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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

21.3(1980) 

AN ELIMINATION OF INFINITELY SMALL QUANTITIES AND 
INFINITELY LARGE NUMBERS (WITHIN THE FRAMEWORK OF AST) 

Karel CUDA 

Abstract: Let £>(X) be a formula describing a property 
of parts of real numbers using infinitely small quantities or 
infinitely large numbers (i.e. <p(X) is a formula in which on­
ly real numbers are quantified with one free variable X for 
parts of real numbers using the predicate "to be an infinite­
ly large natural number"). In particular we deal with all pro­
perties of real functions of n real variables described in in­
finitesimal calculus of Leibniz type. Infinitely large natu­
ral numbers can be quantified on various places in cp . A pro­
cedure is given how to find a formula ijr(X) describing the sa­
me property in which we use only auxiliary variables for real 
and natural numbers and we do not use infinitely large and in­
finitely small quantities. 

Note that e.g. for the property lim f(x)-=b such a proce­
ss —9>Cl> 

dure ia well known from the Cauchy times. By the way 3ome in-
tereeting aasertions concerning indiscernibility equivatences 
in the alternative aet theory are given. 

Key words; Infinitely large natural number, indiscerni-
bility equivalence, endomorphic universe with standard exten­
sion, 39t-fin(x). 

Classification: Primary 03H05 

Secondary 03E70, 03H15 

Introduction. In the paper we describe a procedure how 

to eliminate infinitely large natural numbers (thus also in­

finitely small quantities) from the definitions of analytical 

notions. As an example can serve the property wf is a function 

continuous in the point xM - (Vc^)Oc^) (f (x+ </-L)=f (x)+ c?2) 
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( oU, cC being infinitely small q u a n t i t i e s ) . In the given ex­

ample the formula in the definition is in the prenex form and 

in the prefix of the formula only one change of quantifiers 

occurs. For this case an easier procedure due to P. VopSnka 

is described in the paper [5] and let us note that only auxi­

liary variables for natural numbers are needed. For the case 

of two changes of quantifiers, A. Vencovsk6 has found an eli­

minating procedure using auxiliary variables for natural num­

bers and one auxiliary variable for functions from natural num­

bers to natural numbers (real numbers). P. VopSnka has proved 

that this sort of auxiliary variables (real numbers) cannot 

be omitted. If we admit auxiliary variables for parts of real 

numbers, we obtain a trivial equivalent "in the sense of ultra-

product is valid". On the other hand, in [S3 A. Sochor proved 

that the predicate "to be a standard real number" cannot be 

eliminated in general nonstandard models. But a generalization 

of the given procedure eliminates this predicate in & -satur­

ated models ( C being the successor of the cardinal number 

of continuum) . 

The eliminating procedure shows how the notions defined 

using infinitely small quantities can be defined not using the­

se quantities. But it may happen that the obtained formula is 

so complicated that it is not understandable . 

- The eliminating procedure is quite general and can be u-

sed in various nonstandard models. It can be also adopted for 

the "generalized infinitely small" (to be a member of a monad 

of a filter). In the present paper we describe the procedure 

in the framework of the alternative set theory (AST) as there 

are available suitable technical means in this theory and the 
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leading ideas of the procedure appears in a striking form. 

The author intends to write another paper in the language of 

nonstandard models, where the procedure will be adopted with 

all the necessary technicalities. 

The procedure consists of four steps. In the first one 

we find to the formula cp a predicate P(t) and a formula if 

not using the predicate "to be infinitely large" such that 

cp(X)» Qt,'P(t)) i|r(t,X). We use finite semisets (parts of for­

mally finite sets) to this purpose. In the second one we pro­

ve that -ftjjP(t)i is a figure (figure being a nonstandard topo­

logical notion). The topology makes it pos3ible to remain in 

continuum. In the third atep we describe the relation to the 

classical topology. In the fourth step we give standard defi­

nitions of parameters defined nonstandardly. The fourth atep 

is not contained in the paper, as we prove here only the exis­

tence of a part of continuum which is used in the procedure. 

In the paper we use the first three chapters of tyjjtV 1J> 

[SV 11. 

The work was referred on the Prague seminar on AST and 

the finished version uses many fruitful remarks and ideas from 

the members of that seminar. Especially, P. VopSnka was perti­

nacious and the author (also on behalf of the readers) expres-

ses here his thanks to hiwi for this. 

§ 1. Wl -finite set3 and aome oropertie3 of the indi3cer-

nibility equivalence *&>* In the first section we 

do some preliminary considerations. Remember that the formulas 

of the language FLQ are all the formulas with the finite length 
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using sets from C as parameters. V denotes the class of all 

sets. 

1.1. Definition: A system of classes Hft is said to be 

normally closed iff for every normal formula <£>(z,Z-,,...,Z ) 

of the language FL-. and all classes X-,,...,X from Wtl the 

class ix; cp(x,X-. ,... j-OJ is in TfitL . 

1.2. Definition: Let 1$l be a normally closed system of 

classes. A set u is said to be 3$-finite ( M - f i n ( u ) ) iff 

for every X from 3dt , unX is a set. 

Examples: 1) Let ffil be the system of all classes. A 

set u is ^-finite iff u is finite. 

2) Let 93t be the system of all set-theoretically defin­

able classes. Every set u is 33t-finite. 

3) Let A be an endomorphic universe with the standard 

extension. Let Ttfl be the system of all the classes definable 

by normal formulas of the language FLy from standard extensi­

ons of parts of A. A set u is 331-finite iff ueExlV-^) in 

this case. 

The assertion in the third example can be proved if we 

use the fact that Ex(FN) has the "same" properties as FN if 

only classes being extensions of parts of A and sets (V=Ex(A)) 

are taken into account (see [SV 13). 

1*3* Definition: Let 3? = < X-,,...,^) . We shall use In­

finite (X-fin(u)) instead of # t - f i n ( u ) , where 33t is the sys­

tem of all the classes definable ty normal formulas of the 

language FI*. with the classes X as parameters. 

--•4. Theorem: ^-finite sets have the following pro­

perties. 
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1) The smaller W* i s the larger ##- f in i te set may 

be. 

2) Fin(u) =̂-> 101 - f i n (u ) . 

3) ^-finite sets form an ideal. 

4) For any set function f, ^t-fin(u) ==> d#-fin(fMu). 

5) m-fin(u) ==> ̂ -fin((p(u)). 

6) W-fin(u) & ^t-fin(v) ==-=-> m-fin(uxv). 

Proof: 1),2) are obvious. To prove 3) let us note that 

Xn(uuv) = (Xnu)u(Xov). 4) is implied by the equality 

(f"u)nX = f"(un(f"lrtX)). 5) It is sufficient to prove 5) 

only for natural numbers (we use 4)). Let 3#-fin(oo) and let 

X be from Wt . We put Y = 4/*<s oG+1; (Vf ,f rftoG) «e-> ̂ (oc)) 

(•W(J)nfM(X)£V), It is sufficient to prove oc <s Y. Y is from 

m , Y£oG+l, $t-fin(<tf+l) by 2),3),4). Thus Y is a set and 

has a maximal member oo . We prove that the assumption oc: <s co 

contradicts the maximality of oo . For f=I/\P(o6) we prove 

that (P(5o+l)n f"XeV. For f=*-I/ :P(oC) the proof is analog­

ous. Let g: 0>(&,) 4r~* CP(o£+l)- tP(So). We put f^gug"*1^ 

ul/* C . 7 ( c ^ ) - . ^ ( 5 : + D ) . We have ^(5+l)nX = «P05c)nX) u 

uf"(,P(oo )nf"X) and both parts of the union are sets byo3 e 

e Y. The property 6) is a consequence of 3) and 5). 

Corollary: ^-finite sets are closed on Goedelian ope­

rations. 

Let us consider the indiscernibility equivalence js, (see 

LV ID. 

--•5. -foe or em: x iby s < x , v > £ < y , v > . 

Proof: Let ~i x i^y* There is a set-formula cptz-^Zg) of 

the language FL such that y(x,v)& -i cj>(y,v). Let y(z) be the 
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formula B z ^ ^ j ^ ) (z= < z ^ , z 2 > &. 9? ( z l f z 2 ) ) . if(z) i s a s e t -

formula of the language FL and we have y ( < x , v > ) ^ i y ( < y , v > ) . 

Hence ~ i < x , v > ^ ^y»v>. I f we suppose (on the o ther hand) 

~K x,v> &<y,v) then t he re i s a se t - formula ijf(z) of the l a n ­

guage FL such t h a t y ( < x , v > ) & n y « y , v > ) . Let g?Cz1,z2) be 

the formula C3z) (z= < z-L ,z2> & t j r (z ) ) . y ( z l f z 2 ) i s a s e t - f o r ­

mula of the language FL in t h i s case and we have <p(x,v) & 

& 1 cp(y ,v) . Hence 1 x ^ y . 

--•6. Co ro l l a ry : I f X i s a f i g u r e i n ,^2 then X = 

= (F ig & (Xx-Cv* ) ) " - !v j . 

1.7. Theorem: 1 ) <x-_,y1> ^ < x 2 , y 2 > ,=>> x-, ^ x 2 & 

& v l -ivi y 2 * 

2) x . | ? y => F igo (x) = F i g o ( y ) . 
*V* &\ <Z\ 

Proof: Let - i i ^ jneFHl be a gene ra t i ng sequence of M, 

c o n s i s t i n g of Sd< -. equiva lences (see Ch. I l l CVJ). Let 

4"snc Def({vj ) ; neFN? be a sequence of maximal R^-ne ts . 1 ) I f 

n x^ ,|U x 2 then t h e r e i s an n €FN and a t c s n such t h a t 

<x-,,t>€. R n &<x 2 , t>< |R n . Let y (z ) be the formula (3z-L ,z2) 

(z= <z-j , z 2 > & < z-j , t >€ I L ) . The formula cp i s equ iva len t to a 

se t - formula of the language Fl-cy? a n d 9 « x 1 , y 1 > ) & 

g< n y ( < x 2 , y 2 > ) h o l d s . Hence ^ x - ^ y - f ) ^ < x 2 , y 2 > . In the 

case "i y^ ^ y 2 we proceed ana logous ly . 2) Let Fig(x) + 

4 -F ig(y ) . Let w e x - F i g ( y ) ( i n the case x £ F i g ( y ) w e choose 

w e y - F i g ( x ) a m proceed ana logous ly ) . We have H i RM
niwl o y ; 

n e F N i = 0 and hence t h e r e i s an n such t h a t R ^ i w l n y ^ (see 

§ 4 Ch. I t V J ) . Let t e s n r » R n i w } . Now we have R"n*t$r> x4=0 8.. 

& R * n * t ^ y=0. Hence n x ^ y as t e D e f U v ] ) . 
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Remark: The opposite implications do not hold. 

--•8» Corollary: If X, I are figures in ,=> then both 

9(X) and XxY are figures in ̂  . 

Proof for 9(X): x£X&x ^ y -=$> Fig(y)=Fig(x) 9 X => 

=^ycx. 

1*9• theorem: Let A be an endomorphic universe and let 

veA. If £A is a monad in ,£> then fA,n A 4*0. 

Proof: Let F be an endomorphism such that F(v)=v and 

A=FMV. We have Fn ^ £. <a in this cane (see £ V 11). 

I* 10* Corollary: Let A be an endomorphic universe and 

let v € A. If ^ is a figure in M* then ;y=Fig£ (A n ? ) . 

§ 2. The elimination 

2.1. Lemma : Let X-fin(u), <3 c u and let ^ (w,£,~£) be 

a normal formula of the language FL. The following equivalen­

ce holds 

(Vt e & ) ̂ (t,lf,t)s(at € 3>(u-6f ))(Vteu-t)^ . 

The equivalence holds also for dual quantifiers. 

Proof: Both sides of the equivalence are equivalent to 

the assertion u-t=it; ̂  (t,X,x*H 2 6 . (We can use the nota­

tion t as X-fin(u).) 

Remark: The lemma shall be used for FN and semisets de­

rived from FN. 

2*2» Theorem: Let X-f in(iu), let "if s \f and 1st 

qp ( £ ,~w*,Z,"?) be a normal formula of the language FL. We can 

find a normal formula if (t,w*,?,~?) of the language FL, a set 

u such that ?-fin(u) and a semiset & £ u such that 
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cf(~% -TJ^lt-xOsQt s (6) y (t t\jttttx*). The set u i s definable 

from \? using the operations <P , x and & i s definable from 

"u, <? using the operations ? , x , - . 

Proof: We use the induction based on the complexity of 

the formula g> • We shal l r e s t r i c t ourselves on the case 

0 *- &^ u.£ as the cases 0i=O> ^ i = u i a r e 0 D v i ° u s * -0 We n a~ 

ve x € . £ . s ( 3 t c s ' . ) ( x = t ) . Other cases of atomic formulas are 

obvious or can be substi tuted by the formulas using x c £ -

(e .g . G±= €5\.j=(yx)(x £ G±=x & 6 j ) . 

2) Gt 1*: e*1) ^ ( t 1 ,# ,? , :«& ( 3 t 2 e 6 2 ) ^ ( t 2 , * , ? - * ) = 

s B t e 6 1 x 6 2 ) ( a t \ t 2 ) ( t = < t 1
f t 2 > S t y 1 & Y 2 ) . And we put 

^ = 61:* 6 2 and usu1* u 2 . 

3) Ox) (3t e 6)Y(t,u>,lT,-x*,x)s(.at e 6 ) ( 3 x ) y . 

4) Let £ (u,"?) be the definition of u from if. 

-i Gt 6flr)y(t ltrf?f".t)s(Vt 6 0 h y .We put "3 = 3*(u-er), 

u=CP(u). Using the lemma 2.1 we obtain the equivalent 

G t e e?)(3u, ̂ (u,Tf))(Vteu-t)i if which is of the form 

(3t etf)ijr(t,if,?,x). 

Remarks: 1) The theorem is the first step of the pro­

cedure. 

2) If the semisets 6^ occur only in the prefix of the 

formula y in the form Gt e 6^ ),(Vt e 6'jL) then it is possib­

le to modify only the prefix. This modification and the de­

finition of 0, u from e? , if is dependent only on the syntax 

of the prefix. 

If 6>t \x± are figures in ,*, then 6f, u also are figu­

res in ̂ 7 and we can find another equivalent in this case. 

Up to the end of this section we shall use 4-^; neFff] 

for a generating sequence of = consisting of Sd equivalences. 
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2-3. Theorem: Let -^(tjZ,?) be a normal formula of 

the language FL. Let 6*, u be figures in ,—? and & £ u. 

Let 3T-fin(u). If Fig^ (S) = Figo (6x4v2) then (at € 

e er l Y t t ^ i l s Q t ^ S) (vneFN) (3t e (R^t-J )" -tvj)r . 

Proof: At first we prove the following equivalence 

GteuMVneFNMt cd^-Ct^)" ivi kr* s Cv'ne FN) (3t e 

eulttfillJU^)" i v U y ) . 

The implication =^ is obvious. Let us prove <===- • We put 
wn = ̂ t € u> t e (H^it^ )M-ivl S-Y?.4wn;neFNJ is a not increaa-

ing sequence of non empty sets (we use X-fin(u)) and thu9 

0-lwn; neFNJ4-0. This fact proves <= . The theorem is an 

easy consequence of the proved equivalence and the formula 

t e ̂ s(3t1eS)(VneFN)(t e (Î -it-,5 )"£v?) being implied from 

the equality # = (Figg (#x i vJ) )"iv} proved in § 1. 

Now we use our knowledge for the elimination of infini­

tely large numbers or (equivalently) for the elimination of 

FN from inside of the formula <j? • 

2»4» Definition: Let L be a transitive subclass of N, 

let FN^X-^. The numbers oc e X-j-M are called X^infinitely 

large. (We shall omit X^ - hoping that confuaion is not pos-

sible.) 

2*5» -Q-eorem: Let X, be a tranaitive subclass of N, let 

FN-fX-jk (Vo> e X1)3?-fin(o6 ). Let cp(£ ,"-?,?) be a normal formu­

la of the language FL. We can find a normal formula 

-yiw-*'™?'^ °^ *ne l a nS u age F L an<3 a figure if in -= hav­

ing the following property• For every class S such that 

Fig^(S) = \f the formula ^(FN,1?,?) = (at-, e S)(Vn eFN) (3<* e 

eXlf n e oc)(3t e l R J ^ } ) " -{ocl ) if (t, oc ,£,?) holds. 
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Remarks: 1) This theorem is the second step of the pro­

cedure. 

2) If FN occurs only in the prefix of the formula cp 

then we can modify only the prefix of cp . 

Proof: Let us choose an OG e X,-FN. We have FN Soc, 

X~fin(cC) and Fig 0 (o--)& Fig o (FN). Using the previous ra-

suits we can find a figure (p (in «*) and a normal formula y 

of the language FL having the following property. For erery 

S such that Fig* (S)= <$ the formula p (FN,ltf?) s i3\ c S) 

(VneFN)(3te (^\t^i)nik\) ^(tfoc ftft) holds. In the formu­

la on the left hand side of the equivalence the symbol oc does 

not occur. Using the law ^1-= \ 2 ^ H %i^-(3<x>) Pl2M we ob­

tain the equivalent Q ^ ) (3ct e^-FN) (Vn £ FN) Gt c. (^it^^oC?)^. 

To finish the proof it suffices to prove the implication 

(VneFN)Gote X1, n 6 a,) Gt e (R^t-J. )"-Ccrt )y =̂ > 

==» (3oc £ X 1 - F N ) ( V n c F N ) G t £ (i^-Ct1?)
wi^)V • 

Let us note at first that there is no increasing function F 

such that dom(F)=FN8i X-̂  = Urng(F). (The existence of such a 

function contradicts (3oc £ N-FN)X~fin(oc).) Let us suppose 

that the left hand side holds. Let <sc„eX- be such that oc„^ 
n 1 n 

ankOt e(BnAt1\)
niaun\)y . L e t (I e X̂  be larger than e-

very o6n. Let us put wn=*oo<: fi • (3t e ( f l^ t -^ )" iac\) f •-tw
n» 

neFNi i s a not increasing sequence of nonempty sets and hence 

i t has a nonempty intersect ion. 

To prove the r ight hand side of the implication i t suffices 

to choose 06 from this in tersect ion. 

We give here two examples now. The f i r s t one i s i f we 

put X-j=N and A are se t - theore t ica l ly definable c lasses . The 
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second one is much more interesting. Let A be an endomorph-

ic universe with the standard extension. We put X-,=Ex(FN) 

and let X be standard extensions of parts of A. Let if be the 

figure assured by the last theorem. We can put S= ifr\ A as £f = 

=Fig^Ctfn A) (see §-1). 

Using the elementary equivalence of A and V and admit­

ting onlly parameters , from A in <p we obtain an equivalent in 

the language of A. This situation is described in the follow­

ing theorem. 

2*6- Theorem: Let cpCf tZt"t) be a normal formula of the 

language FL. We can find a normal formula \jr of the language 

FL and a figure if in & having the following property. For 

every endomorphic universe A with the standard extension, for 

every x£A and for every ?6 A the following equivalence holds 

SpCFNjExdb^sGt - i ^ tfn A) (Vn € FN) (3m, nemXGt €. 

e i ^ l ^ l Y (t,m,X,2))A. 

Proof: By the previous theorem we have <p (FN, Ex (X) ,le)s 

5 ( 3 ^ 6 tfn AMVne FN)(3c* e Ex(FN), nfct*)C3t £ 

£ (R^t^UMc*}) y(t, t^,ExU?),l?) (we use the equality if = 

= F i g 0 ( tfn A) from § 1) . The theorem follows from the equi­

valence (3oc € Ex(FN), n e o6)(3t e (R^-it-^ ) M o ^ ) y (t,oC, 

E x ^ ) = G i e F N , n<£m)Cat6 ( I ^ t ^ )"-Ccc*)n A) yACt,m,3f,x) 

(see LSV 13). 

Remarks: 1) This theorem is the third step of the pro­

cedure. 

2) The right hand side of the equivalence is a formula 

in the sense of A. Thus if we consider A as the "real" (stan­

dard) world and the standard extension of FN as a means, how 
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to obtain infinitely large natural numbers, then we have a 

way, how to go back from infinitely large natural numbers 

to the "realn world. Remember (on the other hand) that the 

formula y may be very complicated in comparison with the 

formula <j> . 

3) We can modify only the prefix if FN occurs only 

there. 

4) The quantification of infinitely small quantities 

can be replaced by the quantification of infinitely large 

natural numbers. 

5) Real numbers can be viewed as a part of A and hen­

ce parts of real numbers can be substituted to X. 

6) If we add before $> a prefix with quantification 

restricted to A we obtain an equivalent in the language of 

A. On the other hand, A. Sochor has found a formula of the 

type (Vo6 £ Ex(FN)) 03xe Real) y not having an equivalent in 

the language of A (see LSI). 
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