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GENERALIZED FLATNESS AND COHERENCE
Hana JIRASKOVA

Abstract: In this paper flatness and coherence rela-
tive to a cohereditary idempotent radical s is studied. Re-
sults here obtained are applied to the M-flatness with res-
pect to a pseudoprojective module M.

Key words: Relatively flat modules, relative coheren-
ce, preradicals. ’

Classification: Primary 16A50, 16A52
Secondary 18E40

In what follows, R stands for an associative ring with
a unit element and R«mod (mod-R) denotes the category of all
unitary left (right) R-modules.

First of all, we shall list several basic definitions
from the theory of preradicals.

Recall that a preradical r for R-mod is a subfunctor of
the identity functor, i.e. r assigns to each module M its
submodule r(M) in such a way that every homomorphism of M
into N induces a homomorphism of r(M) into r(N) by restric-
tion.

A module M is r-torsion if r(M)=M and r-torsionfree if
r(M) = O. The class of all r-torsion (r-torsionfree) modu-

les will be denoted by T, (F,).
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A preradical r is said to be

- idempotent if r(M) e T, for every module M,

-~ a radical if M/r(M) ¢ ?’r for every module M,

-~ hereditary if for every module M and every monomorphism
A—r(M) A eT,,

-~ cohereditary if for every module M and every epimorphism
M/r(M)— A A 7,

~ superhereditary if it is hereditary and Tr is closed un-
der direct products,

- centrally splitting if it is cohereditary and r(R) is a
ring direct summand of R.

If r and 8 are preradicals then we write r<s if r(M) =

n

8(M) for all M € R-mod.

. The idempotent core T of a preradical r is defined by
¥(M) = = K, where K runs through all r-torsion submodules K
of M and the radical closure ¥ is defined by ¥(M) = NL, whe-
re L runs through all submodules L of M with M/L r-toraion-
free. Further, the hereditary closure h(r) is defined by
h(r)(M) = MNnr(E(M)), where E(M) is an injective hull of a
module M and the cohereditary core ch(r) by ch(r)(M) =

= r(R)-M.

A module P is called pseudoprojective if for any epimor-
phism f:B—> A and any homomorphism O+ g:P-—> A, there exist
homomorphisms h:P —> B and k:P—> P such that O4gek = £o h,

For a module M let us define pgy,,(N) = = In £, f rang-
ing over all feHomR(M,N). It is easy to see that pyy; is an
idempotent preradical. Moreover pgy; is cohereditary if and
only if M is pseudoprojective.

Let r be a preradical. We say that a submodule A of a

- 294 -



module B is

- (r,1)-dense in B if there is a module C such that AcBcC
and B/ASr(C/A),

- (r,2)-dense in B if B/A ¢ Tr

Let r be a preradical and i€ 1,2} . A module Q is said
to be (r,i)-injective ((i,r)-injective) if for every monomor-
phism f:A —> B and every homomorphism g:A —> Q with Im £ is
(r,i)-dense in B (f(Ker g) is (r;i)-dense in B) there exists

a homomorphism h:B—>Q such that hof = g,

Definition 1. Let s be a preradical for mod-R. A modu~

le Q is called s-flat if Tor{t(N,Q) = 0 for every N e T.

As it is easy to see, a module o is s-flat if and only
if its character module Q’E is (s,2)-injective. Since a modu-
le is (%,2)-injective if and only if it is (s,2)-injective,

we obtain immediately the following proposition.

Proposition 2. If s is a preradical for mod-R, then a
module Q is s-flat if and only if it is §-flat.
The first part of the following proposition is essenti-

ally due to R.W. Miller and M.L. Teply [161,

Proposition 3. Let s be a preradical for mod-R and Q ¢
€ R-mod. Consider the following conditions.
(i) Q is s-flat.
(ii) Given any exact sequence
00— K<c>P—>Q—0
with P projective, there is for every x e s(R)-K a homomorph-
ism £ :P—> K such that fy(x) = x.
(iii) Given any exact sequence
0—> K<—>P—>Q—>0
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with P projective, there is for each finite subset {xlyxz,...
eeesX; 1 of 8(R)-K a homomorphism £:P —>K such that £(x;) =
= x; for every ie il,2,...,n}.

(iv) Given any t_c s(R), a;€Q, Ty j€R iedl,2,...,m},

P i,
dedl,2,...,n%, pefl,2,...,q3, with jg"lri,j g = 0 for
each i €11,2,...,m}, there is u €Q and b. , €R, jeil,2,...
,L.J’k

eesynld, kK e11,2,...,t3, such that qj =h24 by y-uy for J ed1,
= ?

2,..0,n% and tp(§4 ri,j'bj,k) =0 for ie41,2,...,m%, k €
€ 1l1,2,...,t%, p eil,2,...,q3.
(v) Every diagram
O—>K—>F—> N—0
8
B-—;?Q———)Q

with exact rows, F free, K, F finitely generated and K = s(R) K
can be completed 'by & homomorphism h:N—> B to a commutative
one.
(vi) For every module N for which there is an exact sequence

. 0—~> K> F—> N—> 0
with F free, K, F finitely generated armd K = 8(R):X, the na-
tural homomorphism ]
= ?N,Q:HMR(N;R) (2] BQ"” Homp(N,Q) defined via
@(f® q)(n) = 2(n)-q, feHomp(N,R), qeQ, neN
is an epimorphism.
(vii) Bvery diagram

) |
g

0—Kk— B—>Q—0
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with exact row, K = 8(R)+K and N finitely presented can be
completed by a homomorphism h:N—> B to a commutative one.

(viii) Q/(0:8(R)),Q is flat in R/(0:s(R)),-mod.

Then (ii) is equivalent to (iii), (iii) is equivalent to (iv)

and (v) is equivalent to (vi). If & is idempotent then (i)

implies (ii). Conversely, if s is cohereditary then (ii) im-

plies (i). Further,

- if s(R) is finitely generated as a left ideal then (iv)
implies (v),

- 1if s(R) is finitely generated as a left ideal and s(R) is
idempotent then (v) implies (iv),

- if s is a cohereditary idempotent radical and s(R) is fi-
nitely generated as a left ideal then (i) is equivalent
to (viii),

- if s(R) is finitely generated as a left ideal and R/s(R)

* is flat as a right R-module then (iv) implies (vii),
- if s(R) is a ring direct summand in R then (vii) implies

(iv).

Proof: (ii) is equivalent (iii), (iii) is equivalent
to (iv), (i) implies (ii) for s idempotent amd (ii) implies
(i) for & cohereditary. The proof can be led 'along the same
line as in Theorem 2.1 in [161].,

(iv) implies (v). Consider the following diagram

k
0—K—>F—>KFE—0

g
B—Q—>0
f

with exact rows, where F is finitely generated free with a

m
free basis §x1,x2,...,xn(, K =£§§4ﬁk1, K = s(R)-K and
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9
s(R) =1¢§4 Rt . Set qj = (gok)(xj), J ed1,2,...,n}. Then

J
"
ky =%5__‘.4 55 %5 ief1,2,...,m3, and hence 0 = (gok)(ky) =

m,
=1,}§4 55795 By (iv) there is u €eQ at:d bj'ken, k €11,2,

eeestl, jedi1,2,...,n% such that qj = ey bj,k'“k for jefl,

m
2,...,n% and tp(,}é‘q 'bj,k) =0 for ie{1,2,...,mt, k €

i,
€e{l,2,...,t 3 and p €{1,2,...,q9%. For k € {1,2,..., t} choose
e € B such that f(ey) = u, and define h:F—> B by h(xJ-) =

t t ,
=4"i;::4 bj,k e . Then (fah)(xj) = ﬂk%"'l b,j,k'ek) =

=k§‘4 bj,k'uk =q; = (gak)(xj), jei1,2,...,n% and consequ-

ently foh = gok, Further, if i efl,2,...,m}, pei1,2,...
} then h(t k,) = h(. 2, tr, .x.) =, = (&, b
++»a then tpki) =R 2y YT %5 =529 T4, 508 P,k

m
) =k§4 (tp :&2:24 *ij bj,k)'ek = 0, Thus h(K) = 0 and h in-

2

duces a homomorphism h:N—> B such that foh = g.
(v) implies (ii). Let 0—> K<>F—2» Q—>0 be an exact se-
quence, where F is free with a free basis {x ,c e A%, If ke K

m
then k =,=, rixeci, r;e R, o« € A, Set F =i§mf4 Rxaci and defi-

ne a homomorphism g:F,—> Q by g(x, )} = f(x_ ) for iedl,2,
i i

eeeyn¥. It is easy to see that g(s(R)k) = O, hence g induces
a homomorphism E:Fn/s(R)k—a Q. Now F /s(R)kx is finitely pre-
sented since s(R) is finitely generated as a left ideal and
s(R)? = s(R) yields s(R)(s(R)k) = s(R)k. By (v) there exists
a homomorphism h:Fn/s(R)k—e F such that foh = g. Setting

h(xu::l + 8(R)k) = e; for ie 11,2,...,n}, we have f(e;) =

= (fo h)(xcci + s(R)x) = _é(x‘"i

- e;e K for ie{1,2,...,n}. Let us define ¢ :F—> K by

+ s(R)k) = f(,xdi)’ hence xoc:_L -
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glx )= xa‘:1 - e; for ieil,2,...,nf and @(x ) =0 if
1

m
& Lolyy Lyyees,olpd. For tes(R) we have t 'L§4 rie; =

m m
te2y riblx, + s(Rk) =hit <2y rixe t e(R)k) = h(tk +

.m
+ 8(R)k) = ?,.: Thus ¢ (tk) = @(.%4 trixdi) =L§‘1 tri(xdi -

- ei) =t 24 x‘ixxi = tk.
(v) is equivalent to (vi) is routine.

(i) is equivalent to (viii). It follows immediately from [16]
Corollary 3.4.

(iv) implies (vii). Consider the following diagram

F/s(R)X
lar
F/K

4
00— L— B?» Q—>0

with exact row , where L = s(R)L, F is finitely generated free
with a free basis {x;,X5,...,x}, K =%:§4 Rk;, s(R) =@zf_"1 Rtp
and g is a natural epimorphism. By the same fashion as in
(iv) implies (v) we can show that there exists a homomorphism
h:¥F/a(R)K—> B such that foh = g o , let r be a coheredi-
tary radical in R-mod corresponding to s(R) (i.e. r(a) =

- = 8(R)A for all A< R-mod). By assumption L € J,. Further
R/a(R) is flat as a right R-module, hence r is hereditary.
Since h(K/s(R)K)< L, we have h(K/s(R)K) € T\, n ¥, = O. Thus

h induces a homomorphism h:F/K —> B such that fo h = g.

(vii) implies (ii). Let 0—> K<——>F-g-> Q — 0 be an exact se-
quence, where F is free with a free basis {x ,x ¢ A%. By as-
sumption s(R) is a ring direct summand in R. Thus R = g(R) + I

for some ideal I. Consider the exact sequence
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6—#K/IK—~) F/IK—f-» Q—> 0, where ¥ is induced by f. As it
is easy to see 8(R)(K/IK) = K/IK. Now, if ke K then k =

m m
=‘a2=k4 rixxi, ri€ R, xjcA. Set F =3, Rxdi and define a

homomorphism g:F,—> Q via g(xd.i) = f(x“i) for ied{1,2,...
«es,n}. Then g(Rc) = O and g induces a homomorphism g:F /Rk—>
—> Q. Further, Fn/Rk is finitely presented hence foh = &
for some homomorphism h:F,/Rk — F/IK by (vii). Put h(x«i +

+ Rk) = ey +IK=—6i. As it is easy to see x“i - e;ekK and
we can define ¢ :F—> K by g:(xdi) = %, "0 for ieil,2,...
ves,n} and ¢lx) =0 ifcé {col,ecz,...,ecn}. We have
m ) m X
&%1 rye; e IK since £§4 rie; = .=, ri-lr\(xnci + Bk) =
v

= h(.% r.x + Rk) = O. Now, if tec¢s(R) then t -,

a3z 1 idi 4 1

: m
¢ s(R)IK = 0, hence op(tk) = @ (1.4§4 trixdi) =, 5 €
m

-e) = ta§4 rix"i = tk.

Definition 4. Let s be a preradical for mod-R. A modu-
le R satisfying one of the equivalent conditions (ii), (iii)

and (iv) of Proposition 3 is said to be weakly s-flat.

Let pQ be a flat module. A module Np is called Q-fini-
tely generated (see [6)) if the mtural homomerphism
y= "’N,I‘N ®n QI——-> (N® R Q)I defined via ¥ (n® q)(i) =
=n® q(i) for neN, qe QI, ie I is an epimorphism for every
set I.

Theorem 5. Let 8 be a preradical for mod-R and RQ be a
flat module. Comsider the following conditions
(1) QI is weakly s-flat for every index set I.
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(ii) If §Qyoc€ A} is a family of weakly s-flat modules,

where Q, € G’p{qg for every o € A then «LTA Q. is weakly s-

flat.

(iii) Homp(P,R) is Q-finitely generated for every module g

for which there exists an exact sequence’
O—>K—~—>F—>P—0

with F free, K, F finitely generated and K = s(R)K.

(iv) For every finitely generated right ideal I in R and an

exact sequence 0 — K—> F~—£> I—> 0 with P finitely genera-

ted free there is a finitely generated submodule K’ of F such

that K® p QSK’® p Q and s(R)f(K’) = O.

(v) (Q/(O:s(R))rQ)I is flat in R/(0:s(R)),-mod for every set

I.

Then

- (ii) implies (i), (iv) implies (i),

- if s(R) is finitely generated as a left ideal then (i) im-

’

plies (iii) and (i) implies (iv),

- if s(R) is Pinitely generated as a left ideal and &(R) is
idempotent then (iii) implies (ii),

- if 8 is a cohereditary idempotent radical, s(R) is finite-
ly generated as a left ideal and (0:s(R)), is finitely ge-
nerated as a right ideal then (i) is ‘equivalent to (v).

Proof: (ii) implieé (i) trivially.
(i) implies (iii). Consider the following commutative diagram
Homg(P,R) @ pQT 7, Homp(P, Q")
¥ I

(Homg(P, )@ T " T PR (Homp(P,Q))T
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where « is the natural isomorphism and ¢ is defined as in
Proposition 3 (vi). Now (QJP’Q)I is an isomorphism (see [14]}),
since Q is flat and P is finitely presented. Further, ‘f’p,QI
is an epimorphism by Proposition 3 (vi). Hence 3 is an epi=-
morphism and consequently HomR(P,R) is Q-finitely generated.
(iii) implies (ii). For Ne mod-R the class of all Me R-mod
for which N is M-finitely generated is closed under the for-

mation of direct sums of copies of M. Now if Q_ e T ’
< P4Q3

« € A then there exist a set I and epimorphisms fot:Q(I)——> Q.

o € A. Consider the following commutative diagram

Homg(P,R) ® p(@T))A ¥ (Homp(p,m) & @F))%

le TT, £ a8t
Homp(P,R) © p EA Q, _7——-—)¢TJA(H°mR(P’R) @ R)

1
where wl(fe) Q)(t) = £® ql(ec) for feHomR(P,R), q e‘-pUA Qﬂ)
o€ A. Then ¢ is an epimorphism since HomR(P,R) is Q(I)—fini-
tely generated , hence ¥, is an epimorphism. Now consider the

following commutative diagram

Homp(P,R) ® p IeTA Q. — HomR(P,dT;TA Q)
.W)“ ' @

J;TA(H"’“R(P’R) ® g Q)

— 5 ocTJAHomR(P,Q‘)
e A Y?'a‘

where @ is the natural isomorphism and ¢ is defined as in

Proposition 3 (vi). Then Pp Q‘is an epimorphism for every
’

<€A by Proposition 3 (vi). Hence ¢p 1y Q is an epimorp-
xeA ~

hism and consequently u(T;‘A Q, is weakly s-flat by Propositi-
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on 3.

(i) implies (iv). Suppose I =4.’%4 aiR and 0 — K—> F-L I->
-——> 0 is an exact sequence, where F is free with a free bas-'
18 £X1,Xp,000,X % and £(x;) = a; for ie{l,2,,..,nf. Now, if
k€K then k =£=g4 x;7; (k) for some r;(k)eR, ieil,2,...,n}
Let us define g4 ¢ QK"Q by ql(k,q) = r;(k)q for q€Q, keK,
ieil,2,...,n%. Since O = g a:r.(k).-q for every kcK and

17171
q€Q, we have .Z'. alql = 0 in @9, Let s(R) = 24 Rt,. Then
there exist ujeQ Q and by <R R, i e{1,2,...,n%, jeil,2,...
«es,m} such that q; = §1 by i % for iedil,2,...,n}% and

p(‘LZ a;b; J) = 0 for je{1,2,.,.,m}, peil,2,...,v3. Set
l m L
L 124 x;by )3 jeil,2,...,m% and K’ %§4 kR. For keK,

n

m,
qeQ we have k® q =;%, xir.(k)® q= 2 x; @ ry(k)q =

-—2x®2b -u.(k,q) = 2(2 x:b. )@u(k,q)

i34 11,3
mv
;}._2 k ® u. (k,q)eK ® gR. Further, tpf(kj) =
m
=t f( Z x;b i, J) = tp(;z4 a;b; J-) = 0 and consequently
= = b}
s(R)F(K’) =

(iv) implies (i). Suppose I is an arbitrary set, ty e s(R),

8¢ QI, r;€R, ie41,2,...,n}, weil,3,...,2} and, g ria; _

m
=0, Set J = ;’24 riR and consider an exact sequence 0 — K—>
—>F—> J—> 0, where F is free with a free basis -ixl,xa,...
ceesXy} and £(x;) =r; for 1541,2,...,n} Then there exists

a finitely generated submodule K’ = 2. 1 kpR of F such that

K® QeK'®p Q and s(R)If(K’) = 0. Now Q is flat and
m
4,?‘4 riai(oc) = 0 for every « € I, hence there exist

vj(oo)eQ and bi,j(co)cR, iedl,2,...,n}, jedl,2,...,m3,
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« € A such that a,(«) =é=§4 bi’ju)vj(«x) for ietl,2,...,n%,

o € A and %?‘1 ribi’j(nC) =0, jed4l,2,...,m}. Let us denote

w0 b @), §ed1,2,...,m3. Ten £lu0) =

= -g.[r.b. .(a(.) = 0 for jeil 2,...,m}, « € A. Thus u.(ac)e K.

Hence g uJ(o()® vile) = @ o () for some L (oc) eQ,

peil 2,'..,q} o € A, Further, kp g x;d, ,p? a; peR,

16{1,2,...,1\}, pe{1,2,...,q}. Thus g,,x ® a; () = 4_4 3 ®
o s

® .<uc)v-w =52 G 2 X0 ) ® vyl) =

5=
g (oc)@v(cc) %(%x )@w(¢)=zx@

é 251 4 3’1

224 a P p(<>c)). Hence 8y () = »~ wp(oc) for ieil,

2,...,n§, « € A and conaequently 8; =‘tw, 4di op? iedfl,2,...
= 1

«+eyn}. We have t_(, 2 r;d; o) =t fAk) e s(RIF(K') = O for

193 P
wefl,2,...,2%, pe{1,2,...,q}. Hence QT is weakly s-flat by
Proposition 3. ‘

(i) is equivalent to (v). It immediately follows from Proposi-

tion 3 (viii).

Corollary é. Let s be a preradical for mod-R. Consider
the following conditions:
(i) RRI is weakly s-flat for every set I.
(ii) Weakly s-flat modules are closed mder direct products.
(iii) HomR(P,R} is finitely generated for every module P for
which there exists an exact sequence 0—> K— F—> P—>0
with F free, K, F finitely generated and K = s(R)K.
(iv) For every finitely generated right ideal I in R and an
exact sequ'ence O—> K—> B ——-t—-> I—>0 with F finitely gene-
rated free there is a finitely generated submodule K’ of F

such that K€ K’ and s(R)£(K’) = O.
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(v) R/(0:s(R)), is a right coherent rins-A

Then

- (ii) implies (i), (iv) implies (i),

- if 8(R) is finitely generated as a left ideal then (i) im-
plies (iii) and (iv),

- if s(R) is finitely generated as a left ideal and s(R) is
idempotent then (iii) implies (ii),

- 1if s is an idempotent cohereditary radical, s(R) is fini-
tely generated as a left ideal and (0:s(R)), is finitely

generated as a right ideal then (i) is equivalent to (v).

Let M<c mod-R. We recall that a module P is said to be
M-flat if -®p Q is exact on all exact sequences of the form

0—> A—> M—> C—> O,

Proposition 7. Let Mp be a pseudoprojective module. Then
a module RQ is M-flat if and only if it is p{ui-flet.

_Proof: First of all, Psu3 is an idempotent coheredita-
ry radical for M pseudoprojective. Further, Q is M-flat if
and only if its character module Qgis M-injective. Now Q% is
M-injective iff it is (l,p{us)-injective. We have Q; is
(1,p{"})-injective iff it is (pgy;,2)-injective since P M3 is
idempotent cohereditary. Finally Q§ is (p{“§,2)-injective iff
Rp is p{ui-flat.

Now, if we apply Proposition 3, Theorem 5 and Corollary
6 to the p{ui-flatness with respect to a pseudoprojective mo-
dule M, we obtain a characterization of M-flat modules and a
characterization of rings for which a direct product of M-

flat modules is M~-flat.

Proposition 8. For a preradical r for R-mod let us de-
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fine the following classes of modules
(. = {Xemod-R; X®pT =0 for each Te I3,

r

3, ={Xemod-R; X® p r(4) = O for each AcR-mod },

€, = {Xcmod-R; X® p Y = O for each A< R-mod and Yer(A)3,
Dy = {Xemod-R; X® R r(P) = O for each projective Pe R-mod3,
"Er = {Xe mod-R; X&® g Y = O for each projective Pe R-mod

and Yc r(P)3.
It is easy to see that d,, By, €., D, and ¢, are torsion

classes. Let us denote A, B,, C

rs Dp and E,, idempotent radi-

cals corresponding to them. Then

-lp = Br =By €= By = By D = Benr) T

= {Xemod—R; X® Rr(R) = 03, %r = GBh(ch(r)) = j&m =
= {Xemod-R; X® p Ru = O for each mer(R)§=
= i{Xe'mod-R; X = X(0:m), for each mer(R)},

- if h(r) is superhereditary then C, is cohereditary,
- if h(ch(r)) is a superhereditary radical then E, is cohe-
reditary and Er(R) = Cch(r)(R) = (O:r'(R))l .

Proof: Easy.

As consequences of Propositions 3,5,6 and 8 we obtain
for ’1;(_;) superhereditary a characterization of Cr-flat modu-
les and of rings for which a direct product of Cr-flat modu=-
les is Cr-flat.

(
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