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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROUNAE 

21,3(1980) 

REMOVING THE INTERIOR OF THE SPECTRUM 
G. J. MURPHY, T. T. WEST 

Abstract: The problem under consideration is the fol­
lowing one. Let x be an element of a unital Banach algebra 
and denote by 6(x) the spectrum of x with its holes filled 
in. Does there exist a commutative, unital Banach algebra in 
which x (and hence the algebra which it generates) can be i-
sometrically embedded having the property that the spectrum 
of x in this new algebra is minimal in the sense that it is 
the boundary of 6(x)? 

Key words: Interior of the spectrum, Banach algebra exten­
sion. 

Classification: 46J05 

If x is an element of a unital Banach algebra A, 6\(x) 

will denote the spectrum of x in A. The subscript is impor­

tant as we shall be considering the spectrum of an element 

relative to different algebras which contain it. If A(x) de­

notes the closed unital subalgebra of A generated by x we 

shall write ^ A ( X ) ^ s--mP--y as £(x); this set is well known 

to be ^A(X) with its holes filled in. As the spectral radi­

us does not change relative to the algebra concerned we shall 

simply use r(x) to denote the spectral radius of x. 

If B is an isometric Banach algebra extension of A and 

xeA it is well known that ^A(X) 2 6VAx) while <?6Ax) £ 
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o of6 (x) where ct denote9 the topological boundary. If A 

is commutative 21 (A) will denote the Gelfand space of A. 

An element z is called an approximate divisor of zero 

(ADZ) in a commutative Banach algebra A if z€ A and there 

exist3 a sequence y e A such that tiynK = 1 for each n and 

y z —^ o (n—>co)# It is well known that if % -z is an ADZ 

in A then % e. & Az) and that for each ft, & oT^Cz), A-z is 

an ADZ in A. It has been proved by Silov 1.73, in case A is 

singly generated and extended by Arens Ll"), to the case of 

a general commutative, unital A that an element z of A is in-

vertible in some extension of A if, and only if, z is not an 

ADZ in A. 

If x is an element of a unital Banach algebra A the 

permanent spectrum of x written ^ (x) is the sub3et of 

tf(x) which is contained in ^taCx) for every commutative, i-

9ometric exten3ion B of A(x). ^DGr^
x^ *3 t n e intersection 

of closed set3 and is therefore closed. It follows from the 

Silov-Arens result above that .ft e £_„(x) if. and only if, 
per * * * 

%-z is an ADZ in A(x). As we 3hall show for many elements x 

in many familiar Banach algebras ^ (x) = of6 (x) and if 

this is the case we say that £(x) has a removable interior. 

The question naturally arises whether all spectra have re­

movable interiors. 5ilov [71 has answered this question nega­

tively, it has also been considered by Arens Cll, and a sim­

plified version of §ilov's example is given here. The paper 

concludes with a theorem of Zemanek on the cortex. 

Positive results. Let A be a compact Hausdorff space. 

C(IL) denotes the algebra of continuous functions on II in 
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the supremum norm and if A is a closed unital subalgebra of 

CCQ.) which separates the points of -0- , A is a uniform al­

gebra on -Q. • 

Proposition 1. If x is an element of a uniform algebra 

£(x) has a removable interior. 

Proof. Let x be an element of a uniform algebra A. Then 

2! (A(x)) can be identified with €>(x) and the algebra A(x) 

with the Gelfand transform algebra of complex-valued func­

tions on £(x). Each element in this algebra is continuous 

on <o(x) and analytic in its interior. Thus if A(^(X)) deno­

tes the algebra of all complex-valued functions continuous on 

^(x) and analytic on its interior, we have the isometric em-

beddings 

A(x)fi A(€>(x))c CO£(x)) 

where the final extension is achieved by restricting each 

function to the boundary cT6 (x). The spectrum of x in C(35(x)) 

is just 9<3 (x). 

Note that it is impossible to remove the interiors of 

the spectra of all elements in a uniform algebra A by means 

of a single extension. Take A = C(P ) where 3) is the closed 

unit disc. It is easy to see that an element xeA is an ADZ 

in A if, and only if, x vanishes somewhere on JD . Thus the 

spectrum of every element in A is preserved in any extension 

of A. 

A large class of operators on Hilbert space have spect­

ra with removable interiors. Let H be a Hilbert space and 

let B(H) denote the Banach algebra of all bounded linear ope­

rators on H. 
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Proposition 2. Let T be a bounded linear operator on 

a Hilbert space then £(T) has a removable interior if any 

of the following conditions hold, 

(i) T is a subnormal operatorj 

(ii) S
B(H)(T) js a, spectral S$\ for T; 

(iii) * B ( H )
( T ) ~ kXl U l = BTH* ' 

(iv) G(T*) has a removable interior. 

Proof. In case of categories (i),(ii) and (iii) thi3 

conai9ts of 3howing that T generatea a uniform aubalgebra 

of the algebra of all bounded linear operators on the Hilbert 

epace. 

(i) If T is subnormal th<m llp(T)H = r(p(T)) for each 

complex polynomial p (£51 page 106), thus the Gelfand trans­

form is an isometry. 

(ii) A subset o> of the complex plane is a spectral 

set for T if 6) 2 6
B ( H ) ( T ) and if «f(T)|| ̂ s"£lf(z)l for 

each rational function with poles off co . If 6'B(H)(T) is a 

spectral set for T then 

llp(T)H * Tt^ /rnx )p(z)l = r ( p ( T ) ) for any polyno-

mial p by the spectral mapping theorem and the reverse inequ­

ality is obvious. 

(iii) A theorem due to von Neumann (£33 page 281) sta­

tes that for each T the set A.A : iJl 1 £ |JT il £ is a spectral 

set for T. This set contains £(T) and by the hypothesis sin­

ce 6(T) contains no holes the reverse inclusion follows. 

Thus €T(T) is spectral for T, so llp(T) « *- sup lp(z)| = 
. \X I fe 1 

= sup Ip (z ) t = r ( p ( T ) ) as above. 
XC0CT) 
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(iv) Suppose ^pe;r(T*) =36(T*). If X e ^ p e r(T), then 

(A-T) p n(T)—>0 for some polynomials Pn(z) with Rpn(T)ll = 1. 

If p is the polynomial p(z) = a +a.,z+ +anzYi l e t P(z) = 

=a0+a1z+ anz
n. Thus (% -T*)pn(T*) -~* 0 and ( Pn(T*)ll»-U 

Hence X e ^ p e r
( T* ) = ^ ( T * ) , so A e 36 (T). 

More is true. Suppose we can show that there is an iso­

metric extension B of A(T*) such that ^(T*) = de^T*). Form 

the conjugate Banach algebra B, from the elements of B by re­

defining scalar multiplication X»x = ^x where A is a com­

plex number and x G. B. The obvious maps 

A(T) --> A(T*)-—_> B̂ ^ 

are conjugate linear and isometric, thus their composition is 

a linear isometry and 6^ (T) = B6(T). 

2. Silov's Example 

Lemma 3. Let -id $ be a sequence of positive real num­

bers with d = 1 such that for each m, n 

m+n m n 

A necessary and sufficient condition that this sequence be 
CO 

extendable to a sequence of positive real numbers id j sa­

tisfying condition (1) is that 
(2) sup (^n/d.,) <. co 

7V>0 n + ± 

Proof. If the extended sequence exists then for each 

nZO 

dn/dn+l^ d-l 

hence condition (2) holds. 

Conversely suppose condition (2) holds and put 
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d - = sup^ (d /d . , ) . Then, i f r , n 2 0 
""•*- 1*1,2. 0 n nt-x 

*-> d-l<Vl "= d?l -- <W * * d -lVr 

thus 

<ЭL/<ЭL. „ -4 d
r
-,. n r+n -1 

Now if we put d_r
 = sup (án/dr+n) for r£l, we have 

It remains to check condition (1) holds for all inte­

gers m, n. This is straightforward if m or n is positive, so 

assume m,n<0. Then, for any r£0, 

<->, v, «,d^dr., £ °L „.°L as r-n-m 2.0 r-n-m n m r-m m 

> d as r-m Z 0 , 

Thus d.d £ sup (d Vd^ ̂  m) = d„.m. n m ^/o r r-n-m n+m 

Let 4d $"* be a sequence of positive reals with d =1 sa­

tisfying condition (1). If a (n£0) are complex numbers we 

define 

A = 4 v n ' - «f - ^ 1 - f .«n.dn<«x-J. 
A i s a Banach a lgebra genera ted by x and 6 (x) =-[A : lAl *=. r i 

where 

r = r ( x ) = lim II x11 i | 1 / n = l im d17*1 

rrt~+at> m, + a> " 

Assume further that condition (2) holds and extend the se-

quence of weights to " - d ^ ^ . Define B by 

is 
"n" ' " z^o ~n~~ " -oo' ~n'~n 

B = ł Ş a ^ : || 2 , . a^x11 II = Ş J a j d „ * » ł 

then B is a Banach algebra which extends A and B is generat­

ed by x and x" . Put 

s~X = rCx"1) = lim \\x~n\\ 1 / n = lim d l / n 

Then it is easily seen that ^(x) = •£<& :s £.\%\ £ v\ * 
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We now show that this annulus bounded by circles of ra­

dius s and r is in the spectrum of x relative to any exten­

sion of the algebra A. Lemma 4 is valid if condition (2) do­

es not hold and in this case we put s = 0. 

Lemma 4. X g. ̂ D e r(x) if. and only if. X is in the 

annulus bounded by the circles of radius s and r. 

Proof. ^ Q ( X ) is precisely the annulus hence no point 

outside it can be in # «^(x). Since £ Cx) is closed we 
per per 

need only show t h a t the s e t - i A : s < I A I < r j s 6* . ( x ) . ^ J per 

Suppose t h a t X ^ ^ D e r ^ x ^ then t h e r e e x i s t s M>0 such 

t h a t fo r each y & A 

M II U - x ) y H > H y 11 

Take 

y ^ • a ^ x * +X13 

then ( a-x)y = X p + 1 - x p + 1, hence 

MilXp+1 - . A P + 1 I . * II y II 

that is 

M(uiP+1+dp+1)> u p i + u i ^ d . ^ % ~ i ^ i k V k 

fo r 0 4 k - - p . 

I f U l < r = i n f d 1 / p then U i p < d T N f o r p > 0 
^ > 0 P P 

g iv ing 

2 M d p + 1 r i M k d p _ k 

hence, p u t t i n g q = p - k, 

2 м V k + i r , я i Ч -
Thus 

2 M ^ t - k r d q / d q + k + 1 ( q . k í O ) 
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2M u r k > d - k - 1 . 

Taking the k+1 -th root of both sides and letting k<—> co 

given Ur^s^i.e. U|^s. 

Thus each point in {A :s _«-:')JU-<-r$.c ̂ «„(x) whence 
r per 

the result. 

To complete §ilov's example it remains to construct an 

appropriate sequence of weights id $ . To do so we choose a 

sequence of real numbers $/Us(n)} such that ^(o) = 0 and 

^(m+n)^ (U(m) + ^(n) for each m, n. Put d = exp ^o(n). 

Then 
(3) r = lim exp (M>(n)/n). 

n, -> co 
Our example has s = 0 which is equivalent to 

sup (d/d_. - ) = oo 
*,ZQ n n + 1 

that is 

(4) sup (<u,(n) - ^(n+D) = oo . 

*- -2 Take /U/(n) = £ . , k where 
^ ife-r/n/ 

n' = p+1 whenever p +1£ n--* (p+l)J for positive integer 

p. Then ^(m+n) ̂  /o/(m)+ (*̂ (n) since n' increases with n. 

Further ^(n)/n — > 0 as n —•> co hence r = 1 by (3). 

To check condition (4) 

£2, o i &> -2 <«.(n3) - ̂ (n3+l) = n
3 ^ ^ 2 - (n3+l)^+,,k 

= n - -S, \Tdz n - 5TV6 

Thus in this case # r (
x ) is the disk of radius one. 

An element x of a Banach algebra A is said to have 
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independent powers if 

A? Q? 
II i* â x11!! = S, 1 al l.xni. (for any complex numbers 

n n * n 0 " 0 
,.ak). 

Spectral properties of independent power elements have 

been discussed by Williamson £9] and by Bailey, Brown and 

Moran [2.J. It is known [2] that ^A(x) 2 i X : J K 1 = r (x) } 

and conditions are given in [2*] that ^(x) should be a disc 

where x is an independent power measure and A the algebra of 

Borel measures on a locally compact abelian group. 

The generating element in 5ilov 's example has indepen­

dent powers and the analysis given here applies to any inde­

pendent power element. Thus, by Lemma 4, the interior of 

6(x) of an independent power element x is removable if, and 

only if, s = r. This result may be stated as follows. 

Proposition 5. If x is an independent power element 

the interior of £(x) is removable if« and only if 

l im 
/ГŁXO 

- - 1 
II x г » •/ i 

= l i ш II x n | | n 

X II 

If x is an ADZ in a Banach algebra A with isometric exten­

sion B, then as x is singular on B the Gelfand transform x 

vanishes on S (B)„ The set of characters in *£ (A) which ex­

tend to characters on each extension B is called the cortex 

of A. The cortex contains the Silov boundary and Silov'a 

example shows that this containment may be proper. The aut­

hors conjectured that x is an ADZ if, and only if, x vanish­

es on the cortex. This conjecture was confirmed by J. Zema> 

nek. 
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Proposition 6 (Zemanek). An element x in a commutative 

Banach algebra A is an ADZ in A if, and only if. its Oelfand 

transform vanishes on the cortex of A. 

Proof. If x vanishes on the cortex of A then x is sin­

gula r in every extension of A and is hence an ADZ in A. 

Conversely, let x be an ADZ in A. There exists a sequen­

ce iyn\ in A of norm one such that xy —> 0 as n —-> oo . Con­

sider the ideal 

I =-\ Z6 A:zyn—> 0 (n —=• oo )}. 

According to a deep result of S^odkowski C.81 there exists a 

maximal ideal M of A which contains I and consists of joint 

approximate divizors of zero. By a theorem of 2elazko £101, 

M belongs to the cortex of A and clearly x(M) = 0. 

Alternative examples of elements in Banach algebras who­

se spectra have non-removable interiors seem difficult to con­

struct. In particular, is there an operator T in a Hilbert 

space whose spectrum has a non-removable interior? 
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