Commentationes Mathematicae Universitatis Caroline

Pavel Drábek
 Solvability of the superlinear elliptic boundary value problem

Commentationes Mathematicae Universitatis Carolinae, Vol. 22 (1981), No. 1, 27--35

Persistent URL: http://dml.cz/dmlcz/106051

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

SOLVABILITY OF THE SUPERLINEAR ELLIPTIC BOUNDARY VALUE PROBLEM Pavel DRABEK

```
    Abstract: We prove the existence and the multiplicity
of the weak solutions of the boundary value problem
    {的u-\lambdau+g(x,u)}={\begin{array}{rl}{1}&{\mathrm{ in }\Omega,}\\{Bu}&{=0\mathrm{ on }\partial\Omega,}
where }\Omega\mathrm{ is the differential operator, }\lambda>\mp@subsup{\lambda}{1}{}\mathrm{ (the first eigen-
value of }\mathcal{A}\mathrm{ ) and }g\mathrm{ is superlinear.
Key words: Higher order equations, boundary value problems, Galerking approximations, Brouwer degree.
Classification: 35J40
```

1. Assumptions. Let us suppose that Ω is a bounded open subset of \mathbb{R}^{N} with the boundary $a \Omega$. Let $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a function satisfying Carathéodory's conditions and
(1) $g(x, z)$ is bounded for $z \leqslant(-\infty, 0\rangle$ uniformly with i spect to almost all $x \in \Omega$ and $g(x, z)$ is bounded below for $z \in \mathbb{R}$ uniformly with respect to almost all $x \in \Omega$;
(2) $\lim _{x \rightarrow+\infty} \frac{g(x, z)}{z}=+\infty$, uniformly with respect to almost all $\mathbf{x} \in \Omega$.

We shall seek the weak solution of the boundary value problem

$$
\left\{\begin{align*}
A u-\lambda u+g(x, u) & =f \text { in } \Omega \tag{3}\\
B u & =0 \text { on } \partial \Omega
\end{align*}\right.
$$

where B denotes Dirichlet or Neumann boundary conditions and
$\lambda>\lambda_{1}$. We suppose that

$$
A=\sum_{|\alpha|=|\beta|=k}(-1)^{|\alpha|} D^{\alpha}\left(a_{\alpha \beta}(x) D^{\beta}\right)
$$

and

$$
\begin{aligned}
a_{\alpha \beta}=a_{\beta \alpha} \in L^{\infty}(\Omega), \exists \gamma>0: \sum_{|\alpha|=|\beta|=k} \alpha_{\alpha \beta} \xi^{\alpha} \xi^{\beta}>\gamma|\xi|^{2 m}, \\
\forall \xi \in \mathbb{R}^{N}
\end{aligned}
$$

Let $V=W_{0}^{k}, 2(\Omega)$, resp. $V=w^{k}, 2(\Omega)$ if B denotes the Dirichlet, resp. the Neumann boundary conditions. Let us denote

$$
a(u, v)=\int_{\Omega}|\alpha|=|\beta|=k \quad a_{\alpha \beta} D^{\alpha} u D^{\beta} v .
$$

Then \mathcal{A}, jointly with the boundary condition $B u=0$, defines by the position

$$
(A u, v)_{V}=a(u, v)
$$

a linear bounded self-adjoint operator of V in V with infinitely many eigenvalues $0 \leqslant \lambda_{1} \leqslant \lambda_{2} \leqslant \ldots$. Let us suppose that $\varphi \in \mathrm{V}$ is the only eigenfunction corresponding to $\lambda_{1}, \varphi \in$ $\in L^{\infty}(\Omega)$ and $\|\varphi\|_{L^{2}}=1$.

Definition. Let $f \in L^{l}(\Omega)$. We call $u_{0} \in V$ the weak solution of (3) iff
(a) $g\left(x, u_{0}(x)\right) \in L^{l}(\Omega)$,
(b) for all $v \in E$ it is $a\left(u_{0}, v\right)-\lambda\left(u_{0}, v\right)_{L^{2}}+\left(g\left(x, u_{0}\right), v\right)_{L^{2}}=$ $=(\mathcal{P}, \nabla)_{L^{2}}$, where $E=C_{0}^{\infty}(\Omega)$, resp. $E=C^{\infty}(\bar{\Omega})$ if B denotes the Dirichlet, resp. the Neumann boundary conditions.

Adding constants on both sides of the equation, we may assume in future without loss of generality that

$$
\begin{equation*}
g(x, z) \geq 0 \tag{4}
\end{equation*}
$$

for all $z \in \mathbb{R}$ and almost all $x \in \Omega$.

The space $L^{2}(\Omega)$ admits the orthogonal decomposition

$$
\begin{equation*}
L^{2}(\Omega)=N \oplus H, \tag{5}
\end{equation*}
$$

where N is generated by φ. For $u=e \varphi+w, e \in \mathbb{R}, w \in H \cap V$ we set

$$
\|u\|_{V}^{2}=a(w, w)+|e|^{2}
$$

Let $c>0$ be such a constant that for all $u \in V$ it is $\|u\|_{L^{2}} \leq$ $\leq c\|u\|_{v}$.

2. Main result

Theorem 1. Let us suppose (1), (2). Then to each $h \in H$ there exist real numbers $T_{1}(h) \leqslant T_{2}(h)$ and a closed set $M \subset\left\langle T_{1}, T_{2}\right\rangle$ such that $T_{2} \in M$ and the problem (3) has for $f=t \varphi+h$
(i) at least two distinct weak solutions for $t>T_{2}$,
(ii) at least one weak solution for $t \in M$,
(iii) no weak solution for $t<T_{1}$.

Proof. In the proof of Theorem 1 we use the LjapunovSchmidt method, the Galerkin method and the Brower fixed point theorem.

For each $u \in V$ we have according to (5), $u=s \varphi+w, s \in$ $\in \mathbb{R}, \varphi \in V, w \in \mathbb{H} \cap V$. At first we shall seek, for fixed $s \in$ $\in \mathbb{R}$, such a $w_{0} \in H \cap V$ that
(a^{\prime}) $g\left(x, s \varphi(x)+w_{0}(x)\right) \in L^{l}(\Omega)$,
(b^{\prime}) for all $v \in E \cap H$ it is

$$
a\left(w_{0}, v\right)-\lambda\left(w_{0}, v\right)+\left(g\left(x, s \varphi+w_{0}\right), v\right)=(f, v)
$$

Lemma 1. Let
$w=\left\{w \in H \cap V ;\|w\|_{V}=1, a(w, w) \leqslant(\lambda+1)(w, w)\right\}$. Then there exists $\alpha \in(0,1)$ such that $\left\|w^{+}\right\|_{L^{2}} \geq \alpha$, for all $w \in W$ (where w^{+}de-
notes the positive part of w).
Proof of Lemma 1. Let us suppose to the contrary that there exists $\left\{w_{n}\right\}_{n=1}^{\infty} \subset W, \lim _{n \rightarrow \infty}\left\|w_{n}^{+}\right\|_{L^{2}}=0$. Then after possibly passing to the subsequences we can suppose $w_{n} \longrightarrow w_{0} \in H \cap V$ in V and $w_{n} \rightarrow w_{0}$ in $L^{2}(\Omega)$. On the other hand $\left\|w_{n}\right\|_{I^{2}} \geq$ \geq const. >0. Then $w_{0} \neq 0$ and $w_{0} \leqslant 0$ a.e. in Ω. This is a contradiction with the fact $\left(\varphi, w_{\Omega}\right)=0$.

Let us remark that from (1),(2) we obtain the existence of a constant $\beta>0$, such that

$$
\begin{equation*}
g(x, z) \geq \frac{\lambda c^{2}}{\alpha^{2}} z-\beta \tag{6}
\end{equation*}
$$

for all $z \in \mathbb{R}$ and for almost all $x \in \Omega$.
Lemma 2. Let $I \subset \mathbb{R}$ be a bounded interval. Then there exists a constant $r>0$ such that for $w \in V \cap H,\|w\|_{V} \geq r, s \in I$ and $g(x, s \varphi+w) \in L^{l}(\Omega)$ it is $b(w, w)=a(w, w)-\lambda(w, w)+(g(x, s \varphi+w), w)-(f, w)>0$.

Proof of Lemma 2. Let us suppose to the contrary that there exist $\left\{\widetilde{w}_{n}\right\}_{n=1}^{\infty} \subset H \cap V, s_{n} \in I, g\left(x, s_{n} \varphi+\widetilde{w}_{n}\right) \in L^{l}(\Omega)$, $\left\|w_{n}\right\|_{V} \rightarrow+\infty \quad$ and

$$
\begin{equation*}
\mathrm{b}\left(\widetilde{w}_{n}, \widetilde{w}_{n}\right) \leq 0, \tag{7}
\end{equation*}
$$

for all $n \in \mathbb{N}$. Put $w_{n}=\tilde{w}_{n} /\left\|\tilde{w}_{n}\right\| v$. From (7) we obtain
(8) $a\left(w_{n}, w_{n}\right)-\lambda\left(w_{n}, w_{n}\right)+\frac{1}{\left\|\tilde{w}_{n}\right\| v}\left(g\left(x, s_{n} \varphi+\widetilde{w}_{n}\right), w_{n}\right) \leqslant \frac{\|n\|_{L^{2}}}{\left\|\tilde{w}_{n}\right\|_{V}} c$.

Because of (1), $\varphi \in L^{\infty}(\Omega)$ and the boundedness of I, there exists a constant $c_{1}>0$ such that
(9) $\left(g\left(x, s_{n} \varphi+\widetilde{w}_{n}\right), w_{n}\right) \geq\left(g\left(x, s_{n} \varphi+\widetilde{w}_{n}\right) w_{n}^{+}\right)-c_{1}$.

From (8) and (9) we obtain that for $w_{n} \notin W$ it is

$$
\begin{aligned}
\frac{1}{\lambda+1} a\left(w_{n}, w_{n}\right)+\frac{1}{\left\|\tilde{w}_{n}\right\|_{v}}\left(g\left(x, s_{n} \varphi+\widetilde{w}_{n}\right), w_{n}^{+}\right) & -\frac{c_{1}}{\left\|\widetilde{w}_{n}\right\|_{v}} \leq \\
& \leq \frac{\|h\|_{L^{2}}}{\left\|\tilde{w}_{n}\right\|_{v}} c
\end{aligned}
$$

Because of $\left\|\tilde{w}_{n}\right\|_{V} \rightarrow+\infty$, the last inequality implies the existence of such $n_{0} \in \mathbb{N}$ that $w_{n} \in W$ for $n \geq n_{0}$. Using (6) and (9) we can write (8) as follows
($\left.8^{\circ}\right) \quad \frac{c\|n\|_{L^{2}}}{\left\|\widetilde{w}_{n}\right\|_{v}} \geq a\left(w_{n}, w_{n}\right)-\lambda\left(w_{n}, w_{n}\right)+\frac{1}{\left\|\widetilde{w}_{n}\right\|_{V}} \int_{\Omega} \frac{\lambda c^{2}}{\alpha^{2}}\left(s_{n} \varphi+\right.$
$\left.+\left\|\tilde{w}_{n}\right\|_{v} w_{n}\right) w_{n}^{+} d x-\frac{1}{\left\|\tilde{w}_{n}\right\|_{v}} \int_{\Omega} \beta w_{n}^{+} d x-\frac{c_{1}}{\left\|\tilde{w}_{n}\right\|_{v}} \geq a\left(w_{n}, w_{n}\right)-$
$-\lambda\left(w_{n}, w_{n}\right)+\lambda c^{2}-\frac{c_{2}}{\left\|\tilde{w}_{n}\right\|_{v}} \geq a\left(w_{n}, w_{n}\right)-\frac{c_{2}}{\left\|\widetilde{w}_{n}\right\|_{v}}$,
where $c_{2}>0$ is some constant independent of $n \in \mathbb{N}$. But (8^{\prime}) is in contradiction with $\left\|w_{n}\right\|_{V}=1$.

Lemma 3. Let $I \subset \mathbb{R}$ be a bounded interval. Then there exists $r>0$ such that for each $s \in I$ there exists $w_{0} \in V \cap H$ satisfying (a°), $\left(b^{\circ}\right)$ and $\left\|w_{0}\right\|_{v} \leq r$.

Proof of Lemma 3, Let $s \in I$ be fixed. We shall construct the solution w_{0} using the Galerkin's approximations. We choose a sequence $\left\{w_{n}\right\}_{n=1}^{\infty} \subset C^{\infty}(\Omega) \cap H$, such that for every $w \in$ $\in C^{\infty}(\Omega) \cap H$ there is a subsequence $\left\{\widetilde{w}_{n}\right\}_{n=1}^{\infty}$ of $\left\{w_{n}\right\}_{n=1}^{\infty}$ which converges to w in the norm of V. A function $u_{n} \in V_{n}=\operatorname{span}\left\{w_{1}\right.$, $\left.w_{2}, \ldots, w_{n}\right\}$ is called a Galerkin solution of $\left(a^{\prime}\right),\left(b^{\prime}\right)$ in V_{n} if (10)

$$
b\left(u_{n}, w\right)=0 \text { for all } w \in V_{n} .
$$

Define $T_{n}: V_{n} \rightarrow V_{n}^{\prime}$ by the relation

$$
\left\langle T_{n} u, \nabla\right\rangle_{V_{n}}=b(u, v) \text { for all } u, v \in V_{n}
$$

$\left(\langle.,.\rangle V_{n}\right.$ denotes the duality between V_{n} and $\left.V_{n}^{\prime}\right)$.
According to Lemma 2 there exists $r>0$ (depending only on $I \subset \mathbb{R}$) such that

$$
\begin{equation*}
\left\langle T_{n} w, w\right\rangle_{V_{n}}>0 \text { for }\|w\|_{v} \geq r \tag{11}
\end{equation*}
$$

The existence of u_{n} follows, now, from (11) and from the Brouwer fixed point theorem (see e.g. [3]). Using the compact imbedding $V \hookrightarrow \hookrightarrow L^{2}(\Omega)$, we obtain the existence of such $w_{0} \in V \cap H$ that after possibly passing to the subsequences $u_{n} \rightarrow w_{0}$ in $V, u_{n} \rightarrow w_{0}$ in $L^{2}(\Omega)$ and $u_{n} \rightarrow w_{0}$ a.e. in Ω. From (10) we obtain

$$
\int_{\Omega}\left|u_{n} g\left(x, s \varphi+u_{n}\right)\right| \leqslant c_{3}\left\|u_{n}\right\|_{V}^{2}+\|n\|_{L} \|_{n} u_{V} \leqslant c_{4}
$$

where c_{3}, c_{4} are constants independent of n. Because of $u_{n} g(x$, $\left.s \varphi+u_{n}\right) \rightarrow w_{0} g\left(x, s \varphi+w_{0}\right)$ a.e. in Ω, the Fatou's lemma implies $w_{0} g\left(x, s \varphi+w_{0}\right) \in L^{l}(\Omega)$. Let $\varepsilon>0$. There exists $\sigma^{\gamma}>0$ such that for each $\Omega^{\prime} \subset \Omega$, meas $\Omega^{\prime}<\mathcal{O}^{\prime}$ it is

$$
\begin{array}{r}
\int_{\Omega^{\prime} \cap\left[u_{m} \leq k\right]}\left|g\left(x, s \varphi+u_{n}\right)\right|<\varepsilon / 2 \text { and } \left.\frac{1}{k} \int_{\Omega^{\prime} \cap\left[u_{r_{2}}>k\right]} \right\rvert\, u_{n} g\left(x, s \varphi+u_{n}\right) k \\
<\varepsilon / 2
\end{array}
$$

Then

$$
\begin{aligned}
\int_{\Omega^{\prime}}\left|g\left(x, s \varphi+u_{n}\right)\right| \epsilon & \int_{\Omega^{\prime} \cap\left[u_{n} \leqslant k\right]}\left|g\left(x, s \varphi+u_{n}\right)\right|+ \\
& +\frac{1}{k} \int_{\Omega^{\prime} \cap\left[u_{n}>k\right]}\left|u_{n} g\left(x, s \varphi+u_{n}\right)\right|<\varepsilon
\end{aligned}
$$

Because of $g\left(x, s \varphi+u_{n}\right) \longrightarrow g\left(x, s \varphi+w_{0}\right)$ a.e. in Ω, the Vitali's theorem implies $g\left(x, s \varphi+w_{0}\right) \in L^{l}(\Omega)$ and $g\left(x, s \varphi+u_{n}\right)$ $\rightarrow g\left(x, s \varphi+w_{0}\right)$ in $L^{l}(\Omega)$. So we have

$$
b\left(w_{0}, u\right)=0 \text { for all } u \in \bigcup_{n=1}^{+\infty} v_{n} .
$$

For $w \in C^{\infty}(\Omega) \cap H$ we select therefore a subsequence $\left\{w_{n}\right\}_{n=1}^{\infty}$,
$w_{n} \in V_{n}, w_{n} \longrightarrow w$ in V and get

$$
b\left(w_{0}, w\right)=\lim _{n \rightarrow+\infty} b\left(w_{0}, w_{n}\right)=0,
$$

which proves Lemma 3.
We shall continue in the proof of Theorem 1. Let us denote
$S=\left\{(s, w) \in \mathbb{R} \times(H \cap V) ; w\right.$ satisfies $\left.\left(a^{\prime}\right),\left(b^{\prime}\right)\right\}$, $S_{n}=\left\{(s, w) \in \mathbb{R} \times\left(H \cap V_{n}\right) ; w\right.$ is a Galerkin solution of $\left.\left(a^{\prime}\right),\left(b^{\prime}\right)\right\}$. Then the weak solutions of (3) are such $u=s \varphi+w$ that $(s, w) \in S$ and

$$
\begin{equation*}
\left(\lambda_{1}-\lambda\right) s+(g(x, s \varphi+w), \varphi)=t \tag{12}
\end{equation*}
$$

Let us define $F: S \cup\left({ }_{m=1}^{\infty} S_{n}\right) \rightarrow \mathbb{R}$ by the relation $F(s, w)=\left(\lambda_{1}-\lambda\right) s+(g(x, s \varphi+w), \varphi)$ for $(s, w) \in S \cup\left(\bigcup_{n=1}^{+\infty} S_{n}\right)$. Using (1), (2) it is possible to prove by the same way as in [4, p.13] that F is a continuous function on $S \cup\left(\bigcup_{n=1}^{\infty} S_{n}\right)$ bounded below on $S \cup\left(\bigcup_{n=1}^{\infty} S_{n}\right)$ and

$$
\begin{equation*}
\lim _{i \rightarrow \pm \infty} F(s, w)=+\infty \tag{13}
\end{equation*}
$$

uniformly with respect to w, such that $(s, w) \in S \cup\left(\bigcup_{m=1}^{\infty} S_{n}\right)$.
Let us denote $T_{2}=\left(0, \sup _{\operatorname{mr}} \operatorname{SU}^{\left(U S_{n}\right)} \underset{(0, w) \text {. According to Lem- }}{ }\right.$ ma 3 it is $T_{2}<+\infty$. Suppose $t>T_{2}$, there exists $s_{0} \in \mathbb{R}$ such that for all $(s, w) \in S \cup\left(\bigcup_{n=1}^{+\infty} S_{n}\right)$ it is $x_{\Delta} \in\left(-\inf _{\infty}^{\infty},-s_{0}\right\rangle \cup\left\langle s_{0},+\infty\right) T(s, w)>t$ (see (13)). Slightly modifying Lemma (1.2) from [1] (see also [4, p. 14]) we obtain for each $n \in \mathbb{N}$ connected subset $\bar{S}_{n} \subset S_{n}$ such that $\left.\operatorname{proj}_{\mathbb{R}} \bar{S}_{n}\right\rangle\left\langle-s_{0}, s_{0}\right\rangle$. Then we obtain the existence of $\left(s_{n}^{I}, w_{n}\right) \in \bar{S}_{n}, \quad\left(s_{n}^{2}, w_{n}\right) \in \bar{S}_{n},-s_{0}<s_{n}^{l}<0<s_{n}^{2}<s_{0},\left\|w_{n}^{i}\right\|_{V}<r$ (where
r depends only on s_{0}) and $F\left(s_{n}^{i}, w_{n}^{i}\right)=t, i=1,2$, for each $n \epsilon$ $\in \mathbb{N}$. After possibly passing to subsequences we can suppose that $s_{n}^{1} \rightarrow s^{1}, s_{n}^{2} \rightarrow s^{2}$ in \mathbb{R} and $w_{n}^{i} \rightarrow w^{i}$ in $V \cap H$. By the same procedure as in the proof of Lemma 3 using the Fatou's lemma and the Vitali's theorem (see also [5, p. 261]) we prove that $u_{1}=s^{1} \varphi+w^{1}, u^{2}=s^{2} \varphi+w^{2}$ are the weak solutions of (3) and $u_{1} \neq u_{2}$ (because of $t>T_{2}$). Let us denote $T_{1}=$ $=\inf _{(s, w) \in S} F(s, w)$. If $t<T_{1}$ then according to the definition of the set S there is no weak solution of (3).

Let $\left\{t_{m}\right\}_{m=1}^{\infty} c\left\langle T_{1}, T_{2}\right\rangle, t_{m} \rightarrow t_{0}$ in \mathbb{R} and the problem (3) with the right hand side $f_{m}=t_{m} \varphi+h$ has at least one weak solution $u_{m}=s_{m} \varphi+w_{m}$. According to (13) and Lemma 2 we can suppose that $s_{m} \rightarrow s_{0}$ in \mathbb{R} and $w_{m} \rightarrow w_{0}$ in VnH. Using the Fatou's lemma and the Vitali's theorem we prove that $u_{0}=s_{0} \varphi+w_{0}$ is the weak solution of (3) with the right hand side $f_{0}=t_{0} \varphi+h$. This proves that the set M is closed. If we take $\left\{t_{m}\right\}_{m=1}^{\infty} c$ $\left.c<T_{2},+\infty\right), t_{m} \rightarrow T_{2}$, we prove analogousily that $T_{2} \in M$ and the proof of Theorem 1 is completed.

Let us suppose that A is an elliptic differential operator of order 2 m with smooth coefficients defined on $\Omega, \partial \Omega$ is supposed to be also of class C^{∞}. Using Theorems (1.4.25) and (1.4.27) from [2] and the bootstrapping procedure (see [2, p. 50-511) we obtain

Theorem 2. Let $f \in C^{0, \infty}(\Omega), g$ satisfies for $N>2 m$ the growth condition

$$
|g(x, s)| \leqslant \text { const. }\left(1+|z|^{\sigma}\right), \text { for } 1<\sigma<\frac{N+2 m}{N-2 m},
$$

for $|z|$ sufficiently large and all $x \in \Omega$. Let g be a Lipschitz continuous function of x and z. Then the weak solutions obtained
in Theorem 1 are in $c^{2 m, \infty}(\Omega)$.
3. Remarks. This paper extends the results obtained in [4] and [5], where the authors consider differential operators of second order, resp. the case $\lambda=\lambda_{1}$.

Our Theorem 1 is an attempt to answer the question concerning the solvability of (3) if λ is an eigenvalue of (4) and $\lambda \neq \lambda_{1}$ (see $[5$, p. 255]).

References
[1] H. AMANN, A. AMBROSETTI, G. MANCINI: Elliptic equations with noninvertible Fredholm linear part and bounded nonlinearities, Math. Z. 158, 179-194(1978).
[2] M.S. BERGER: Nonlinearity and Functional Analysis, Academic Press, New York, 1977.
[3] S. FUČfK: Solvability of Nonlinear Equations and Boundary Value Problems, to appear in D. Riedel Publishing Company, Holland.
[4] P. HESS, B. RUF: On a superlinear elliptic boundary value problem, Math. Z. 164, 9-14(1978).
[5] P.J. McKENNA, J. RAUCH: Strongly nonlinear perturbations of nonnegative boundary value problems with kernel, Journ. of Diff. Equations 28, 253-265(1978).

Katedra matematiky VŠSE
Nejedlého sady 14, 30614 Plzeñ
Ceskoslovensko

