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ON THE INDIVIDUAL ERGODIC THEOREM ON A LOGIC 
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Abstract: The i n d i v i d u a l ergod ic theorem on a l o g i c i s 
formulated and proved. 
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Let (X,S,m,T) be a c l a s s i c a l dynamical system. The w e l l -

known Birkhoff ind i v idua l ergod ic theorem s t a t e s ( in the case 

that T i s ergod ic and f in tegrab l e ) that the time mean 

l i m h X.fCT^x)) 

i s equal a . e . to the space mean (phase mean) 

mU) •£ f d n u 

(See e.g. 143; for recent development see [5J,[61.) In the 

paper we shall formulate and prove a variant of the theorem 

for logics (orthomodular lattices) which are adequate to the 

quantum meachanical systems. (See [7.1, some connections to er

godic theory have been studied in [11.) 

The main idea of our proof is to represent the given 
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homomorphism t of a logic L by a Borel measurable transfor

mation of R. (A similar method in another area of non-commu

tative probability theory has been used in C2J.) Of course, 

not every homomorphism x, permits such a representation: in 

Proposition 1 we present a sufficient and necessary conditi

on (x-measurability of ^ ). Under this condition all consi

dered observables map the Borel £ -algebra -̂ (R̂ ) into a fix

ed Boolean algebra x(B(Rjl)) and we could work with Boolean 

algebras instead of logics. Of course, such a specification 

presents a new result as well. On the other hand, it would 

be interesting to explain the physical meaning of the x-mea

surability of the homomorphism tr ; we do not know any conve

nient interpretation. 

Let L be a logic, that is, L is a 6 -lattice with the 

first and the last elements 0 and 1, respectively, with an 

orthocomplementation X:ai—> a , a,aX€ L, which satisfies 

(i) (ax)^ » a for all a e L; (ii) if a<b, then b*1^ ax ; 

(iii) ava 1 = 1 for all aeL; and the orthomodular law holds 

in L: if a<b,/then b = av(bAa 1). 

We say that two elements a,beL are (i) orthogonal, and 

we write alb, if a-<b ; (ii) compatible, and we write a<-»b, 

if there are three mutually orthogonal elements a-, b,, c such 

that a s a-jV c, b s b-,v c. . 

An observable is a map x from B(R^) into L such that (i) 

x(0) = 0; (ii) if EHF = 0, then x(EUx(F); (iii) x C ^ Ei) = 

* ^V<tx(Ei), EinEj * 0, i£j, E i € .B (R 1 ) . If f is a Borel func

tion, then f o x:^H> x(f" (E)), EeB(R-L), is an observable. 

S:he null observable is the observable cf such that criiOl) = 1. 
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Two observables x and y are compatible if x(E) <-*- y(F) for 

any E,F6 B(R1). 

For compatible observables there is a calculus [7, Theo

rem 6.173. Therefore we may define, for example, the sum 

X-L +...+ x^ for the compatible observables x-,,...,xn. 

A state is a map m:L —>< 0,1 > such that (i) m(l) = 1; 
co oo 

(ii) m( S/^ a.-) = £2^ m(ai) if a^x aj, ±4= 6* If x is an ob

servable, then the mean value of x in a state m is the ex

pression m(x) = j£> t dnu(t) (if the integral exists), where 

mx(E) = m(x(E)), BeBfR-,). 

A homomorphism of a logic L is a map *£ from L into L 

such that (i) * (0) = 0; (ii) r(ax) = (^(a))xfor all ae 

€.L; (iii) -£($1*1) = VVi*<ai>t -f«i}i=icI'-

We say that a homomorphism t of a logic L is ergodic 

in a state m (see L l l ) if 

(i) m( t (a)) = m (a) for all aeL; 

(ii) if t(a) = a, then m(a) e iO,l\ . 

A homomorphism x :L—> L is said to be x-measurable if 

tr(x(B(R1)))cx(B(RL)). 

We say that a sequence i^i^-^ of observables converges 

to the null observable cr almost everywhere It m] (a.e. CmJ, see 

13,23) if 

mdin^sup x^U- e, e> c)) = 0 

for every e > 0. 

Now we can formulate the individual ergodic theorem on a 

logic. 

Theorem. Let x be an observable, x an x-meaaurable ho

momorphism of a logic L, ergodic in a state m. Let m(x) = 0. 

Then 
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1 "£$ i (1) ~ .X.A "C o x —* <r a.e. [ B ] , 
n ^xi 

Proof. Our Theorem will be proved by means of the next 

Propositions. 

Proposition 1. Let x be an observable. A homomorphism 

X :L—*• L is x-measurable iff there is a Borel measurable 

transformation T ^ — * R^ such that 

(2) t o i s T ° x , 

(That is, x(T""1(E)) -» X (x(E)) for any EeBl^).) 

Proof. The sufficient condition is evident. Converse

ly, let x be an x-measurable homomorphism. 13iis implies that 

if EcF, E,FcB(R1) and if there is G'<&B(R1) such that 

t(x(E))<x(G')-<-s(x(F)), then there is GeB(R1) such that 

E c G c F , x(G) = x(G'). Indeed, if we put G * (G#0 F)u E, then 

this G has the claimed property. 

Now, let rlfr2,... be any distinct enumeration of the 

rational numbers in R*. We claim to construct, by inductiom, 

the sets E-^,E2,... from B(R^) such that 

(a) x(Ei) = x (x((-oo,ri))); 

(b) E ^ Ej if r ^ r^i 

(c) J^ ii « 0. 

Let E-̂  be any set in B(R1) such that *(%) -t(x((-oo , 

r-^))). Suppose £ ^ , . . . , . ^ € 8 ( 1 3 - , ) have been constructed such 

that (a) and (b) hold. We shall construct -Sa+i a« follows. 

Let (i-̂ ,... ,in) be the permutation of (l,...,n) such that 

r. < ...<r.s . Then exactly one of the following conditions 
xl xn 

hold s: 
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(i
> * n

+
l

< r
V 

(3) (ii) r ,> r± ; 
n 

(iii) there is unique ke4l,...,n5 such that 

r. < r , < r. 
1^ n+1 i

k + 1 

By the above observation we can select --̂ +1 such that 

(i> V i c v C i i ) ^ i 3 \ j l i l i ) v E n + l C V i ; 

according to (3). Then the system {E^,...,^
1+1
> fulfils (a) 

and (b). Thus, by induction, it follows that there exists a 

sequence -tÊ i ̂ n of sets in B(R,) with the properties (a) and 

(b). As 

*<j?-1 V " ; V « V ^A^(x((-c,r
i
))) - 0, 

DO 

we may, by replacing E. by Es - -C\t E. if necessary, assume 

op *"
 a 

that ,r\. E. = 0. 
At » I 1 

We define a B(R
1
)-measurable transformation T:R.—*• R, 

as follows: \ 

L infir
4
:t. 

T(t) 

. ̂ w ^ E Л if t Є .Q, E.. 

A transformation T is everywhere defined and it is finite. 

Moreover, 

r U E. if r.,^0 

T
 1
((-co,r

i
)) =J * •-
- 1 1 1 00. 

[
*M.

E

(
j^

R
l-

J
feV

<
-k> i f Г i > 0 . 

Hence T is BtR-^)-measurable and x(T ((-00,^))) * f(x((-Qt>, 

r
i
))). Therefore x(T"

1
(E)) » f (x(E)) for any EsB(R

1
) and 

the necessary condition is proved. Q.E.D. 

Proposition 2. Let x be an observable. If a homomorph-
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ism x : L —> L is x-measurable, then for the above transfor

mation T we have 

Xnox = T^ox, n -B 1,2,... . 

If x is an ergodic homomorphism in a state m, then T is an 

m -measure preservative ergodic transformation from R, into 

itself. 

Proof. The first part is evident by induction. 

Let X be ergodic. Uien, by Proposition 1, we have 

mx(T'"
1(E)) * m(x(T"1(E))) =- m(r(x(E))) * m(x(E)) = rn^E), 

EeB(R1). 

itother, if T"1(E) « E, then x(T"1(E)) » x(E), x(x(E))= 

« x(E). Due to the ergodicity of ̂  we conclude that 

m(x(E)) » mx(E)6i*0,l}. Q.E.D. 

Proof of Theorem. Jrom the assumption of Theorem we 

conclude that xn o x = T O x, where T is an ergodic transfor

mation with respect to the measure mu on B(R-,), and the ob-

servables \Xno xL are mutually compatible. If we put 
<n-4 i 

a = 1/n JSQ T , then, due to the calculus for compatible 

observables, the observables yn - s o x are the Cesaro sum 

1/n • 2-0 X * x. 

Since it may be shown that (see 133) 

l *£f i 
± Z f l t o x —> <r a . e . [m3 i f f sn~~** 0 a . e . Crn l̂ , 

we conclude, from the v a l i d i t y of the ind iv idual ergod ic t h e 

orem on the dynamical system (R^,B(R),mx,T) app l i ed to the i -

dent i ca l function i ( t ) » t , 1 6 %, ( J^ i ( t ) dni ( t ) » 0) [ 4 3 , 
i 

that (1) ho ld s . Q.E.D. 
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