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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
21,2 (1980)

COMMUTATIVE SEMIGROUP RINGS WHICH ARE PRINCIPAL
IDEAL RINGS '
Bruce GLASTAD, Glenn HOPKINS

Abstract: All zero dimensional pr1nc1pal ideal rings
which are also semigroup rings are homomorphic 1mages of se-~
migroup rings where the semigroup is of a certain restricted
type. We study semlgroup r1ngs over fields and, more general-
ly, over special primary rings ch. 5]1; we determine neces-
sary and sufficient conditions in order that these be princi-
pal when the semigroup is of this restricted type.
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1. Introduction. Iet R be a commutative ring with iden-

tity amd let S be an abelian semigroup with zero. Structural
properties of RiX;S], the semigroup ring of S over R, have
been studied in several papers L6, 7, 8]. In particular, R,
Gilmer has shown, that R[X;S] is a principal ideal domain if
and only if R is a field and either S is isomorphic to the
additive group of integers or S is isomorphic to the additi-
ve semigroup of non-negative integers. In this paper we ob-
tain a generalization of the well-known result (cf. Masch-
ke’s theorem) that if F is a field and G is a finite abeli-
an group, then F[(X;G) is a principal ideal ring if and only

if either the characteristic of F is O or the characteristic
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of F is p and the p-primary subgroup of G is cyclic.
To this end, we begin by observing that since R is a

. homomorphic image of RIX;S1, a necessary condition for
" R[X;S] to be principal is that R be principal, and so R =

.51 Ri’ a finite direct sum of special primary rings and
principal ideal domains. It follows that RIX;S] = 1 R[X;8].
Hence R[X;S] is principal if and only if Ri[x;sl is princi-
pal for each i, 1<£i%n. Since R[X;S] is Noetherian, S is
finitely generated [2). This fact and the fact that the
(Krull) dimension of a principal ring is at most 1, taken
together with a result of Gilmer [8, Theorem 7] imply that
when R is a special primary ring (which includes the field
case), R[X;S] is zero dimensional and Noetherian if and only

if S is finite.

2. Conditions under which RIX;S] is principal. Let S
be a finite semigroup. Then S is a homomorphic image of a
semigroup of the form S, = <{{fa;,...,a,} leiai = (ei( + £, )a;,
i=1,...,n) where {“i""’an% is a generating set for So
over Z,, the non-negative integers, -i’ei,...,eniszo, and
{f3,.+4,0,1 N, the positive integers. We shall assume that
the £. are minimal, so that the period [3, ‘Seqtion 1.6 of
f 8. Recall
that RIX;S)] ¥ Rrxl,...,:gp/(xl a-x ),...,xn”u -x "),

where X)yeee Xyl is @ set of indeterminates over R; see

ay is fi and no other relatlons hold among the a;

[12]. We use this fact in the proof below.

Theorem 1. Let F be a field and let So be as above.
Then:
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i) If char F = 0, then F[x;S°] is a principal ideal
ring if and only if at most one of ey,...,e, is greater than
1.

ii) If char F = p, then F[X;S,] is a principal ideal
ring if and only if either each of €yseeesep is less than or
equal to 1 and p is relatively prime to all but one of ‘
fl,...,fn or exactly one of €yseces®y is greater than 1 - say
e; - and p is relatively prime to L PYTETEE S

’ Proof. It ie easily verified that if two or more of
€)see+.,€  8re greatér than 1 then, for any field F, F[X;SO]
has r[xi,xj)/(lé’,xg), some i+ j, as a homomorphic image; sin-
ce this ring is not principal a necessary condition for \

F[X;Sol to be principal is that at most one of TERETLN be
greater than 1.

When char F = p, and p divides two or more of fl""’fn
say p divides f, end p divides fz, we have a sequence of sur-
jeétive maps:

fol,...,XnJ

e T e T e f o e T
xta - xh, KPa - KH, Ka-gh,.., 00 - ™)

F[H’.‘.’&]
e 51, %2 T2, . ”
xra - 5, K24 - 52, Q- %),..., 0 - X))

>
x4

PIX),X,) FIX),X,)

e T e T g ¢
gla-xh, K2a-x? @ -xP, a-x)P)

This last ring is not principal, for consider M = (X, - 1,
X, - 1), a maximal ideal. Let A = ((X; - T2, X, -1,
(X; -~ 1)(X; - 1)), Then we have the chain of proper contain-
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ments M>A> ll2, which implies that M is not principal; see
[5, p. 462]. Hence when char F = p, a necessary condition
for F[X;Sdl to be principal is that no more than one of
f15¢.0,%, be divisible by p.

Conversely, suppose that €yeeey€) arE less than or e-

n
qual to 1. We have

FIXp,ee0,X) FiX;)
0 T e b = e 7
xta - b, 0,1 P - x ™) xta - xn
*
F(X,] F[.
X2 @ o0 e @ &J )0
e2 1’2 F F en rn
(%21 - %,°)) (X" - x™)

For each i greater than or equal to two,

F [,Xi] - F [}&]
T

(if e; = 0) or
e. T, . i
x5t - x5t a-x%

F IJ%] . F [Xil

2 fi XF® —-——-fl—— (it e; = 1).
()&(I-Xi)) (l-Xi)
F[Xi]
Now —_— is a finite direct sum of finite dimensional
a-x1h
i

field extensions of F if char F = O; if char F = p, the sa-
me is true if p does not divide 5 [9, p. 26]1.

If p divides f;, some 122, and e;>1, then in a man-
ner similar to that used above, we obtain the non-principal
f[Xl,Xi] .

e
1 (v p
(Xl , (1 Xi) )

Hence for I"[X;SO] to be principal in the characteristic p

ring as a homomorphic image of F[X;So'l.

case, it is necessary that either: i) each of €)yeee,e, is
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less than or equal to 1 and p divides at most one of fl”"
ees,fp; or ii) exactly one of e;,....,e, is greater than 1 -
say e; - and p is relatively prime to f2,...,fn.

For arbitrary characteristic we have

FIX),...,X ] »
e T ) T -
- xh,. L, x P - x ™) '
FIX,] FI[X,] FIX 1
x ®F 2 @F ..-@F _——xll—r-— =

e f e e
(xta - gty (201 - %,2)) (X1 - X ™)

FlX))
e X1f1 ®p T,
(%71 - 7))

and, without loss of generality, in the characteristic p cgse,
p is relatively prime to f,,...,f, . Hence, for i=2, 1 - Xil
is a separable polynomial over F and so T is a finite direct
sum of finite dimensional separatle field extensions of FI1,
pp. 236-238], say T =»€§4 Ki. Therefore the ring is isomorph-
ic to %§1 efi[xr] 1

(X, (1 - 2% ))

Corollary. Let A be a special primary ring which is not

a field. If char A = 0, then AEX;SO'J is principal if ani only

which is principal.

if each of €yseees€y is less than or equal to 1; if char A =

= p, then A[X;S] is_principal if and only if each of €gyeee

eseyey is less than or equal to 1 and each of fl""'fn is

relatively prime to p.
Proof. Using Cohen’s Structure Theorem,

ALX;S;] ZA® p FIX;S)] ¥ &g FIX;S )

(x%)
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where F is a coefficient field of A; see [11, Section 311.
From the above we see that if char F = 0, then A[X;S ] is
principal if and only if each of €ysecesey is less than or
equal to 1 (since t, the index of nilpotence of A, is grea-
ter than 1). The proof for. chaf- A = p is similar,

We note that the above theorem gives sufficient condi-
tions for F[X;S] to be principal when S is an arbitrary fi-
nite abelian semigroup with O (since F(X;S) is a homomorph-
ic image of F[X;SO]). We also remark that in terms of the se-
migroup So the theorem says that if char F = 0, then F[X;SOJ
is principal if and only if all but at most one of the cyc-
lic subsemigroups (ai> =-iai,231,...§ is actually a subgroup
of S, (not necessarily with the same identity as S ); and if
char F = p, then F[x;SO] is principal if ard only if either
all the < °i> are subgroups and at most one of these sub-
groups has period divisible by p, or exactly one of the
{ &) - say{a)) - is not a subgroup and all other <aj) ’
JZ 2, have period relatively prime to p.

We conclude by remarking that the techniques employed
abave can be used to study the structure of A[X;S ) when A
is a special primary ring that does not contain a field. In
this case, Atx;soa A @wn , Where W is a complete rank ome

discrete valuation ring of characteristic O am% N is a ten~
*  WIX]

sor produce over W of rings of the form .
x*aa - &)
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