Commentationes Mathematicae Universitatis Carolinae

Sin Min Lee
 On a simple one-element extension of left zero semigroups

Commentationes Mathematicae Universitatis Carolinae, Vol. 21 (1980), No. 2, 313--318

Persistent URL: http://dml.cz/dmlcz/105998

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1980

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ON A SIMPLE ONE-ELEMENT EXTENSION OF LEFT ZERO SEMIGROUPS LEE SIN-MIN

Abstract

For each finite left zero semigroup I_{n} of order n, we embedded it into a simple groupoid S_{n} of order $n+1$. We show that S_{n} is rigid if $n \geq 3$. It is shown that the variety of groupoids generated by S_{2} contains infinitely many finite non-isomorphic simple groupoids such that each of them generates the same variety. This provides a solution to Problem 67 of Birkhoff [1].

Key words: Left zero semigroups, one-element extension, simple groupoids, residually small variety.

Classification: 08AO5
§ 1. Introduction. A groupoid $\left\langle G^{\circ} ; 0\right\rangle$ is said to be an extension of another groupoid $\langle G ; 0\rangle$ if G is isomorphic to a subgroupoid of G°. We identify G with the subgroupoid of G^{\prime}. If G^{\prime} is simple, i.e. its lattice of congruences is the two-element lattice, then we say G^{\prime} is a simple extension of G.

In [3], we show that any finite or countable groupoid G has a simple extension G^{*} such that $\left|G^{\prime}-G\right|=1$. We call G^{\prime} a simple one-element extension of G. In this paper we want to introduce another simple one-element extension for each finite left zero semigroup, i.e. the semigroup satis-
fies the identity $x \circ y=x$. It is well known that ary left zero semigroup of order greater than two is not simple and has a large group of automorphisms. It is showr that the simple one-element extension S_{n} of the left zero semigroup L_{n} of order $n \geq 3$ has a trivial group of automorphisms.

We show that the variety $\operatorname{Var}\left(\mathrm{S}_{2}\right)$ of groupoids generated by S_{2} has infinitely many non-isomorphic simple groupoids such that each of them generates the whole variety. This provides a solution to the problem which is raised by B. Jonsson in Birkhoff's book [1].
§ 2. The simple one-element extension of finite left zero semigroups. Let \mathbb{N} be the set of all natural numbers. Denote by \mathbb{N}^{*} the set union of \mathbb{N} and a symbol e not in \mathbb{N}. We define the binary operation on \mathbb{N}^{*} as follows:
(1) $\mathbf{x} \circ \mathbf{x}=\mathbf{x}$ for all \mathbf{x} in \mathbb{N}^{*},
(2) $x \circ e=1$ for all x in \mathbb{N},
(3) $x \circ y=x$ for all x, y in \mathbb{N},
(4) e o $x=\left\{\begin{array}{l}e \text { if } x=1 \\ x-1 \text { if } x \in \mathbb{N}-\{1\} \text {. }\end{array}\right.$

The groupoid $\left\langle\mathbb{N}^{*} ; \circ\right\rangle$ is an idempotent groupoid which contains a countable left zero semigroup $\langle\mathbb{N} ; 0\rangle$. For each $n \geq 1$, we denote by I_{n} (respectively S_{n}) the subgroupoid $\{1,2, \ldots, n\}$ (respectively $\{e\} \cup I_{n}$) of \mathbb{N}^{*}. It is obvious that L_{2} is isomorphic to S_{1} and L_{n} is a subgroupoid ot S_{n}.

Theorem 2.1. The groupoid S_{n} is a simple one-element extension of T_{n}.

Proof. Let θ be a non-identity congruence of S_{n}. If e θ m for $m \in L_{n}$ then eoe θ eom, i.e. e $\theta(m-1)$. If we left multiply both sides of the congruence by e successively, we will reach e θ l. Then for each $x \in L_{h}$ we have $x \circ e \theta x \circ l$ i.e. l θ. Hence by the transitivity of θ we conclude that $\theta=S_{n} \times S_{n}$. If we have $x \theta y$ where x, y in L_{n} and $x<y$ then left multiplying both sides of the congruence by e successively $x-1$ times, we obtain e $\theta(y-x+1)$ which implies $\theta=$ $=S_{n} \times S_{n}$ by the above result. Hence S_{n} is simple.

Corollary 2.2. The groupoid 〈 \mathbb{N}^{*}; o〉 is simple.
The group of automorphisms of S_{1} is the cyclic group of order two. The groupoid S_{2} has a non-trivial automorphism f which maps e to 2,2 to e and 1 to 1 . We recall that a groupoid G is said to be rigid if its group Aut(G) of automorphisms is trivial.

Theorem 2.3. The groupoid S_{n} is rigid if and only if $n \geq 3$.

Proof. We assume $n \geq 3$ and f is an automorphism of L_{n}.
Claim: $f(e)=e$.
If $f(e)=i$ where $i \in L_{h}$ then there exists $j \in L_{h}$ such that $f(j)=e$. Since $n \geq 3$, we can find two elements s, t distinct from j. Hence $f(s) \neq e \neq f(t)$. As $j \circ s=j \circ t=j$, we obtain $f(j \circ s)=f(j \circ t)=e$ i.e. e $\circ f(s)=e \circ f(t)=$. Hence $f(s)=f(t)=1$, a contradiction. Therefore we must have $f(e)=e$.

Now $f(1)=f(x \circ e)=f(x) \circ f(e)=f(x) \circ e=1$ and by induction we can show that $f(k)=k$ for any $k \in I_{n}$. Hence f is the identity map. Thus S_{n} is rigid.

By the saize argument we have

Corollary 2.4. The groupoid $\left\langle\mathbb{N}^{*} ;\right.$ o〉 is rigid.

6 3. Simple groupoids in the variety generated by S_{2}. In this section we show that the variety of groupoids $\operatorname{Var}\left(\mathrm{S}_{2}\right)$ which is generated by S_{2} has arbitrarily large simple groupoids. This provides an example of a locally finite variety of algebras which is not residually small.

For each non-empty set X, we denote by $X^{+}=X \cup\{1\}$ where 1\&X. We define a binary operation $0: X^{+} \times X^{+} \rightarrow X^{+}$as foll©w :
(1) $x \circ x=x$ for any $x \in x^{+}$,
(2) $x \circ y=\left\{\begin{array}{l}1 \text { if } x \neq y \text { in } x \text { or } x=1, y \in X \\ x \text { otherwise. }\end{array}\right.$

Theorem 3.5. The groupid $\left\langle X^{+} ; 0\right\rangle$ is simple.
Proof. If $|X|=1$ then X^{+}is isomorphic to the groupoid L_{2} which is simple.

If $|X| \geq 2$ and θ is a non-identity congruence of X^{+}we want to show that $\theta=X^{+} \times X^{+}$. If $1 \theta^{\circ} x$ where $x \in X$ then left multiplying both sides of the congruence by $y \in X-\{x\}$ we obtain $y \theta$ 1. Thus θ is the universal congruence. If $x \theta$ where x, y in X then $x \circ x \theta x \circ y$ would imply $x \in 1$ which reduces to the previous case. Therefore $\left\langle X^{+} ; 0\right\rangle$ is simple.

Theorem 3.6. The groupoid X^{+}is in $\operatorname{Var}\left(\mathrm{S}_{2}\right)$.
Proof. Let S_{2}^{X} be the direct power of S_{2}. It is clear that S_{2}^{X} is in $\operatorname{Var}\left(S_{2}\right)$. For each $x \in X$, let x be the map from X to S_{2} such that

$$
x(y)= \begin{cases}2 & \text { if } y=x \\ e & \text { otherwise }\end{cases}
$$

Let $\underset{\sim}{1}: X \rightarrow S_{2}$ be the constant map $\underset{\sim}{1}(y)=1$ for all y in x.

Let $P(X)$ be the subgroupoid of S_{2}^{X} generated by $\{x: x \in$ $\in X\} \cup\{\underset{\sim}{1}\}$. Then $P(X)-\{\underset{\sim}{x}: X \in X\}$ contains only maps \propto such that $\alpha(y)$ is either 1 or e. As $\{1, e\}$ is a left zero semi.group then $P(X)-\{x: x \in X\}$ is a subgroupoid of $P(X)$.

We consider the relation θ defined on $P(X)$ by setting $\alpha \theta \beta$ if and only if either $\alpha=\beta$ or $\alpha, \beta \in P(X)-\{x: x \in X\}$. We shall denote the equivalence class containing α by
$[\alpha] \theta$. It is obvious that θ is a congruence relation and $\left[\frac{1}{\sim}\right] \theta=P(X)-\{x: x \in X\}$.

The map $\Phi: X^{+} \rightarrow P(X) / \theta$ defined by $\Phi(x)=[x] \theta$ and $\Phi(1)=[\underset{\sim}{1}] \theta$ is an isomorphism. Thus X^{+}is in $\operatorname{Var}\left(S_{2}\right)$.

Theorem 3.7. For any set X with cardinality greater than one we have $\operatorname{Var}\left(X^{+}\right)=\operatorname{Var}\left(S_{2}\right)$.

Proof. Let $x, y \in X$ then we see that the subgroupoid $\{1, x, y\}$ of X^{+}has the following Cayley table:

0	x	1	y
x	x	x	1
1	1	1	1
y	1	y	y

The above groupoid is isomorphic to S_{2} under the homomorohism $f: x \rightarrow e, 1 \rightarrow 1$ and $y \rightarrow 2$. Thus $S_{2} \in \operatorname{Var}\left(X^{+}\right)$. With Theorem 3.6 we conclude that $\operatorname{Var}\left(X^{+}\right)=\operatorname{Var}\left(S_{2}\right)$.

The above result shows that in $\operatorname{Var}\left(\mathrm{S}_{2}\right)$ there exist infinitely many non-isomorphic simple groupoids each of which generates $\operatorname{Var}\left(\mathrm{S}_{2}\right)$. This gives a solution to the Problem 67 in Birkhoff's book [1].

References

[1] G. BIRKHOFF: Lattice theory, Amer. Math. Soc. Colloq. Publ. No. 25, 3rd Edition (Providence, 1967).
[2] A.H. CLIFFORD and G.B. PRESTON: The algebraic theory of semigroups, vol. l, Amer. Moth. Soc., Providence, 1962.
[3] LEE SIN-MIN: On a simple one-elenent extension of coun-

[4] LEE SIN-MIN and SEIN-AYE: On simple groupoids, Nanta Math. 8(1975), 30-33.
[5] W. TAYLOR: Residually small varieties, Algebra Universalis 2(1972), 33-53.
'niversité du Paris-Sud
"rtiment 425
52405 Orsay
France

University of Manitoba
Winnlpag, Manitoba
Canara R3T 2N2

