Commentationes Mathematicae Universitatis Carolinae

Petr A. Biryukov
Cardinalities and ranks of 7-bases in topological spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 21 (1980), No. 4, 769--776

Persistent URL: http://dml.cz/dmlcz/106042

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1980

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/106042
http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
21.4 (1980)

CARDINALITIES AND RANKS OF or- BASES IN TOPOLOGICAL
SPACES
Petr A. BIRYUKOV

Abstract: In this paper, relations between ranks and
cardinalities of or -bases are studied in certain classes of
topological aﬁacea (the concept of ragk was introduced inde~
pendently by Nagata and Archangel skii). The existence of a
dense subspace having a base of rank 1 in the Cech-Stone re-
mainder of the integers is shown to be independent of ZFC.

A new metrization theorem is given for dyadic spaces.

, Key words and phrases:  -base, rank, compact space,
P -space.

Classification: 54A25, 54A35

0. Preliminaries

0.1. For standard terminology and notation, the reader
is referred to [E] and [J), Recall that a family P of non=-
empty open sets in a space X is a s-base of X if every non-
empty open set in X contains a member of P and -weight of
X is x(X) = min {Card P: P is a or -base of Xj. The letters
o« and (3 below will denote ordinals and ¥ will denote an
infinite cardinal. Cardinals are identified as \;uual with cor-
responding initial ordinals and the first infinite cardinal
is denoted by w .

0.2, A family F of sets is called an anti-chain if its

members are mutually inconparable by inclusion. Let A be &
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family of subsets of a set X and xe€ X, rank of A at x is the
cardinal r A = supiCard F: F is an anti-chain in A;}, where
Ay ={BeA:xeB}; and rank of A is the cardinal rA = supir,A:
:xe X¢{. In particular, A is a family of rank 1 iff for each
pair 131,82 of its members either Bl and 82 are comparable or
BN B, = # and A has countable rank if rA £ <« ., All spaces
below are supposed to be '1‘1.

1. Partial order arguments. Let (P, <) be a partially
ordered set. A subset Dc P is called dense in P if for every
peP there is an element q € D such that q4p. If 4 and B are. ©
two subsets of P such that for each ac A there exisis an ele-
ment be B such that a<b, then A is said to strictly refire B.
A subset Ac P is called Noetherian if every BcA contains a
m;imal element. The following proposition is quite natural,
but the author did not find it in the literature.

1l.1. lemma. Every partially ordered set (P,<)> contains
a dense Noetherian subset.

Proof. Let P  be a maximal anti-chain in P (recall that
an anti-chain is a set of matually incomparable elements). If
we have defined F,c P for all 3 < o« , define E; as a maximal
anti-chain in P such that B strictly refines all P, , 8 < -
The cc;nstruction terminates by an ordinal «* for which Py =
=0, Let PX=U{B i < oc*} . If et <fB <x* , XeP , ye
¢ P, , then x4y, otherwise for some z€P, we have Xx<y<s
and we get a contradiction, for P, is an anti-chain. Let Ac
c P* o, = min {cc :ANP, 4 @3 and stnPooo. By the previ-

ous observation x is a maximal element of A, hence P is Noe-
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therian., For recegnizing of P* to be dense it suffices to
prove that for each xe P\P* there exists an element p e P*
such that p<x. Put oy = min{cw :x4 y for each yeB 7 .

Then o, < «* because of B, = @, For each ov < o«  thers

e P

exists x »

o
P_, x must be comparable with some pec P‘,C , then p<x by the
(]

such that x<x_, . In view of maximality of

“o
definition of L
i.2-. Corollary. Every dr-~base of an arbitrary topolo-

gical space contains a Noetherian' Jr-base.

1.3. Lemma, If T is a Jr-base of a regular space X, then
there exists a s -base P* c 7° such that P¥=s U{Py 1< oc*?
and for each « <f3<oc™ the family{efU:Ue %3 strictly re-
fines T .

Proof. We say that two elements U,V € ° are equivalent
if ¢cLU = c £V, Let P’be a set of representatives for this
equivalence relation. Since X is regular, P’ is a sr-base of
X. It remains now to apply the construction of Lemma 1.1 to

$’ , ordered by inclusion.

1.4, Lemma. If a space X contains a dense first category
subset, then for 'every sr=base P of X there exists a ar-base
P* c ® representable by a union of countally many anti«
chains, In particular, if X has a o -base of rank 1, then X
has also a €-~disjoint o -base.

Proof. Let X = ¢4 D, where D =U{ D :ne @} and every
D, is nowhere dense in X. As in Lemma 1.1, we put P* =
= U{ % :t<oc*} with one more condition: ( U® )ND, =@
for all n e @ ., Since {Pn remains maximal relative to the
other conditions, we have as above that P* is a i ~base of
X.
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Obviously &2, = &, hence P*= Ui :newi and every T,

ne «w is an anti-chain,

2. Rank and or-weight

2.1. Theorem. If X is a separable space with a &' -base
{® of rank = > @ , then & (X) £ v .

Proof. Let D be a countable dense subaset of X and let A
be the set of all isolated points of X. If ¢£ A = X, then {{x3:
:xc A} is a countable gsr-base of X, Otherwise let us consider
the set U = X\cf A, It suffices to prove that g (U) £ « . It
is clear that U has no isolated points, hence C = DNU is a
dense first category set in U. Applying Lemma 1.4 to ‘S’U =
= {P ¢ ® :Pc U}, we obtaina wr-base P*= U{P ine o} for
U such that every #,, n € @ is an anti-chain. Clearly
Card P* < w-Card C-u= x .

2.2, Theorem. If X is a regular space with a i -base &

of rank ¢ > @ - and ©+ is a calibre of X, then x(X)£2%.
Proof. let ®P*c P be like in Lemma 1.3. If A c ®* is
an anti-chain, then Card A < © by the definition of rank and
calibre. If ¢ c P* is a chain, then, as it is easily seenm,
the reverse inclusion is a well-ordering on 2 ., Por every Ue
e ¢ denote by U* the successor of U in this well-ordering.
Then F={U\ cl U*:Uc €7 is a disjoint family of non-empty
t;pen sets such that Card ¥ = Card® . Hence, Card 4 < c(X) <
4 o and Card P*< 2% is now a direct consequence of the com-
binatorial statement (2%)*—> (‘e’, t’+)2, which is a particular

case of the Erdde-Rado theorem: (2%)'—s ('y*),i Lal.

2.3. kCgro;;gn. A dyadic space X with a ¥ -base of
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countatiie rank is metrizable.

Proof. Since w(X) = (X) [P] and by Theorem 2.2 x(X)%£
£ 2% , X is a continuous image of the Cantor cube DZO which
ia separable and so is X. By Theorem 2.1 (X) £ <« and hence

X is second-countable,

Remark. As was noted in LGN], Kunen constructed a nonme-

trizable compact space with a Noetherian base of countable rank,

3

3. P’-spaces. Recall that X is a P -space if every non-

empty Gg-set in X has non-empty interior.:

3.1. Definition [BPS]l., An .<icost partition of X is a maxi-

mai disjoint family of open sets. A family of almost partitions
is called a matrix. A matrix €@ is called a refining if it is

well ordered by the refineness relation.

3.2. Lemma. If X is a Baire P’-space, then for any count-
able matrix € in X there exists an almost partition of X which
refines every member of 6 .

Proof. Let 6=1 ¢ wi, G, =U . Then the set
G =N4 G,in e @} is dense in X. For every non-empty open set

U in X one can find Vj such that U’ = UnniV me @+ &, .

n
Setting U = Int U’, we see that a maximal disjoint family of
these U s is obviously an almost partition with the desired

property.

3.3. Thecrem. Every Baire P'-space X with x(X) = <, has
a T -base of rank 1.

Proof. Let {U.: o« <@,% be a o -base of X. In view of
Lemma 3.2, one can define by transfinite induction a refining

matrix @ = { B, : o< ©,} such that for every < @, &
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refines {U, , Int X\U_3 . It is easily secen that P= U{ R .

T < ooll is a o -base of rank 1 for X.

3.4. Theorem: Every compact P’-space X of the weight 0y
has a dense subspace with a base of rank 1.

Proof. Let iU : o« < @i be a base of X. Since X is re-
gular, one can modify the construction above to obtain a re-
fining matrix O = {%; s x< 013 such that for every oc < <y
the family {¢£U:U e fjcti refines all ) with g < « . If
€ = V. o< 013 is a decreasing sequence with V_e F, , then
N§ + g, It x,y e N§ and x+y, then for some < we have x<
¢V, ,y4U_ . But xeV, e B, eand F refines {U,Int (XNU )3
hence ¥, c U

ol
singleton {xfi . As above = VAR, s x< wl} is a a-base of

and y¢V_ - a contradiction. Thus N§¢ is a

X, s0 the set A of all x ‘s is dense in X and therefore {UnA:

:Ue P? is a base of rank 1 for A.

3.5. Corollary (CH). If X is a zero-dimensional locally
compeet Lindeldf space of the weight 2%, then its Sech-Stone
remainder X* = AX\X has a dense subspace with a base of rank
1 (and, & fortiori, X* has a Jr -base of rank 1).

Proof., It is easily seen that there are 2? clopen sets
in X, s0o w(x®) = 2¥= ). Since X* is locally compact and’
realcompact [FG1, X* is a P’-space.

Let N¥* = 3N\N be the lech-Stone remainder of the inte- -
gers. Then N* has a or-base of rank 1 [ BPS), It is quite re-
markable that this fact is proved in ZFC, in view of the fol-
lowing result.

3.6, Theorem. The existence of a dense subspace with &
base of rank 1 in K* is independent of ZFC,

- 174 -



Proof. (a) Martin’s Axiom implies: (A) A non-empty in-
tersectiom of < 2% open sets in N* has a non-empty interior
[B].

Let {U < 2°} be a base of N*, Assume that for some
o0 < 2° we have defined a refining matrix Q = 1Ps: < x}
such that every CF",, consists of clopen sets and refines

{Up,N*\ Upg . If V is a non-empty clopen set in N* , pick Vﬁe
€ By with VynV+¢ for all B <o . Then iﬂu{v@:ﬂ<«,3
is a centered family of clopen sets, hence V' = Vn n{Vﬁ:(s <
<«j+ 8. By (A) o(V) = Int V"% 8. Define %, to be a ma-
ximal disjoint subfemily of {q@ (V): V is clopen in N*3 that
refines {U‘,N*\Uxi . Now the argument of Theorem 3.4 proceeds
a dense subspace with a base of rank 1.

(b) Let DcN* be a dense subspace with a base 3 of
rank 1. Then for any subfamily A < 53 either n/l is open in
D or A is a base of some point xeD (it is a general fact a-
bout bases of rank 1 LAF]l), No point of D has a countable ba-
se, hence for every xeD and a countable A c B, NA is o-
pen in D, that is, all points of D are P-points in D, and so
in N* , since N* is regular. However, the existence of a P-
point in N* is unprovable in ZFC (Shelah).

Question. Does every Baire (or even compact) P’~space
of the gr-weight 2% have a I -base of rank 1 (without .any a-
dditional set-theoretic assumptions; cf. Theorem 3.3) ?

In conclusion, the suthor expresses his deep gratitude
to Professor A.V. Archangel ‘ski for his attentiom to this

work.
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