a revealment of 4t iff the­

re is a coding pair which codes /fft and which is a revealment 

of <KfS>. 

Proof. The first and third lemmas and the consequence 

of thie 9ection obviouely imply our statement. 

Let us suppose that we have a claas and its revealment. 

The following two theorems enable us to construct some other 

pairs of classes so that in every pair the second class is 

a revealment of the first one. 

Theorem. Let Gp(Z) be a formula of the language FL and 

let a codable class fflfc be a revealment of a codable class 

71 • Then the class 4xj ̂ >OT(x)j is a revealment of the class 
/.jfc\ 

fx; qK '(xH • In particular, if y(a,fZ) is a normal formula 

of the language FL and if a class X is a revealment of a 

class Y then the class ix; Y(x,X)]r is a revealment of the 
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claaTs ix; y(x,Y)?. 

Proof. The claas ix; <f®®(x)} is fully revealed by the 

property Rv^* If nHZ) is a normal formula of the language 

FL then according to the definition of <jf we have 

^ H x v c /
W ( x ) U s W i x . 5 9(x)}))(^-(i^4x;9(x)n)U)^ 

s±<frtix; <$m*(x)\) since IPtl and 9t satisfy the same rest­

rictions of formulas of the language FL. Therefore we have 

shown that ^x\q^(x)\ and ix;q^(x)} satisfy the same 

normal formulas of the language FL. 

Theorem. Let y(Z) be a formula of the language FL and 

let a codable class /20l be a revealment of a codable class 

VL . Bien the codable class IX 6. Wt ; <j ̂ (X)} is a reveal­

ment of the codable class {X 6 It ; 9^(X)i. 

Proof. Let a coding pair <K,S> code 9fc and let its re­

vealment < K*,S*> code ffll . Thus the claas K^ M x e K * ; 

<p(S*"«txi,K*,S*)} is a revealment of the clasd 1^ » $x€K; 

^(Sw«tx^,K,S)} by the last theorem and moreover <K£,S*> is 

a revealment of <K1,S>. To finish the proof it is sufficient 

to realize that the coding pairs <K.f,S*> and <K-,,S> code the 

clas3es ix e. Wt ; ym (X)} and «tX e ft ; cym(X)} respective­

ly-

At the end of this section we are going to deal with the 

indiscernibility equivalence -=. defined in § 1 ch. V [V), 

Let X denote the cloaure of X in thie topology. Thu9 X is the 

intersection of all classes of the form «fx;q?(x)} where <p(z) 

is a set-formula of the language FL with (VxeX)^(x). 

Theorem. ¥ =UiY;MY is a revealment of X"}. 

Proof. If x^X then there is a set-formula cp(z) of the 

language FL with i <y(x) & (Vy e X)<y (y). Assuming that Y is a 
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revealment of X we have (Vye X) g>(y) aince X and Y hare to 

satisfy the same normal formulas of the language FL and the­

refore we get x^I in this case. 

To prove the converse inclusion let us suppose that 

xeX and that Y is a revealment of X. If j>(z) is a set-for­

mula of the language FL such that <p(x) holds then there is 

yeXwith 9>(y) (otherwise X £{z; i g>(z)J and thia contra­

dicts the assumption xeX). Moreover since X and X satisfy 

the same normal formulas of the language FL there is q e X 

with <y(q). The clae9 -Cz6Y;y(z)} i3 revealed because Y is 

fully revealed. The codable clas3 con9i3ting of all classes 

of the form -iz e Y; q>(z)ic where <j> ie a formula of the langu­

age FL auch that g? (x) holds is a dually directed (w.r.t. in­

clusion) system of non-empty revealed classes and hence the­

re is a set zeX so that the equivalence <y(z)~g>(x) holds 

for every set-formula <p of the language FL. Thus we have 

shown that there is zeY with z = x. lierefore ty § 1 ch- V 

[VJ there is an automorphism F with F(z) = x. The class F"Y 

is a revealment of X and moreover x£FwY. 

Theorem. For every X^ucDef the clas9 X equala to the 

cla99 (Mr e Vet\X£ v}. 

Proof. If veDef and X£v then there is a set-formula 

q?(z) of the language FL so that the statement <gp(v) & 

&(3!q)9(q) holds. Let i .f(z) denote the formula Gq)(<3>(q)& 

Rzcq). We have (VxeX)ifr(x) and thence even (Vxdf) f(x)9 

Therefore we have proved X£v from which the inclusion 

.?£f."-vV£Def;X£v"} follows. 

On the other hand, let us assume that x ^ T i.e. that 

there is a set-formula <jpU) of the language FL auch that 
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-I Cf (x)&(tfy€ X)<y (y) holds. The set v s { y e u ; 9>(y)i is an 

element of Def and moreover X£v. Thus to prove the converse 

of our inclusion it suffices to realize that we have x^v. 

The following result is a trivial consequence of the 

above mentioned statements (aince Sef = V by § 1 ch. V CVJ). 

Theorem, k <*, ,-(Vv€ Def )(W£ v —> 06 e v]- Ui Y;"Y is 

a revealment of FN"}. 

§ 3. Codable classes with uniquely determined revealment. 

If C is an arbitrary class then a class X is called set-the­

oretically definable with parameters in C iff there is a set-

formula y(z) of the language FI^ such that X * -Ix; cp(x)j. 

In agreement with CV] we define that a clasd is 3et-theore-

tically definable iff it is aet-theoretically definable with 

parameters in V. The syetem of all aet- theoretically defin­

able classes is a codable class by § 5 ch. II LV]. Hence for 

every class C, the sy3tem of all aet-theoretically definable 

classes with parameters in C is a codable class and we are 

going to denote them by the symbol Sdc. We say that a class 

is set-theoretically definable without parameters iff it is 

an element of SdA. 

Let us note that the formula XcSdy ia equivalent to 

VopSnka'e predicate Sd(X). 

We aay that a codable class is Sd -codable (set-theore­

tically codable without parameters) iff there is its coding 

pair <KfS> such that both K and S are elements of Sd . 

Thus XeSd„ iff the codable class 4X} is Sd -codable. o o 

Moreover if X is an element of a SdQ-codable class then the­

re is y € V and a set-formula JpCz^-Zg) of the language FL 
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so that X s-'Cx; <^(x,y)| and hence X is set-theoretically de­

finable. Thence we have proved that every Sd0-codable class 

is a subclass of Sdy. 

Theorem. If 7fl is a Sd -codable class then 

"" o 

a) there i s a normal formula g>(Z) of the language FL 

such that W = -{X; Cf(XH} 

b) for every codable class 1fL we have "it * "77C i f f 91 

and *3lt satisfy the same restrictions of formulas of the 

language FL. 

Proof. Let K,S €SdQ and l e t the coding pair <K,S> code 

W . Then there are set-formulas Tf{z) and T^(z) of the lan­

guage FL with K a-C x ; y ( x ) i and S =£x;<#(x) j . 

a) We have evidently Otfl » *X;C3x)(y(x) k (Vy)Cyc X ~r 

* #Ky»x»»3. 
b) Let flt and *?# satisfy the same restrict ions of for­

mulas of the language FL and l e t cp (Z) be the normal formula 

guaranteed by the f i r s t statement. Thus the formula 

(WO^CX))** holds and hence we get ((VX) 9>(X))(al) from 

which the inclusion 4t £ 47L follows. Further we have 

( (Vx) (3X) (y (x )~^(Vy) (yeXS^«y f X > ))))m and therefore 

we obtain even ((Vx)(3X) (y(x) —* 0/y)(y6 Xsr-i^«y fx»))) & 0 . 

However, the last statement means that WxeK)S"ix}& 71 and 

thence we have proved the equality 71 = 7ft, * 

Theorem. If npfi i s a Sd -codable class then 77l i t se l f 
o 

is its sole revealment. 

Proof. Let K,SeSd0 and l e t the coding pair <K,S> co­

de '991 # Then this coding pair i s fully revealed and hence 

Ifitl i t s e l f i s i t s revealment. Thus the use of the las t the­

orem finiehes the proof. - 112 -



Theorem. A codable class has exactly one revealment iff 

it is Sd -codable. In particular, a class has exactly one re­

vealment iff it is an element of SdQ. 

Proof. The last theorem assures the implication from 

right to left. To prove the converae one let U9 suppose that 

a codable class 101 is the sole revealment of a codable class 

$1 • Moreover let us assume that a fully revealed coding pair 

<K,S> codes fl3t f 

At first we are going to show that 'Ml £ Sdy. If F is 

an automorphism then the codable class FH/3# is a revealment 

of 11 by the last section and therefore we get FMWt = Wt -

If X is an element of ̂  then -£F"X; MF is an automorphism^ 

is a subclass of the codable class Wl and hence even this 

class is codable. Thus according to § 1 C6-VJ, X is a real 

class. Further the class X is fully revealed because $1 sa­

tisfies Rv^ and thence both X and V-X are revealed. Using 

§ 5 ch. II £Vl and again § 1 CC-V-1 we get that X is set-the­

oretically definable. Therefore we have proved the inclusion 

m £ Sd7. 

Let 01 be the codable class consisting of all classes 

of the form -tz eK; n Gy)(S"^z"V = 4x; ̂ (x,yH)} where ^ ( z 1 , z 2 ) 

is a set-formula of the language FL. Then the elements of Ol 

are revealed classes because the coding pair <K,S> is fully 

revealed. Further Ol is dually directed (w.r.t. inclusion) 

since the formulas QyKSNLz* » ix; ^(x,y)^) v (3y)(Sw«$z j = 

= -(x; $2(x,y)j) and (3y)(S"4z* = -Cx;Gq)((y = <q,0> & 

& ^1(x,q))v(y - <q,l> & ̂ 2(x,q)))}) are equivalent. More­

over n-fXjXfeW^a o according to the previous part of the 

proof. Therefore 0 e Ol by § 5 ch. II tVl and hence we can 
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fix a aet-formula ^(-5i>22^ °* t a e langua8e ?L such that the 

formula CtfX e W Q y K X « 4x; ̂ (x,y>5) holds. 

Put M « 4y;^x; ̂ (x,yH e ̂ t J. 05ius M * 4y; (QX)(Vx) (x e 

e X s ^(x,y))K '] and hence M is fully revealed according 

to Rv-.. Moreover the coding pair < M, |<x,y>f %(xfy)l} codes 7RH . 

If F is an automorphism then ysMs-tx; ̂ (x,yH e ^ s 

s F M x j x(xty)l «- &>&* x;^(x,F(y))J e M s F(y)e M. How­

ever, this means that M is a figure in the equivalence =-=- . 

Further this figure and its complement are closed by § 2 ch. 

IIICVJ and therefore M 6 SdQ according to § 1 ch. VCVJ. 

We proved just now that -#4 is SdQ-codable. Since WL 

and 71 satisfy the same restrictions of formulas of the lan­

guage FL one can conclude the whole proof of our theorem us­

ing the first theorem of this section. 

Theorem. If a coding pair <K,S> with K,S eSdy coda % 

then 71 is its revealment and coding pairs of the form 

<F*K,F"S> where F is an automorphism code all revealments 

•f 7l and hence every revealment of 71 ie coded by a coding 

pair which is an element of the codable clas9 -£<L,R>;L,RcSdyj. 

Oieorem. If 9t cannot be coded by a coding pair<K,S> 

with K,SfcSdy, then there is no codable class OL such that 

every revealment of 31 can be coded by a coding pair which 

is an element of (Jl • 

Proof. Let Wl be a revealment of 71 . If there is X € 

& ffll - Sdy, then by § 2 [5-V] the ey9tem of clas9ee of the 

form F"X where F is an automorphism is not codable. ftierefo-

re we can suppose that #ft£ Sdy. Thus a part of the proof of 

the let but one theorem shows that there are S c Sdy and a 

fully revealed class K such that the coding pair \K,S> ex-
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tensionally codes 7ttl * By the assumption of our theorem 

K^Sdy. Thus K is not real and the class <F"K; "F is an au­

tomorphism with F"S = S3 is not codable by § 2 f 5-VJ. 

§ 4. Revealments of the codable class Sdy» Set-theore­

tically definable classes behave in many cases analogically 

as sets. On the other hand, the following theorem shows that 

a very important property of sets, namely the prolongation 

axiom, has no analogue in the codable class Sdy. 

Theorem. No coding pair <K,S> with S 6Sdy codes SdQ. 

Proof. Let us suppose that a coding pair <K,S> codes 

Sd and that there is a set-formula (pCs^-^f9^) of the lan­

guage FL and a convenient parameter a so that S ={<x,y>; 

Cj>(x,y,a)}. Put T =«f<y,z>;-j cp«y,z>,y,z)j. Thus Y e SdQ and 

thence there would be y 0€K such that the equality X = S*iy^ 

holds. In this case we would have (yo,a)erlsi9«y0,a)fyo, 

a) = «y0,a>,y0> # S-<y0,aHS"4y0*=Ky0,a><£Y which is a 

contradiction. 

Further as a consequence of the last theorem we get that 

the codable class Sdy does not fulfil the condition Rv2 (as 

the required formulas can serve the formulas Z-. = X"-!ll &. • • 

...&Z n = X"in} where <FN,X> is a coding pair of SdQ) and 

hence Sdy is not fully revealed. By the last section there 

are many revealments of Sdy. Up to the end of this section 

the symbol Sd^ denotes one of them. 

Qfoeorem. Sdy c Sdy • 

Proof. Let a set-formula <p (z ,z l f.. • ,zk) of the lan­

guage FL be given. We have ({Vy±)... (Vyk) (3X) (Vx) (x e X s 
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(Sdv) 
scp(x,y1,...fyjp:))) and hence we obtain even the sta-

(Sd* ) 
tement ((Vy-j).. .(Vyk)C3X)(Vx) (x€ Xi=E<p (xfylf... ,yk))) 

3:herefore we have proved that for every ylf...,yk the class 

-tx; 9?(x,ylt...,yk)} is an element of Sd^ • 

The following theorem (which is a trivial consequence 

of the property Rv2) is an analogue of the prolongation axi­

om holding in Sdv • The next theorem summarize some results 

which show that Sdv keeps those properties of Sdv in which 

set-theoretically definable classes look like sets. 

Theorem. If •fX^jncFNiS Sdv then there is ReSdv 

with (Vn)R"-fn* = X^. 

Theorem, a) The universal class is the sole class X 

of Sdv for which the formula 0£ X&(Vx)(Vy)(x €X —> 

—» (xu*yl)GX) holds. 

b) The intersection of each element of Sdv with a set 

is a set 

c) If <y(z,Z) is a normal formula of the language FL 

and if XeSdy then the class 4x;<p(x,X)$ is an element of 

Sd^ , too. In particular, the formula (VReSdf^ )(Vx)(Rw4xH 

eSdv£ ) holds. 

Proof. The formula (VXe Sd?)((0€ X& (VxMVyMxe X~* 

—-> (xu-fyt) 6X))—> X « 7) was accepted as the precise ver­

sion of induction (cf. § 5ch. II tVJ); moreover assuming 

that y is a normal formula of the language FL we get formu­

las (VX6Sdv)CVx)Set(Xox) and (VXeSdvM3X6 Sdy)X -= 

* 4xj <j>(x,X)} . Therefore all statements of our theorem are 

implied by the assumption that Sdv and Sd-̂  satisfy the sa­

me restrictions of formulas ©f the language FL. 
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The following theorem describes a holding in Soil ana* 

logue of an important consequence of the prolongation axiom. 

Theorem. Let VJ«t a^jne FN? =- dom(R) and let (Vh)(Rhane 

6 Sdy & a £ a ^ ) . Let $ be a countable system of normal formu­

las of the language FL with one free variable so that we ha­

ve ( V y e $ J O / n ^ t R l ^ ) . Then there is R*e Sdy such that 

the formulas (Vn)R*h an = R f o^ and (\/y e <$ )<jp(F*) hold. 

Proof. For every neFN there is a set-formula <p of 

the language FLy with (Vy 6 an)(9n(x,y) s<x fy>€R); moreover 

we have Rra 6 Sdy . Hence it is sufficient to apply the con­

dition Rv2 to the countable class $ v k (tfy e (anndom(Z)) 

(yn(x,y) = <x,y>€ Z);ns FNl of normal formulas. 

Especially if sets a^ in the previous theorem are fini­

te we can replace the assumption Rfa £ Sdy by the condition 

(Vx£an)Rnx}eSdy. 

The last theorem substantiates that we are not able to 

define (e.g. adding some additional requirements) a uniquely 

determined convenient extension of the codable class Sdy. 

theorem. Let 7ft s tX; g>(X)J be a codable class with 

(tfX e Wi)Wx)Set(Xnx) where cp is a formula of the langua­

ge FL. Then 7H& Sdy. 

Proof. Let us suppose that Y e 7#l -Sdy. For every auto­

morphism F we have F"Y e Ttl since the formula (VX)(̂ >(X) * 

^ eg (F"X)) holds. Therefore the system {F"Y;MF is an auto­

morphism'1 \ is a subclass of Wtl and hence it is codable. By 

§ 1 C5-Vl the class Y must be real. Moreover we have 

(Vrx)Set(Ynx) and hence Y is set-theoretic ally definable ac­

cording to the same section. This contradicts our assumption. 
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