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COMMENTATIONS MATHtMATICAE UNIVERSITATIS CAROUNAE 

if 1.4 (1980) 

CARDINALITIES AND RANKS OF W- BASES IN TOPOLOGICAL 
SPACES 

Petr A. BIRYUKOV 

Abstract: In this paper, relations between ranks and 
cardinalities of pf -bases are studied in certain classes of 
topological spaces (the concept o% rank was introduced inde«-
pendently by Nagata and Archangel skii). The existence of a 
dense subspace having a base of rank 1 in the Cech-Stone re
mainder of the integers is shown to be independent of ZFC. 
A new metrization theorem is given for dyadic spaces. 

Key words and phrases: jr-base, rank, compact space, 
P'-space. 

Classification: 54A25, 54A35 

0. Preliminaries 

0.1. For standard terminology and notation, the reader 

is referred to -E3 and EJ3. Recall that a family P of non

empty open sets in a space X is a if-baa e of X if every non

empty open set in X contains a member of P and sr--weight of 

X is JT(X) « min -[Card P: P is a rt -base of X3. The letters 

oc and ft below will denote ordinals and t will denote an 

infinite cardinal. Cardinals are identified as usual with cor

responding initial ordinals and the first infinite cardinal 

is denoted by a> . 

0.2, A family F of sets is called an anti-chain if its 

members are mutually incomparable by inclusion. Let A be a 
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family of subsets of a set X and X€ Xf rank of A at x ie the 

cardinal r A » supiCard F: F is an anti-chain in A_], where 

A_ s{BeA:xeBj; and rank of A is the cardinal rA * aup$r_A: 

:zt-X{. In particular, A is a family of rank 1 iff for each 

pair Bi»B2 °* i t 8 -ambers either B^ and B^ are comparable or 

B,nB2 * 0 and A has countable rank if rA -_ o> . All spaces 

below are supposed to be T^. 

1. Partial order arguments. Let (P,-=> be a partially 

ordered set. A subset Be P is called dense in P if for every 

p€.P there is an element q cD such that q-^p. If A and B are-

two subsets of P such that for each a € A there exists an ele

ment b&B such that a<b, then A is said to strictiy refine B. 

A subset AcP is called Noetherian if every BcA contains a 

maximal element, the following proposition is quite natural, 

but the author did not find it in the literature• 

1.1. Lemma* Every partially ordered set <P,£> contains 

a dense Noetherian subset. 

Proof. Let P be a maximal anti-chain in P (recall that 

an anti-chain is a set of mutually incomparable elements). If 

we have defined P-, c p for all (I -c oc , define ̂  as a maximal 

anti-chain in P such that V^ strictly refines all Pj , ft < °c• 

The construction terminates by an ordinal co* for which P * « 

» 0. Let P**U{%:cc < oc* J . If oo </3 <: oc* , xeP,, ye 

tP|j , then x-+iy, otherwise for some zeP^ we have x<y<s 

and we get a contradiction, for P^ is an anti-chain. Let Ac 

c P* , oc0 » min-CcG :AnP^#-0? and xeAnP^ . By the previ

ous observation x is a maximal element of A, hence P is Noe-
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therian. For recognizing of P* to be dense i t s u f f i c e s to 

prore that for each x e P \ P * there e x i s t s an element p e P * 

such that p < x . Put oc * min-Coo j x + y for each yc-g^? • 

Then ocQ << oc* because of P^* * 0. For each oo -<- o->0 there 

e x i s t s x^ e P^ such that x < x ^ • In Tiew of maximality of 

P . , x must be comparable with some p^P^ , then p < x by the 

de f in i t i on of oo • 

^•2« Corollary- ^Tery ar-base of an arbitrary topolo

g i c a l space contains a Noetherian jr'-baae. 

!•$• Lemma. I f <P i s a ^r-base of a regular space X, then 

there e x i s t s a Jf-base <P* c <P> such that <P** UiT^ :oC<roC*i 

and for each QG < /3 < oc* the family4e>£ U:U c (^ J s t r i c t l y r e 

f i n e s 3*. . 

Proof. We say that two elements UtV e JP are equiTalent 

i f c^U » c ^ V . Let <P' be a s e t of representatiTes for t h i s 

equiTalence r e l a t i o n . Since X i s regular, <P' i s a jr-baae of 

X. I t remains now to apply the construction of Lemma 1.1 to 

<P' , ordered by inc lus ion . 

! •* • Lemma. I f a space X contains a dense f i r s t category 

subset , then for every tf-base £P of X there e x i s t s a Jf-base 

&* c (P representable by a union of countabTy many a n t i -

chains . In part icu lar , i f X has a j^-base of rank 1, then X 

has a l so a # - d i s j o i n t or*-base. 

Proof. Let X * cJL D, where D *U -Cl^:n€ o>\ and eTery 

I>n i s nowhere dense in X. As i n Lemma 1-1 , we put <P* « 

» U - C ^ tcC<oc*i with one more condit ion: ( U ^ n ) n D n * 0 

for a l l n c o> • Since $>n remains maximal re la t iTe to the 

other condit ions , we haTe as aboTe that CP* i s a tf-baae of 

X. 
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Obviously #̂ > » 0 , hence <P* « U «£ !Pntn s o> ? and every <Pn 

n e CD i s an ant i -chain . 

2» Rank and ex -weight 

2**» theorem. I f X i s a separable space with a tfr'-base 

<P of rank <v > a> , then .#(X) £ tr . 

Proof. Let D be a countable dense subset of X and l e t A 

be the s e t of a l l i so la ted points of X. I f eZ A * X, then -(-Cxi: 

«CG A J i s a countable of-base of X. Otherwise l e t us consider 

the s e t U » X\c.l A. I t su f f i ce s to prove that at (U) £. <z . I t 

i s c l ear that U has no i so la ted points , hence C = DnU i s a 

dense f i r s t category s e t in U. Applying Lemma 1.4 to tP-j * 

» { P e ( P : P c U l , we obtain a Jf-base <P* * U i <Pnm e col for 

U such that every (Pn, n 6 o> i s an ant i -chain . Clearly 

Card <P* £ cd • Card C • %« tz • 

2.2. Theorem. I f X i s a regular space with a JT-base <fr 

of rank * 2: & and tJ4" i s a ca l ibre of X, then sc(X)£2q: * 

Proof. Let <P* c <P be l i k e in Lemma 1 . 3 . I f A c <P* i s 

an ant i -cha in , then Card J£ _6 t? by the de f in i t ion of rank and 

c a l i b r e . I f ^ c <P* i s a chain, then, as i t i s e a s i l y seem, 

the reverse inc lus ion i s a well-ordering on % • !br every U£ 

e % denote by U the successor of U in th i s wel l -ordering. 

Then IF** -f U\ e£ U*:U £ % 1 i s a d i s j o i n t family of non-empty 

opea s e t s such that Card^ » Card^ • Hence, Card % £ c(X) £ 

£ *v and Card<P*-£ 2* i s now a d irect consequence of the com

binator ia l statement (2*) —> (x. f t ) , which i s a particular 

case of the BrdUs-Rado theorem: (2*)*—> ltf*)% £«0. 

2«3. Corollary. A dyadic space X with a jf-base of 
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countable rank is metrizable. 

Proof. Since w(X) * jr(X) [P3 and by fheorem 2.2 .tf(X)£ 

^2 , X is a continuous image of the Cantor cube B which 

is separable and so is X. By Theorem 2.1 3f(X) £. co and hence 

X is second-countable. 

Bemark. As was noted in tGNJ, Kunen constructed a nonme-

tri .sable compact space with a Noetherian base of countable rank* 

3* P'-spaces* Recall that X is a P'-space if every non

empty G^-set in X has non-empty interior. 

3»1» Definition [BPS1. An nicest partition of X is a maxi

mal disjoint family of open sets. A family of almost partitions 

ia called a matrix. A matrix 9 is called a refining if it is 

well ordered by the refineness relation. 

3#2. Lemma* If X is a Baire P'-space, then for any count

able matrix 8 in X there exists an almost partition of X which 

refines every member of 0 • 

Proof. Let 8 » i n:n e w i , Gn - U . Then the set 

G » fV£Gm e coi is dense in X. For every non-empty open set 

U in X one can find Vn e n such that U' * Unn-t Vn:n e &>}* 0. 

Setting UQ * Int U'f we see that a maximal disjoint family of 

these U 's is obviously an almost partition with the desired 

property. 

3-3. Theorem. Every Baire P'-space X with ar (X) » <<>̂  has 

a JT-base of rank 1. 

Proof. Let {U^: OG <C > 1 ? be a tf-base of X. In view of 

Lemma 3.2, one can define by trans finite induction a refining 

matrix 8 « { 9^ : cc< o^} such that for every 06 < co^ %^ 
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refines {V^ , Int X^l^S . It is easily seen that &• Vi eg. : 

: cc <. co,? is a # -base of rank 1 for X. 

3 #4. Theorem. Every compact P'-space X of the weight &>, 

has a dense subspace with a base of rank 1. 

Proof. Let -ttĴ : oo < o>^5 be a base of X. Since X is re

gular, one can modify the construction above to obtain a re

fining matrix 0 =- -l̂ o : ̂ ^ ^1^ such that for e v e ry 06 <: ^ 

the family {c^ U:U G d^i refines all ̂  with ($ «z <& .If 

C * S.%c,: oo-< ̂ -,3 is a decreasing sequence with V^ £ <^ , then 

H £ 4=. 0. If x,y « 0 | and x4-yf then for some oc we have x c 

* U^ , y ^ U ^ . But x e ^ <s <% and rg. refines -tU^.Int (X\U.)?, 

hence V^c TĴ  and y^V^ - a contradiction. Bins H £ is a 

singleton {XgJ • As above (P* U{(P^ :oc< c*Xj? is a jr-base of 

X, so the set A of all Xg 's is dense in X and therefore iVn A: 

iV e <P ? is a base of rank 1 for A. 

3*-*« Corollary (CH). If X is a 2ero-dimensional locally 

compact Idndelof space of the weight 2 ^ , then its Seen-St one 

remainder X* * /*X^X has a dense subspace with a base of rank 

1 (and, a fortiori, X* has a sr -base of rank 1). 

Eroof. It is easily seen that there are 2*° clopen sets 

in X, *© w(X*) * 2 W * &>2,« Since X* is locally compact and 

realeoatpact LFGU, X* it a P'-space. 

Let H* » (3N\H be the Ceeh-Stone remainder of the inte

gers. Then H* has a <w-base of rank 1 CBPS^. It is quite re

markable that this fact is proved in ZFC, in view of the fol

lowing result. 

3«6* Theorem. The existence of a dense subspace with a 

base of rank 1 in N* is independent of ZFC. 
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Proof, (a) Martin's Axiom implies: (A) A non-empty in

tersection of < 2 open sets in N* has a non-empty interior 

LBJ. 

Let {l.1)C:oc< 2 J be a base of N* . Assume that for some 

oo < 2 we have defined a refining matrix Q • l^Pp t l3 ^ °c1 

such that every & consists of clopen sets and refines 

-[Up,N*\ Up I . If V is a non-empty clopen set in N* , pick Vj€ 

£ (fy with V̂ nV-ffif f or all /3 < oC . Then i?\u iV* ift< <=c1 

is a centered family of clopen sets, hence V' * Vr\ n{V»t $ <. 

< O G ? * 0. By (A) <?(V) « Int V + 0. Define 0^ to be a ma

ximal disjoint subfamily of -Cg^V): V is clopen in N*f that 

refines -tU^N* \ l^ ? . Now the argument of Theorem 3.4 proceeds 

a dense subspace with a base of rank 1. 

(b) Let DcN* be a dense subspace with a base <B of 

rank 1. Then for any subfamily JL c JB either nJl ie open in 

D or Jl is a base of some point xcD (it is a general fact a-

bout bases of rank 1 CAFJ). No point pf D has a countable ba

se, hence for every xcD and a countable A c $>x r\A ia o-

pen in D, that is, all points of D are P-points in D, and ad 

in N* , since N* is regular. However, the existence of a P-

point in N* is unprovable in ZFC (Shelah). 

Question. Does every Baire (or even compact) P'-space 

of the or -weight 2°* have a iff-base of rank 1 (without any a-

dditional set-theoretic assumptions; cf. Theorem 3.3) ? 

In conclusion, the author expresses his deep gratitude 

to Professor A.V. Archangel'ski for his attention to this 

work. 
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