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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

21.2 (1960) 

GENERALIZED FLATNESS AND COHERENCE 
Hana JIRASKOVA 

Abstract; In this paper flatness and coherence rela­
tive to a cohereditary idempotent radical s is studied. Re­
sult 9 here obtained are applied to the M-flatness with res­
pect to a pseudoprojective module M. 

Key words; Relatively flat modules, relative coheren­
ce, preradicals. 

Classification: Primary 16A50, 16A52 

Secondary 18B40 

In what follows, R stands for an associative ring with 

a unit element and R-*mod (mod-R) denotes the category of all 

unitary left (right) R-modules. 

First of all, we shall list several basic definitions 

from the theory of preradicals. 

Recall that a preradical r for R-mod is a subfunctor of 

the identity functor, i.e. r assigns to each module M its 

submodule r(M) in such a way that every homomorphism of M 

into N induces a homomorphism of r(M) into r(N) by restric­

tion. 

A module M is r-torsion if r(M)=M and r-torsionf ree if 

r(M) = 0. The class of all r-torsion (r-torsionfree) modu­

les will be denoted by TT ( 7T)* 
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A preradical r is said to be 

- idempotent if r(M) e 7^ for every module M, 

- a radical if M/r(M) e 9^T for every module M, 

- hereditary if for every module M and every monomorphism 

A—->r(M) A eT r, 

- cohereditary if for every module M and every epimorphism 

M/r(M)—=> A A e^ r, 

- 3uperhereditary if it is hereditary and Cfr is closed un­

der direct products, 

- centrally splitting if it is cohereditary and r(R) is a 

ring direct summand of R. 

If r and s are preradicals then we write r^=s if r(M) <£ 

£ s(M) for all M eR-mod. 

The idempotent core r of a preradical r is defined by 

r(M) = IS K, where K runs through all r-torsion submodules K 

of M and the radical closure r is defined by r'(M) = OL, whe­

re L runs through all submodules L of M with M/L r-torsion-

free. Further, the hereditary closure h(r) is defined by 

h(r)(M) = Mnr(E(M)), where E(M) is an infective hull of a 

module M and the cohereditary core ch(r) by ch(r)(M) = 

= r(R)-M. 

A module P is called pseudoprojective if for any epimor-

phism f :B—> A and any homomorphism 0=fcg:P—:> A, there exist 

homomorphisms h:P—** B and k:P—*• P such that 0 4-g»k = f»h. 

For a module M let us define Pj|£»(N) = 2E1 Im f, f rang­

ing over all f eHomR(M,N). It is easy to see that p ^ is an 

idempotent preradical. Moreover P{n\ is cohereditary if and 

onty if M is pseudoprojective. 

Let r be a preradical. We say that a submodule A of a 
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module B is 

- (r,l)-dense in B if there is a module C such that AEB_=.C 

and B/A£r(C/A), 

- (r,2)-dense in B if B/A £ TT 

Let r be a preradical and i e 41,2} . A module Q is said 

to be (r,i)-infective ((i,r)-infective) if for every monomor-

phism f :A—> B and every homomorphism g:A —> Q with Im f is 

(r,i)-dense in B (f(Ker g) is (r,i)-dense in B) there exists 

a homomorphism h:B—> Q such that hof = g. 

Definition 1. Let s be a preradical for mod-R. A modu­

le RQ is called s-flat if Tor£(N,Q) = 0 for every N e <T . 

Aa it i3 easy to see, a module RQ is s-flat if and only 

if its character module Q« is (s,2)-injective. Since a modu­

le ia (If,2)-infective if and only if it is (s,2)-infective, 

we obtain immediately the following proposition. 

Proposition 2. If 8 is a preradical for mod-R, then a 

module RQ is s-flat if and only if it is s-flat. 

The first part of the following proposition is esdenti-

ally due to R.W. Miller and M.L. Teply 1161. 

Propoaition 3* .Let s be a preradical for mod-R and Q 6 

e R-mod. Consider the following conditions, 

(i) Q is s-flat. 

(ii) Given any exact sequence 

with P projective, there is for every xes(R)-K a homomorph­

ism fx:P—* K such that fx(x) = x. 

(iii) Given any exact sequence 

0—> K ^ - ^ P — > Q — > 0 
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with P projective, there is for each finite subset {x̂ i-Cg,... 

...,.1̂ 2 of s(R)»K a homomorphism f :P—*K such that fO-^) s 

» x^ for every i e ilf2f... ,n}. 

(iv) Given any tn6s(R), q.eQ, r. . e R, i e U,2 f ...fm5, 

j s4lf2f ...fn5, p eilf2, ...fq^f with .S.r. . q. = 0 for 

each i fc$lf2f ...,mlf there is uv eQ and b4 v eR. j e {1,2,.•• 

...,ni, k e$lf2f...,t}f such that q. * JE. b. -^Uj, for j e-tif 
m, 

2f...fn] and tn( .2. r. .*b. v) « 0 for i & 4l,2,...fml, k 6 
p -^--'i 1 > J «J>--

e * l f 2 f . . . f t 3 f p e 4 l f 2 f . . . f q $ . 

(v) Every diagram 

0 - > K ^ F —> N—> 0 

1-
B >Q—>Q 

f 
with exact rows, F free, Kf F finitely generated and K * s(R) K 

can be completed by a homomorphism h:N«—> B to a commutative 

one. 

(vi) For every module N for which there is an exact sequence 

O—> K—* F —*- N—> 0 

with F f r e e , Kf F f i n i t e l y generated and K » s(R)«K, the na­

tura l homomorphism 

cf*<fN Q:HomH(NfR) <3 ^Q—» HomR(NfQ) defined v i a 

«f(f<8> q)(n) « <f(n)-q f feHomH(N fR), q e Q , n e N 

i s an epimorphism. 

( v i i ) Every diagram 

H 

1-
0 — • K—> &—>Q—• 0 

f 
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with exact row, K =- s(R)*K and N finitely presented can be 

completed by a homomorphism h:N—-> B to a commutative one. 

(viii) Q/(0:s(R))rQ is flat in R/(0 :s(R))r-mod. 

Then (ii) is equivalent to (iii), (iii) is equivalent to (iv) 

and (v) is equivalent to (vi). If s is idempotent then (i) 

implies (ii). Conversely, if s i3 cohereditary then (ii) im­

plies (i). Further, 

- if s(R) is finitely generated as a left ideal then (iv) 

implies (v), 

- if s(R) is finitely generated as a left ideal and s(R) is 

idempotent then (v) implies (iv), 

- if s is a cohereditary idempotent radical and s(R) is fi­

nitely generated as a left ideal then (i) is equivalent 

to (viii), 

- if s(R) is finitely generated aa a left ideal and R/s(R) 

' is flat as a right R-module then (iv) implies (vii), 

- if s(R) is a ring direct summand in R then (vii) implies 

(iv). 

Proof: (ii) is equivalent (iii), (iii) is equivalent 

to (iv), (i) implies (ii) for s idempotent aid (ii) implies 

(i) for 3 cohereditary. The proof can be led /along the eame 

line aa in Theorem 2.1 in [163. 

(iv) implies (v). Consider the following diagram 

k 
0—>K—->F— » K — » 0 

is 
B ~ * Q — > 0 
f 

with exact rows, where F is finitely generated free with a 
fnt 

free basis 4xltx2,... ̂ J , K - ^J Kkn> K -= s(R)-K and 
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s(R) = -S^ R t p . Set q • = ( g o k ) ( X j ) , j c { 1 , 2 , . . . , n } . Bien 
TV 

*-. S J S , J r . 4-X-, i e 4 1 , 2 , . . . , m J , and hence 0 = ( g - k ) ( L ) = 

2--. s - s>i r 4 -V<-i* % ( i y ) t h e r e i s u v 6 Q and b . v e R, k € i l t 2 f 
•̂ r* I * t J J ** ^ . d t 1 -

...,t}, j £-Cl,2,...,n$ such that q . ̂ j^Sf bj k-u k for j e{lt 

2,...,n! and t (.S1 ri .»b. k) = 0 for i e Ut2f...fm?t k e 

e 4 l t 2 , . . . , t \ and p ^ 4 l f 2 f . . . f q ? . For k c 4 l f 2 f . . . f 1 1 choose 

e k € B such t h a t f ( e k ) = u k and def ine h:F—> B by h ( x - ) * 

"*.?< bJ,k ek- n»» <f • »)<*j> = f<Ji -*j,k
;V -

t 

»- "S b. k*u k = q . = (gok)(Xj)f j eUf2f...tn? and consequ­

ently to h = g o k. Jurther, if i e ilt2t. ..fmj, p 6 4lf2t... 

...,q! then h(tpk.) = h l . ^ V i , 0 x j } =*?1 Vi,J (*?< bj,k 

ek ) = V?M ( t p ^ ri,j bj1k
)*ek = °« ttM h ( K ) = 0 and h in-

duces a homomorphism h:K—> B such that f o h = g. 

f 

(v) implies (ii). Let O —> K*-—>F—> Q — > 0 be an exact se­

quence, where P is free with a free basis { x̂ ,oC e Af. If ke K 

then k =.-B. r.x, , r. e R, 0C4 e A. Set F„ = .i§L Rx„ and defi-
ne a homomorphism g:Pn—> Q by g(-«̂ , > - f**̂ . ) for iGfl,2t 

...fn}. It is easy to see that g(s(R)k) = 0, hence g induces 

a homomorphism g:Fn/s(R)k—> Q. Now Fn/s(R)k is finitely pre­

sented since s(R) is finitely generated as a left ideal and 

s(R)2 = s(R) yields s(R)(s(R)k) = s(R)k. By (v) there exists 

a homomorphism h:Fn/s(R)k—>F 3uch that f © h = g. Setting 

h(x + s(R)k) = e^ for ie-Clt2f. ..fn}f we have f(e^) = 

« (f« h)(x^ + s(R)k) = g(x «• s(R)k) = f(x ), hence x. -
cC± ° OC.5 o^. oC± 

- e. e K for i e4 lf2,...tn$. Let us define ̂  :F—> K by 
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cp(x ) s x^ - ei for i e 41,2,... ,nj and ^(x^) = 0 if 
A i 

cck 406,, oCpc** f^n^* F o r t £ s ^ w e h a v e * * -?-f riei s 

m, m, 
= t -.2. r.h(x. + s(R)k) = h(t • .S, r-x, + s(R)k) == h(tk + 

m^ - ̂  

+ s(R)k) = 0. Thus <?(tk) « g>(.-5, tr.x̂ , ) = .S tr. (x• -

- e. ) = t ',S. r.x• = tk. 

(v) is equivalent to (vi) is routine. 

(i) is equivalent to (viii). It follows immediately from C16J 

Corollary 3.4. 

( i v ) imp l ies ( v i i ) . Consider the fo l lowing diagram 
P/s(R)K 

P/K 

1* 
0—> L —> B - j > Q — > 0 

with exact row , where L * s(R)L, P is finitely generated free 
nn> % 

with a free basis 4 x^-Cg,.•.,-%!, K = - ? ^ *&!» S(R) %,?/j Rtp 

and jr is a natural epimorphism. By the same fashion as in 

(iv) implies (v) we can show that there exists a homomorphism 

h:P/a(R)K—> B such that f © h = g o jjr . Let r be a coheredi-

tary radical in R-mod corresponding to s(R) (i.e. r(A) =-

= s(R)A for all Ae R-mod). By assumption L € 3^. Further 

R/s(R) is flat as a right R-module, hence r is hereditary. 

Since h(K/s(R)K)£ L, we have h(K/s(R)K) c tf"p n ̂ r * 0. Thus 

h induces a homomorphism htP/K—> B such that f« h « g. 

•p 

(vii) implies (ii). Let 0—* K « — > P —> Q —> 0 be an exact se­

quence, where P is free with a free basis 4x.occ A|. By as­

sumption s(R) is a ring direct summand in R. ftius R - d(R) + I 

for some ideal I. Consider the exact sequence 
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0~~*K/IK—* F/DC-£> Q---*Of where f i s induced by f. As i t 

i s easy t o see s(R)(K/IK) = K/IK. Now, i f k e K then k * 

«'.-S*. r>x^ , rAe Rf oc4 e A. Set F„ - . ^ Rx. and define a 
4, jr q 1 OCl * x * x n »v«- 7 oc • 

homoaorphism g:Fn—=> Q via g(xoC ) « f (x^, ) for i e « C l f 2 f . . . 

. . . f n } . Then g(Rk) = 0 and g induces a hoaomorphism g:Fn/Rk-* 

—̂> CU Further, F /Rk i s f i n i t e l y presented hence f o h = g 

for some homomorphism h:Fn/Rk—> F/lK by ( v i i ) . Put h(x<. + 

• Hk) = 6i + IK s I . . As i t i s easy to s e e x^ - e^e K and 

we can define <p ;F—>- K by 9? (x^ ) = x^ - e^ for i f { l f 2 , . . , 

. . . f n } and ^(x^) • 0 i f oc$ < cc^oc2,..., oc n ! . We have 

i"f 1 r i e i 6 ^ a lnCe • ? . ^ i * & ri'hlXcC. + * > = 

a h(.-SJ r . x , + Rk) * 0 . Now, i f t e s ( R ) then t ' . - S , r4e^ e 
4,» A 1 OT̂  * - ta 1 1 x 

/yi/ /»v 

e s(R)IK « 0 , hence cp(tk) « 9> ( ^ ^ i 3 ^ . ) s j ^ f ^ i ^ o c 

в 4 ) я t t S , Г...Г =- tk . Ч> " **ÍM Ч^, 

Definition 4. Let s be a preradical for mod-R. A modu­

le JQ satisfying one of the equivalent conditions (ii),(iii) 

and (iv) of Proposition 3 is said to be weakly s-flat. 

Let RQ be a f l a t module. A module NR i s c a l l e d Q-fini-

t e l y generated (see [ 6 3 ) i f the ratural hoaomorphism 

i f s f j l --:N <g> H Q1—•> (N® fi Q) 1 defined v i a y ( n ® q ) ( i ) * 

» a ® q ( i ) tor n e N , q e Q , i e l i s an epimorphism for every 

s e t I . 

Theorem 5. Let s be a preradical for mod-R and RQ be a 

f l a t module. Consider the fo l lowing condit ions 

( i ) Q i s weakly s - f l a t for every index s e t I . 
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(ii) If -JQ^tGCe A] is a family of weafcly s-flat modules, 

where Q^ e <Tp for every oc e A then TT Q ^ is weakly •-

flat. 

(iii) HomR(PfR) is Q-finitely generated for every module gP 

for which there exiat9 an exact sequence 

0—-> K~-> F—* p — > 0 

with P free, Kf F finitely generated and K = a(R)K. 

(iv) For every finitely generated right ideal I in R and an 

f 

exact aequence 0 — * K — > F — > I — > 0 with F finitely genera­
ted free there is a finitely generated aubmodule K* of F such 
that K ® R Q ^ K ' O R Q and a(R)f(K') =- 0. 

(v) (Q/iOiaOR))^)1 i3 flat in R/(0;s(R))p-mod for every set 

I. 

Then 

- (ii) implies (i)f (iv) implied (i)f 

- if 8(R) is finitely generated as a left ideal then (i) im­

plies (iii) and (i) implies (iv)f 

- if s(R) i9 finitely generated aa a left ideal and s(R) is 

idempotent then (iii) implies (ii)f 

- if s is a cohereditary idempotent radical, s(R) is finite­

ly generated ae a left ideal and (0:a(R))r i9 finitely ge­

nerated as a right ideal then (i) is equivalent to (v). 

Proof: (ii) implies (i) trivially, 

(i) implies (iii). Consider the following commutative diagram 

HomR(P,R)®RQ
I ^ Q > HomR(PfQ

I) 

V 

vl (HomR(PfR)<9RQ)-
L ( 9 )I (HomR(PfQ)) 

PfQ 
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where o> is the natural isomorphism and g> is defined as in 

Proposition 3 (vi). Now ( 9>p Q) is an isomorphism (see L143), 

since Q is flat and P is finitely presented. Further, cpp QI 

is an epimorphism by Proposition 3 (vi). Hence y is an epi-

morphism and consequently HomR(P,R) is Q-finitely generated, 

(iii) implies (ii). For Nemod-R the class of all M e R-iod 

for which N is M-finitely generated is closed under the for­

mation of direct sums of copies of M. Now if Q e T , 
<* Piq] 

cc e A then there exist a set I and epimorphisms f^Q —>• ^ ; 

06 c A. Consider the following commutative diagram 

HomR(P,R) <3>R(Q
(I))A 1—> (HomR(P,R) , © R Q

( I ) ) A 

1 .ľAf- ттлiøf.) 
oce A <* 

HomR(P,R) <g) n n Qw — > TT(Homp(P,R) 0 PQ ) 

where Y ^ * © q)(<=6) = f © q(oc ) f o r f eHomR(P,R), q c p T J A Q^, 

oc e A. Then Y i s an epimorphism s ince HomR(P,R) i s Q* ' - f i n i ­

t e l y genera ted , hence Y-i i s an epimorphism. Now cons ider t he 

fo l lowing commutative diagram 

% , TT a ^ 
HomR(P,R) ® R T7A Q x ^ ^ H « H < p . J ? A Q*> 

^ u 
7 ^ 

TTA(HomR(P,R)® „ Q.) > TT H o m j P ^ J 
o c e A * R o C T T (c* ) ° c ^ A " oC 

where co i s the n a t u r a l isomorphism and j> i s d ef ined as i n 

P r o p o s i t i o n 3 ( v i ) . Then g?p n i s an epimorphism for every 

cC e A by P ropos i t i on 3 ( v i ) . Hence <jpp -pr Q * s a n epimorp-
V e A <*• x 

hism and consequent ly TT 0^ i s weakly s - f l a t by P r o p o s i t i -
oC c A c t 
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on 3 . 

( i ) implies ( i v ) . Suppose I = -̂f̂  a^R and 0—> K —-> F - 3 > I~> 

—> 0 i s an exact sequence, where F i s f ree with a free bas­

i s { x i t x 2 , # * # , x n ^ a n d ^ x i ^ s a i f o r i e i l t 2 t P . . , n f . Now, i f 

k e K then k = , S . x^r^k) for some r ^ k ) e R, i e 4 l , 2 , . . . , n } . 

Let us define q i e Q * ^ by q-^kjq) = r ^ k j q for q c Q , k e K t 

i e - i l , 2 , . . . f n l . Since 0 = ^-p^ a^r^kj-q for every k e K and 
/tt, ~ Kix.0 ' " ' 

q c Q , we have ^ ^ a ^ = 0 i n Q * . Let s(R) = 2 ^ Rt . Then 
K*Q there e x i s t u - e Q H and b . . € R, i e 4 l , 2 , . . . f n * t j e 4 l , 2 , . . . 

. , . ,m$ such that q- = . S . b- • u- for i e 4 1 , 2 , . . . ,nj and 
-3-- 1 J. y J J 

tu 
t ( . 2 . a .b . .) = 0 f or j e 4 l f 2 , . . . , m 5 t p e-£l f 2 f . . . f v i . Set 

k . = . S , x . b . . , j e 4 l t 2 f . . . f m i and K = . S ^ k-R. For ke Kf 
J -V =- 1 X X , J .£••- 1 J 

q e Q we have k ® q s ^ ^ x i r i ^ ® q s - ? 4 x i ® r i ^ ) ° * = 

T V />1V I t 00, 

"*?< X i®*f^ b i , i " U J ( k ' q ) % ? 1 t . ^ X i b i t j >® u.(k.q) = 
/rrt/ 

* . - £ , kt(3> u . ( k , q ) e K ® RQ. further, t f(k^) = 
/TV /JrV 

= t f ( - 2 , , x . b . .) = t _ ( . 2 , a4b . .) = 0 and consequently 

P 1 / s 1 X X f J p - V 5 1 •*• X f J 

s (R)f (K') = 0 . 

(iv) implies (i). Suppose I is an arbitrary set, t es(R)t 

a. e Q , r. e R, i e41,2,... ,n}t w e flt2,... ,z} and ,jtA r-a. _ 
X * X ' 9 9 9 9 9 9 9 ^ & /J X X — 

nv 
= 0. Set J = .S- r.R and consider an exact sequence 0 — > K—> 

4/9 1 X 

-—•?-—> J — • 0, where F i s f ree with a free b a s i s -fx-pX.-,,... 

. . . , x n } and f(x.t) s r . for i e 4 1 , 2 , . . . , n } . Then there e x i s t s 

a f i n i t e l y generated submodule K = -2-> xDR of F such that 
K <2> RQ^K-#<8)

R Q and s (R)f (K#) = 0. Now Q i s f l a t and 
/*v 

•i?M r i a i ^ ° 6 ^ = ° f o r eye^y °c £ I , hence there e x i s t 
v .(oC ) e Q and b. .(©o ) c R, i e 4 l t 2 f . . . t n } , j e 4 l t 2 f . . . f m } t 
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oCe A such that a* (oc) = J ? M b. .(oc)v .(<*) for i eil92t. ..,n3, 

oC c A and - ^ ^ i b i j(oC) = 0, J6-il,2,...,m}. Let us denote 

\XA(cC)9 -2L x4b, .(<*), j e4l,2,...,m$. Then f(u-(<-c)) = 

* il*4 **:*>.: 4(<<) = 0 for ;j€*l,2,...,mi, oc e A. Thus u.(<*)e K. 

Hence . S^ Uj(oc) ® v. Co*) ̂ ^ k'<g> w(oc) for some w(oc) cQt 

p €llf2,...,q}, oce A. Further, k^ = ^ Xidi>p, d i > p£R, 

i 6-11,2.,....nil pe-[l,2,...,q$. Thus ̂ J^ Xi<g> a^(<x) -^^ *±® 

-jsl i,j J ** = A ** 4 11,0 J ^ 
• . 2 . u.(oc)<S> v.(oc) » S . (. 4̂ %idi )<g> w (oc) = . S Xi6? 

® ( -S di pW (oc)). Hence a ^ ) » S d^ w (oc) for iett, 

2,...,n£, oc 6 A and consequently a- s i, a. w . ie{lt2,... ^ x -M 4 ^tP P 

...,nj. We have ^(^-S^ ^ d i ) = twf(kpc s(R)f (K') = 0 for 

w c-ilf2,...,«$, p£il,2,...,qj. Hence Q is weakly s-flat by 

Proposition 3. 

(i) is equivalent to (v). It immediately follows from Proposi­

tion 3 (viii). 

Corollary 6. Let s be a preradical for mod-R. Consider 

the following conditions: 

(i) R.fr is weakly s-flat for every set I. 

(ii) Weakly s-flat modules are closed under direct products, 

(iii) HomR(P,R) is finitely generated for every module ^P for 

which there exists an exact sequence 0 — • K — * F — > P — > 0 

with F free, K, F finitely generated and K * s(R)K. 

(iv) For every finitely generated right ideal I in R and an 

exact sequence 0—> K — > W > I«—>0 with F finitely gene­

rated free there is a finitely generated submodule K ' of F 

such that K £ K ' and s(R)f(K') • 0. 
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(v) R/(0:s(R))r is a right coherent ring. 

Then 

- (ii) implies (i), (iv) implies (i), 

- if s(R) id finitely generated as a left ideal then (i) im­

plies (iii) and (iv), 

- if s(R) is finitelly generated as a left ideal and s(R) is 

idempotent then (iii) implies (ii), 

- if s is an idempotent cohereditary radical, s(R) is fini­

tely generated as a left ideal and (0:s(R))r is finitely 

generated as a right ideal then (i) is equivalent to (v). 

Let M-c mod-R. We recall that a modu3e «Q is said to be 

M-flat if -<S>p Q is exact on all exact sequences of the form 

0 —-> A—> M—> C—> 0. 

Proposition 7. Let MR be a pseudoprojective module. Then 

a module RQ is M-flat if and only if it is p^-flat. 

Proof: First of all, PJ-MJ is an idempotent coheredita-

ry radical for M pseudoprojective. Further, Q is M-flat if 

and on3y if its character module Q^is M-injective. Now (̂  is 

M-injective iff it is (l,Pr||$)-in jective. We have QR is 

(l,Pj|M7 )-injective iff it is (p^Mj f2)-injective since p|M, is 

idempotent cohereditary. Final3y Q^ is (Psui f2)-injective iff 

RQ is p{M?j-flat. 

Now, if we apply Proposition 3, Theorem 5 and Corollary 

6 to the pfM»-flatness with respect to a pseudoprojective mo­

dule M, we obtain a characterization of M-flat modules and a 

characterization of rings for which a direct product of M~ 

flat modules is M-flat. 

Proposition 8. For a preradical r for R-mod let us de-
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fine the following classes of modules 

&T • {Xcmod-R 

$ r = {x^mod-R, 
cCr « {X^mod-R 

a p « {Xcmod-R; 

^ r » {Xemoa-R 

X 6> R T * 0 for each T e Tr J , 

X ® R r (A) = 0 for each A c R-mod 5 7 

X© R Y -* 0 for each A € R-mod and Y c r U H , 

X<g> Rr(P) = 0 for each projective Pe R-mod^., 

X<S> R Y = 0 for each projective Pc R-mod 

and Ycr(P)]. 

It is easy to see that # r , # r > ̂ r,35 r and °lr are torsion 

classes. Let us denote Ay, Br, Cr, Dr and E r idempotent radi­

cals corresponding to them. Then 

- ar = ®- - a , , * r = j3 h ( r ) - a ^ , asr - 33 c h ( r ) -

MXsmod-R; XS> Hr(R) - OJ, * r » * h ( c h ( p ) ) ^ h ^ h C ? ) ) = 

= {X^mod-R; X<S> R Rm ~ 0 for each mev{R)i-

= -tXc'mod-R; X = X(0:m)^ for each mcr(R)j, 

- if h(r) is superhereditary then Cr ia cohereditary, 

- if h(ch(r)) ia a auperhereditary radical then E ia cohe­

reditary and Er(R) = Cch(r)(R) = (0:r*CR))^ . 

Proof: Easy. 

As consequences of Proposition 3,5,6 and 8 we obtain 

for h(r) superhereditary a characterization of C -flat modu­

les and of rings for which a direct product of Cr-flat modu­

les is Cr-flat. 
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