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THE AXIOM OF REFLECTION
A. SOCHOR , P. VOPENKA

Abstract: A new very strong axiom of the alternative
set theory is formulated. This axiom makes possible perfor-
mance of further considerations and constructions. In the
article some of its applications are shown; in particular,
we construct a new type of standard extensions.

Key words: Alternative set theory, endomorphic univer-
se, standard extension, ultrapower, enlargements.

Classification: Primary 02K10, 02K99
Secondary 02H20, O2H13

The alternative set theory can be considered as an in-
tuitive theory similarly as the original Cantor ‘s set theory
was comprehended. In the book [V] the altermtive set theory
is described so that some basic principles are introduced as
axioms from which all statements are derived. This approach
makes it possible to formalize the altermative set theory
and to construct a corresponding formal axiomatic theory (see
[S11). Such a formalization cannot of course describe the al-
ternative set theory in the whole complexity above all, from
the following two reasons.

At first in the alternative set theory intuitively taken
we assume that for every propePty there is a class of all

sets which fulfil this property. Formalizing this assump-
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tion, we have to formalize even the notion of property - this
means that we are forced to restrict properties to properties
which can be expressed in one formal language. Usually, we res-
trict ourselves to the usual language of set theory - to the
language with the predicate e and one sort of variables only
(cf. £S1])). This approach is convenient for the usual set-the-
oretical consideratioms; on the other hand,in this article we
shall show some sort of considerations which cannot be forma-
lized in the language in question. Any formal theory is dep-
rived of course from properties of such kind.

Secondly, it is advantageous to formula te new axioms
which are not provable from the original till yet postulated
axioms. We know that we are able to develop a great deal of
mathematics in the axiomatic system of the alternative set
theory (see [ V)) but the development of mathematics in the al-
ternative set theory is apparently not finished and therefore
it is not possible to guarantee that this axiomatic system is
strong enough. Furthermore, accepting the intuitive approach
to the alternative set theory, it is natural to look for fu;-
ther axioms since it is our real endeavour to discover as many
as possible true assertions independently whether we are able
to prove them as theorems or if we formulate them as new axi--
oms' if they are not provable.

In this paper we are gcing to formulate the axiom of re-
flection which is consistent and independent to the alterna-
tive set theory as it was formulated in [ V] or in [S1] and so
thet this axiom agrees with the alternative set theory intui-
tively taken - in other words, which is intuftively true. This

axiom asserts the existence of systems of classes (called

- 88 -



reflecting systems) which are on one side codable ("small")
and which on the second side have the "same" property as the
system of all classes.

There are ultrafilters on reflecting systems which pos-
sess no countable classes. Using the axiom of reflection we
are able to create ultrapowers using even such ultrafilters.
Even these ultrapowers are isomorphic to the universal class
and hence it is natural to combine both these constructions
and this led us to the notion of ultralimit. In the second
section we investigate properties of this notiom.

In [S-V1) we dealt with a standard extersion defined for
all elements of one reflecting system - the system of all sub-
classes of the endomorphic universe in question. In the third
section of the article we are generalizing the notion of stan-
dard extension also for other reflecting systems., Some proper-
ties of such a generalized motion are similar as in the origi-
nal casejon the other hand,e.g.,it is not clear whether for e-
very reflecting system there is at most one standard extemsion.
Furthermore, we can construct stamlard extensions,which corres-
ponds to "enlargements" investigated in nonstandard methods.
At the end of the paper we are going to show that the genera-
lized notion agrees with the original one on a very large
class (which is even an endomorphic universe).

We use the results and mtions of [Vl and [S-V1].

§ 1. Reflecting systems. We claimed that there are pro=-

perties of classes which cannot be expressed in the usual lan-
guage of set theory, i.e. using the predicate € and one sort

of variables only. We are going to show an example of such a
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property, following the Tarski’s idea of satisfaction.

Let us recall that every formula of the language FLy is
a set, Further if & (Z) is a formula of the language Fly
and if X is an arbitrary class then we use quite freely the
symbol @(X) and we say that the class X fulfils the proper-
ty @ . However, this needs a little explanation. Of course,
if ¢ is a metamathematical (concrete, expressible in the na-
tural non-formalized language) property, then we understand
the meaning of the term ¢ (X) as usual, but we claim that this
term is meaningful for every property ge FLV. In the alter-
rative set theory intuitively taken (c¢f.[V1), we assumed that
for every (even intuitive) property ¥ the class {x, y(x)¢
exists. Hence there is even the class of all formalizations
of metamathematical formulas. Such a class must contain the
class FLy (since the class FN is the smallest transitive pro-
per subclass of N) and therefore in the alternative set theo-
ry intuitively taken we are always justified to give a mean-
ing to the term go(X) for every class X and for every o €
€ FLV. Moreover, every formula of the language FI..V is a for-
malization of a metamathematical formula in this case and we
are going to neglect the difference between this metamathema-
tical formula and its formalization. Some notes about the dif-
ference arising by formal approach can be found in [S1l.

Let Stsf(z,Z) be a property of pairs of a set and class
defined for every formula of the language FLV and every class
X by the equivalence Stsf(€,X) =¢(X). We shall show that
the property Stsf cannot be expressed in the usual language
of set theory. To get a contradiction let us suppose that

is a formula of the language FLV such that for every ge FLV
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and every class X we have /\v(? ,X);s_Stsf(g;,X) = @(X). Put
¥ (z) = 71 y(z,z). Then for every ge FL; we have H (@)=
=7 Stsf(g,p)=5tsf(ng ,9) =19 (¢g). In particular,
F(¥) = 1§ (§) which is a contradiction.

Thus it is meaningful to deal with languages having more
predicates since in such languages we can express more proper-
ties. This leads to the following definition.

Let Pl(Zl,...,Zkl),...,Pm(Zl,...,ka) be predicates. We
define analogically the formulas of the language LU(PI"“’Pm)
as the formulas of the language LC were defined in § 5 ch, II
LV] but with the following complements:

(a) to the paragraph (1) of the definition of the alpha-
bet we give more the requirement that {11,0%,..., {10+m,0>
are (code) the signs Py,...,P, respectively.

(b) In the definition of formulas we add to the rule (1)
that the words Py(1"q,..., Pkl),...,Pm( Fl,...,l“km) are ato-
mic formulas under the assumption that Pi are variables or
constants for the elements of C.

The class of all formulas constructed in the way describ-
ed above is denoted by Ly(Py,...,P ). The language FLy(Py,...
""Pm) is quite analogically defined from the language
IC(Pl""'Pm) as the language FIC is defined from the langua-
ge L..

Let us remind that we are able to transfer the above des-
cribed consideration of the property Stsf quite mechanically
for languages with predicates Pl,...,Pm and hence even in this
case there are properties of classes which cannot be expressed
in the lanzuage in question., Hence the alternative set theory

intuitively taken cannot be formalized fully in any language
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with finitely many predicates. We say that a class 2 is a
reflecting system (of classes) in the language FLC(PI’“‘
eeesPp) (in symbols Refl( #,Py,...,P ) iff the following two
conditions hold:

(a) for every formula @(Z,Z;,...,2;) of the language
FLC(P]_,...,Pm) and every Xj,...,X € 7 we have

(3X) @(X,X),000,X) > (33X € R)@(XXy,...,%)

(b) if {Xn;neFN} € 7 then there is a coding pair
<{K,S> € 72 which codes {X ;n eFN}.

A class 77 satisfying the condition (a) only is called
a simply reflecting system in the language FLC(P]_,...,Pm), in
symbols SRefl(#2,Py,...,P;). R is called a reflecting sys-
tem (simply reflecting system respectively) iff it is a refle-
cting system (simply reflecting system respectively) in the
. language FLV.

Let us emph.asize that we did not express the predicate
Ref1(Z) in the language FLy.

It is evident that if ‘R is a reflecting system in the

language FLy (Py,...,P . ;) and if C,&C,,then 7 is a refle-
1

m+1 1?
cting system in the language FLCZ(Pl,...,Pm), too.

Theorem. If 23 is a simply reflecting system in the
language FLy(Py,...,P ), then C & .

Proof. Let a set xeC be given and let ?(z) be the for-
mula z = x. Then ¢ € FL, and we have obviously (3y) ¢(y).
Therefore we get (3y € ® )g(y) by the defirition of a siu-
ply reflecting system.

If ¢ is a formula of the language FLy(P,-...,Pp) anmd if
R is a system of classes, then ?(n) a he formula
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resulting from ¢ by restriction of all quantifiers binding
class variables to the elements of 7% (quantifiers binding
set variables are let without change).

By induction according to the complexity of the formu-

las we are able to demonstrate the following statement.

Theorem. A system /R 1is a simply reflecting system in
the language FL,(Pq,...,P ) iff for every formula ¢(2y,...
eee3Zy) of the language FLC(Pl,...,Pm) and every Xj,...,X e
¢ R we have

@ (Xpyean, ) = ¢ BV(x, 000,00

In particular, if R is a simply reflecting system,then
for every axiom ¢ of the alternative set theory it is g(n)
and hence A 1is closed under all usual set-theoretical opera~
tions.

In [V] it is proved that the system of all classes (of
extended universe) is not codable. We can interprete this re-
sult that we are not able to sight the system of all classes
as the whole or, in other words, that this system is not fi-
nished (neither potentially finished). In fact,we proved that
this system is not codable by the Cantor’s diagonal method -
this means that assuming that all classes of extended univer-
se are available (are in a 1list), then we can construct a new
class of extended universe which is not in our list.

On the other hand, it is very convenient to suppose that
we are able to make a list of all possible properties of clas-
ses - in other words, to make a list of classes such that for
every property if there is a class fulfilling it, then there

is even a class in our system fulfilling the property in que-
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stion. Such an approach makes it possible for us - from some
aspects - to sight the system of all classes of extended uni-
verse as the whole (as finished). Using our definition of a
reflecting system, such a consideration leads us to the accep-

tance of the following axiom.

Axiom of reflection. For every class X there is a cod-

able reflecting system 92 with X ¢ R .

We can prove that the alternative set theory with the
axiom of reflection is consistemt (relatively to ZF, say). On
the other hand, this axiom is also independent (cf. {S11]).

We have proved that there are properties which cannot be
expressed in the usual language of set theory. Thus it is na-
tural to consider more complex languages. In this case we are

led to accept the following general principle.

Principle of reflection. For any predicates Pyyeee,Py
and every class X there is a codable reflecting system %2 in
the language FLy(Py,...,P;) with X ¢ R .

Assuming the principle of reflection for predicates

Pl,...,Pm,we can demonstrate the following two results.

Theorem. If ¢ is a codable system of classes, then the-
re is a codable reflecting system 72 in the language
FLV(?l,...,Pm) with ¥ ¢ R -

Proof. Let a coding pair {(K,S)» code the system & and
let R be a codable reflecting system in the language
FLy(Py,...,Py) with ¢(K,S> € ® . Then for every x we have

x eé ® and hence even S"£x3 ¢ R .

Theorem. let { g (Z); ¢ € £} be a sequence of for-
mulas of the language FLy(P,...,P;) so that for every «< e SL

~
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the formula (3X) g, (X) holds. Then there is a codable class
Xg,ot € &% such that for every x € {1 we have ¢ (X ).

Proof. Let A Dbe a codable reflecting system in the
language FLy(Py,...,P;) and let a coding pair <L ,S>code .
For every o« &€ L 1let F(cc ) be the smallest ordinal number
such that the formula ¢ (S"4F(cc)3) holds. For every « &
6 L the class of a1l (3 e L2 for which it is q:"(S"{ﬁi )
is non-empty. Hence dom(F) = fl , Therefore it is sufficient
to put X = S"{F(<)} -

In particular, we have proved the following form of the
axiom of choice:

(¥neFN)(3X) ¢(n,X) — (3X)(VneFN)@(n,X"{n3)

under the assumption that 9 is a formula of the language
FLy(Py,eee,Pp)e

§ 2. Ultralimits. Let us remind that every reflecting
system is a ring of classes (cf. § 4 ch. II (V]) and hence
there are ultrafilters on it. In this whole section, let R
and 791 denote a reflecting system and an ultrafilter on %
respectively.

A mapping U with dom(% ) =4G € R ; dom(G) = vig
& rng(UL )e V is called an ultralimit on # aceording to Wl
iff for every Gy,...,G 6 dom(%L) and for every set-formula
?(zl,...,zk) of the language FL we have

QUL (Gy)yeee, UL (O =4xgP(Gy(x),ee0,G ()36 WL o

Theorem. If U{ is an ultralimit on % according te

M, then a mapping 3’ with dom(F) = dom( )& rng(F)eV
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is an ultra}imit of X according to 9 iff there is a si-
milarity H such that dom(H)2 rng(UL) and such that for eve-
ry Gedom(UL ) we have F (G) = H(UL (G)).

Proof. If 4 is an ultralimit on &£ according to 4%,
then for every ye rng( Uf) we define H(y) = ¥ (G) where G
is a function with £ (G) = y. Evidently, if G,,G, e dom(%Z)
and UL (Gl) = UL (Gz),then {x;Gl(x), = Gz(x)} € 3¢ and hen-
ce F(Gy) = F (G,) according to the definition of ultralimit.
Further, if g:(zl,...,zk) is a set-formula of the language FL
and if Gy,...,G edom(Ul) and UL (Gy) = Fyreees UL(GY) =
= yy,then the equivalences g;(H(yl),...,H(yk)) = @ (F(G),...
coey FG)=Axs g (G(x),.00,G (x))3 e B2 = ¢ (UL(Gy),...
cery ULG)) = p(yqy..0,¥,) hold. Thus we have proved that
H is a similarity.

On the other hand, if H is a similarity with dom(H) =
2 rng(U ), then for every set-formula @ (zy,...,2)) of the
language FL and for every Gj,...,G e dom( UL ) we have
Cf(H( U (Gy))yee o, HOUL (G))) = @ (UL(Gy),euny UE(G)) =
= {x; q(Gl(x),...,Gk(x))ke 7L and therefore the composi-
tion of H and U4 is an ultralimit on ® according to 7% .

Let Ky denote the function G such that for every xeV
we have G(x) = y.

. Theorem. Let Q£ be an ultralimit on & according to
W . Put F(y) = /),LZ(Ky) for every yeV. Then F is an endo-
morphism.

Proof. Evidently, the equality dom(F) = V holds. If
) (zl,...,zk) is a set-formula of the language FL,then for

BVery yyse++) ¥ We have @ (Flyy)yeee s Fly)) = ¢ ( w(xyl),...
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ceey W(Kyk))-s{x; g(Kyl(x),...,Kyk(x))g e M =
= @(¥qs+++s¥),0ince the class {x; @ ¥yseees¥i)? is either
0 or V.

Theorem. If £ is an ultralimit on & according to
9% , then rng(UL) is an endomorphic universe.

Proof, We are going to verify the condition (3) 'of the
first theorem of [S-V 1].

(a) Let ¢(z,29,+.+,2)) be a set-formula of the langua-
ge FL and let Gy,...,G be elements of dom(UL) so that the
formula (3y) g (y, UW(Gy),..., U (G)) holds. Thus we have
%3 5) @ (y,G9(x),..4,G.(x))3 € B and thence Ly the axiom
of choice there is a function G with fx;(3y) @ (y,G (x),...
ceesG(x))§ = 4x5¢ (G(x),G6(x),..0,G (x)) &dom(G) = V. The-
refore according to the definition of a reflecting system we
can suppose moreover that G € # . Hence UL (G)e rng(UL)
and we have ¢ (UL (G), UL(Gy),ees, UL(GL)).

(b) Iet { UL(G,); neFN{ be a countable function (which
is a subclass of rng(UL)). Thus for every ne€ FN, the class
b & ={x;Fnc({Go(x),...,Gn(x)}H €W . let Ge 72 be a func-
tion such that for every xe(xn - xn'+1) we have G(x) =
={G,(x),...,G,(x)} and for every x e/N{X jn€FN} the set G(x)
is a function with {G,(x);ne FN32 G(x). Then evidently it is

UL (G) 2 £ UL(G,);ne FNE and Fne( UL(G)).

Theorem. If 7 1is a codable reflecting system,then the-
re is an ultralimit on ® according to ¢ .

Proof. Let a coding pair {K,S) extensionally code R »
If R= SMxeK;FMc(S"{x%) & dom(S"{x3) = Vi,then by the proof

of the last but one theorem of [V1] there is an endomorphism

-97 -



Fl and a set r such that Fi"Rcr and such tha' for every
set-formula ¢(z) of the language FL we have (V¥ x)({(xsR &
% Fin(x)) —> @ (x)) —> @ (r). For every G ¢ % with dom(G) =
= V there is exactly one ¥eK so that G = R"{¥}. Hence put-
ting G = r"-fFl('J"cH, we see that ¥ is a set and moreover from
the trivial fact (Vx€R)(Fin(x) —> (Vy)Fnc(x"{y?)) and from
the above stated property we conclude that gis a function.

Iet M denote the class of all sets of the form
{x; gv(gl(x),. .o ,3k(x))& Xe dom(a'l)&...& x edom(alk) % where
dom(Gy) =...= dom(G) =V, Gy,...,0, € & and where
g:(zl,...,zk) is a set-formula of the language FL for which
the statement §x; @ (Gy(x),...,G.(x))3 ¢ @ holds. Evident-
1y xy,x,6 M—> x;Nn X, € M. For every set-formula @ (2),...,2y)
of the language FL and for every Gl""’Gk € R with
dom(Gy) =...= dom(Gy) = V and for every %1500, % €K with
Gy = R%3&... &G = R¥% } we have 04F "ix; ¢ (G (x),...
ooy O (x))§= FMx; @ ((RE)3) (x) ..., (R"EF3) (x))=
= §x3 Q{((F"R)"{F (1) (x),... (F "R (F)3) (x)) &x €
< dom(F; "R)"{F, (X)§) & ... &x e dom((F"R)"{F (X )% <
24x;¢ ((r™F) (XPDH (x), 000, (r"F (TP (XN& ...&x ¢
e dom(r"iFl(fl)}) xe dom(r"{Fl(ifkn)} = 1x; 9(Gy(x),...
...,ak(x))&xedom(a'l)&...&xedom(akﬂ. We proved just now
that every element of M is nonempty. Thus we can choose an
ultrafilter MZ on the ring of all set-theoretically defin-
able classes so that M ¢ %1i,.

According to § 2 ¢h. V[V] there is an endomorphism Fz
and a set 4 such that F,, %,,d are coherent. If G € R &
g dom(G) = V,then dom(G) € %% and hence dom(3)e M from which
the statement dedm(ﬁ) follows by the definition of cohe-




remntness. For every G ¢ ®& with dom(G) = V we put U(G) =
= Wa). 1f g;(zl,...,zk) is a set-formula of the language FL
and if Gy,...,6pc dom( %UL), then ¢ ( UL(Gy),..., UL(G)) =

= g @ @),... .8 @)= 1x;4 @ (x),...,§ (x)&xcaom@) &
%...&xedom(@)s e My=ix;q (¥ (),.... 8 (xMxe

< d°m(31)& ...&xedom(ak)fe M=4x; (G (x),.00,G (x))} e WL,

We have proved that the mapping @£ is an ultralimit on %@
according to %! .

An ultralimit U¢
tal iff rng(UL) = V.

on # according to 4l is called to-

Combining the results of this section, we obtain the fol-
lowing result.

Theorem. If X is a codable reflecting system,then the-

re is a total ultralimit on R according to %t .

Theorem. let %U{ be a total ultralimit on % according
to M . Put X = $UL(G); Gedom( UL)&{x;G(x)e X5 € WL3.
Then for every normal formula @ (Zgj,eee;2yy2q,00092), for

every Gy,...,G € dom( %) and for every X ,...,X € R we
have

@ CUL(G)) yene,y ULG) Xy eee, X ) = x5 @(6 (x), 000, G (X)),
Xyee X3 6 WM.

Proof. According to the definition of ultralimit it is

sufficient to deal only with the atomic formulas of the form
z2; € Zj, but in this case the statement follows immediately
from the definition of ¥. The induction steps for negatiom
and conjunction are obvious. Let us consider the induction
step of equivalences using the fact that Y{ is a total ul-
tralimit for the first equivalence and the fact that R is
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a reflecting system for the last one:
(3y) gy, UL(G)),uen, UL(G),Xqyeee, X )= (3 Gedom(UL))
QLUL(G) , UL (Gy)yueny UL(G), Ky yeee, X )= (3G edom( UL)Hx;
P(G(x),Gy(X)yeeeyGp(x), Xy 000, X )8 € W =4x;(3y) @y,
Gy (x)y00e,Gp(x),X,.0.,X )3 € nL .

At the end let us note that all results of this section
except the third aml fifth theorem hold for simple reflect-~

ing systems, too.

§ 3. Standard extensions of reflecting systems. Let A

denote an endomorphic universe in the whole of this section.

A system 77 of subclasses of A is called a reflecting
system on A iff the formula ReflA(’R,) holds. Similarly we de-
fine simple reflecting systems and corresponding notions in
more complex languages.

Let us mention that ¢ is a reflecting system iff it
is a reflecting system on V. Moreover, let us note that if F
is an endomorphism with rng(F) = A,then the following condi-
tions are equivalent (this follows trivially from the second
theorem of § 1 ch, VIVI):

(a) R is a reflecting system on A

(b) there is a reflecting system ¥ such that & =
S4FGX e

(c¢) 4 F-l",X;X ¢ B3 is a reflecting system .

Up to the end of this section we shall suppose that A%V
and that %% is a reflecting system on A. Let us realize that
Ae?R and that (VX e B )XcA.

An operation Ex defined for all elements of &R 1is cal-

led a standard extension of K iff for arbitrary n.  ial for-
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mula ¢ (Zy,...,%,) of the language FI, and for arbitrary
Xiyeee X € R we have

AKX = @ (Bx(Xy), e e, BX(X)) .

Repeating the proof of the first theorem of § 2 [ S-V 17,
we get the following result.

Theorem. An operation E%X defined for all elements:of %2
is a standard extension of & iff for arbitrary normal for-
mula @ (2y,e00,2y,29,00.,%;) of the language FL, and for ar-
bitrary Xy,...,X; € ® we have

Ex(4< xl,...,xk)eA;q:A(xl,...,xk,Xl,...,Xugi) =

=4 ey X 25 @ Xy eee, Xy Bx(X)), e e Bx(X )3 -

Iet us fix a standard extension Ex of X up to the end
of this section. Using the definition of standard extension
of R and the previous theorem,we see again that all formu-
las of the 1list on pp. 617 and 618 of [ S-V 1] hold. Moreover,
repeating considerations of the second proof of the section

in question, we obtain the following statement.

Theorem. If ¢(z,24,...,Z ) is a normal formula of the
language FLA and if Xl""’xk € % , then the equivalence

(3x) @ (x,Ex(X)),.0,Bx(Z)) = (I xch) @lx,Ex(X)),...,Ex(X))
holds.
Theorem. Ex(FN)<FN.
Proof. Let 2 be the equivalence defined in § 1 ch. V
[V]and et F be an endomorphism with rng(¥) = A. Then
%F-l"X;X e Rt is a reflecting system and hence there is a

class B € R so that F—l"B is a selector of this equivalence.

Further, using the statement (V x)(IycA)xLy and the fact
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that F is an endomorphism,we get that even B is a selector
of the investigated equivalence. Furthermore (V¥ x,y e

€ Ex(B)) (x$y — (3¢ € Ex(FI))(71 ¢ (x) = ¢ (y))). To obtain
a contradiction,let us suppose that Ex(FN) = FN. In this ca-
se we have Ex(FL) = FL,since the class FL is defined by a nor-
mal formula from the class FN., Therefore Ex(B)2B is a selec~
tor of the equivalence £ , too. Thus we have proved B =

= Ex(B). On the other hand, there is a one-one mapping G of A
onto B and the statement B#¥Ex(B) is a consequence of the for-

mula Ex(dom(G)) = Ex(A) = V£A = dom(G).

Theorem., The class Ex(X) is fully revealed for every
Xe®R .

Proof. It is sufficient to prove that Ex(X) is reveal-
ed according to the first theorem of this sectiom and accord-
ing to the assumptionm that 7R is a reflecting system. Let us
assume that Ex(X) is not revealed for a class X € @ . Then
there is a countable class Y& Ex(X) such that (Vu)(Ysu —
—> qucEx(X)). By the prolongation axiom there is a set f
so that £"FN = Y. Using our assumption we can conclude that
(Vec ¢ FN)(33 £ o )£((3 )4 Ex(X). On the other hand,
(VneFN)f"n SEx(X) ard thence we obtain the statement
(Voo )(f"c € Ex(X) —> £(c ) € Ex(X)). Moreover, by the last
theorem Ex(FN)# FN and therefore we get (3¢ € Ex(FF))f(y )¢
¢ Ex(X). Thus we have proved the formula (3f£)(( Ve )(f"< &
€ Ex(X) —> (o) € Ex(X)) & (3 y € Ex(FN))£(y )4 Ex(X)). By the
definition of standard extension of ®# we get (3 £)((Ve )
(frec & X —>f(ec) e X) & (I y € FN)L(p ) ¢ X) which is a contra-

diction.
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Theorem. If X € #2,then X = Ex(X) iff X is finite.

Proof. If X is finite,then X is a set which is an ele-
ment of A. Hence the equality X = Ex(X) is obvious in this
case. On the other hand, if X is an infinite class,then there
is a one-one mapping fe A such that £"FN £ X. Thus Ex(£"FN) =
= f"Ex(FN) £ Ex(X). If we would have Ex(X) = X,then the formu-
la £"Ex(FN)c A would hold and therefore we would obtain .
Ex(FN)c A which contradicts Ex(FN)n A = FN4Ex(FN).

Repeating the proof ot the fourth theorem before the

last one of § 2 [S-V 1] we get the following statement.

Theorem. If u$A,then u is a finite set.

Theorem. For every X € ® we have Ex(P(X)) £ P(Ex(X)).

Proof. Using the last theorem and the definition of
standard extension of &, we obtain Ex(P(X)) = Ex(fu;(Vx)(xe
eu—>xeX))) = Ex(fueld;(Vx)(xeu —> x€X)§)sEx(fue Aj(V xe
el)(xeu—>xeX)§) ={u;(¥Vx)(xeu—> xe Ex(X)¢ = P(Ex(X)).

We are going to use the following lemma in the proof of
the next theorem, however, let us realize that it is meaning-
ful itself since there are classes (eg. £ ) with (Vu)(unX=
< FN) and thence there are elements of 42 fulfilling the con-

dition of the lemma in question.

lemma. If X e ® and if the formula (YueA)Xnu<fFN
holds, then Ex(P(X)) = P(Ex(X)).

Proof. According to the proof of the last theorem it is
sufficient to show that under our condition it is {ueAi;
(Vx)(xeu-—>xeX)i=4duel,(Vxed)xeu— xeX)i, i.e.
(Yuet)(unAeX—>ueX). If unAecX,then unAcunX and hen-

ce the class unA is at most countable. Using the eighth theorem
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of § 4 ch. I[ V] relativised to the endomorphic universe A ,
we conclude that u is finite. Thus uc A and therefore the re-
quired implication is trivial.

The next theorem will be later used for construction of

particular standard extensions.

Theorem. The following conditions are equivalent:

(a) (I v)(Acve Ex(P(A)))

(b) (IXe R I(Iv)(NFNLX&XeveEx(P(X)))

(¢) (VXe R )3v)(XeveEx(P(X)))

(d) (VXe R )(3v)(XeveP(Ex(X))). -

Proof. The implication (a) —> (b) is obvious because the-
re is no countable endomorphic universe, the statement (c) —>
—>> (d) is a trivial consequence of the last theorem. The im~
plication (¢) —> (a) is evident and moreover the result (d) —
—> (b) follows from the last lemma and from the fact that
there is an uncountalle X ¢ ® with (YueA)(XnufFN).

Therefore it remains to prove the implication (b)—> (c)
only. If XS A is a countable class,then our claim obviously
follows from the fact that XSf"e« € Ex(P(X)) for every <« €
€ Ex(FN) - FN and every fe A with f"FN = X. Thence we can sup-
pose that there are Y, u with YecueEx(P(X)) & 7 (¥YLXFN)&Yec ®
and that there is G € 92 which is a one-one mapping of Y onto
X. There are only finite subsets of Y by the last but one theo-
rem and therefore for every x € P(Y), the class G"x is a set
which is an element of P(X). According to the definition of
standard extension of ®# , the class v = Ex(G)"u is a set
which is an element of Ex(P(X)), furthermore we have X =

= Ex(G)"Y €Ex(G)"u and herce we have proved X¢cve Ex(P(X)).
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*
For every d we put Ag [d] = {(Ex(G))(d);Ge R & d e

e Ex(dom(G))3.

In [S-V 1) we investigated classes of the form ALd] whe-
re d € U A, If there is a countable class Xc A with de Ex(X),
then Al4] = Ap ldl since for every G e ® with de Ex(dom(G))
we have (Ex(G))(d) = (Ex(GPX))(d) and moreover there is gc A
such that g P X = GMX, In the mentioned paper we further dealt
with the standard extension of the reflecting system contain-
ing all subclasses of A. In that case we showed that V =
= U4{Ex(X);Xc A% Count (X)? and therefore, introducing classes
of the form AEx[dJ,we should have got nothing new in that ca-
se.

Let F be an endomorphism with rng(F) = A. If we put 'ﬁ1=
={F"X;X e R} and @y = {F1"X;X ¢ B & deEx(X)},then

Rl is a reflecting system and ml is an ultrafilter on ?El.
If G ¢ ®, and dom(G) =-V,then F"G € ®# and dom(F"G) = A
and thence d € dom(Ex(F"G)). Thus it is meaningful to define
UL (G) = (Ex(F"G))(d) for all such G. The mapping %£ is an
ultralimit on %, according to %%, because for Gy,...,G €
e R, with dom(Gy) =...= dom(Gy) = V and every set-formula
@ (Z1y..+,Z,) of the language FL we have
(UL (Gy)yenn, UL(G)) = @ ((Bx(G"Gy))(d),...,(Ex(F"G))(d))=
s deix; @ ((Ex(F"Gy))(x),..., (Ex(F"G)) (x)} =
=deEx({xed; @ ((F'Gy) (x),...,(F"G) (x))}) =
=d e Ex(F'{x; @ (Gy(x),...,6.(x)}) =
1F'1"F"-fx-, (G (x),...,G.(x))} e Py =1x; @ (G (x),...
cee,Ge(x))} € B,
Theorem. For every 4 the class A,Ex[d] is an endomorph-

ic universe.

- 105 -



Proof. We have Ap (4] = {(Ex(@))(d);G e R & 4 €
e Ex(dom(G))}= { (Ex(G)(d);G € & &% dom(G) = A% = { (Ex(F"G))d);
G e Rl& dom(G) = V& = rng( UL ). Hence it suffices to use

the third theorem of the last section.

Theorem. If Ap [c] = Ap [d],then there is a one-one map-
ping G € & such that (Ex(G))(d) = ec.

Proof. There are H and ¥ which are elements of % and
such that (Ex(H))(d) = ¢ and (Ex(H))(c) = 4. Evidently d ¢
I3 Ex(-fx;ﬁ(H(x)) = x}) and we put G = Hr{x;ﬁ'(H(x)) = x} and
we get G(d) = c. We have to prove that G is a one-one-mapping.
Let x,y € dom(G) and x4 y. If we would have G(x) = G(y),then
the statement H(x) = H(y) would hold and hence we would obtain
Fax) = '}Y(H(y)). Further from the assumptiom x,ye< dom(G) we
would get x = y which is a contradiction.

We say that a set 4 is generic (w.r.t. Ex) iff AEx[dJ= v.

If c¢,d are generic,then there is a one-one mapping G e (A%
so that G(d) = c.

For every.deV - A the class {X e ® ; deEx(X)§ is an
ultrafilter on ® . .

We say that d realizes an ultrafilter 9% on ® iff de
e Ex(X)=X e M for every X e ® . An ultrafilter is reali-
zed if there is a set which realizes it.

Let us mention that an ultrafilter 9% on R is realized
iff N LEx(X)3X € MLy +0.

Theorem. lLet %! be an ultrafilter on a reflecting sys-
tem & . Then there is an endomorphism F such that there is a
standard extension Ex on F"Y¥ ard moreover there is a set 4

which is generic and realizes F" 9T .
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Proof. Let UL be a total ultralimit of & according
to % . Put F(x) = % (K,) for every set x, A = rng(%L) and
Ex(F"X) = X for every X € ¥ . Then F is an endomorphism by
the second theorem of the last section. Furthermore, using the
last theorem of that section and the second theorem of § 1 ch.
V [V],we can prove that the equivalence gaA(F(xl),...,F(xk),
X peees F'X0) = @ (Xpyeeey Xy, Xy ee e, X)) =1%5 0 (39,0007,
XppeesX )i e M =g (W(I&l),..., -’LLZ(ka),Yl,...,Ym) =
= @ (F(xy),e00,Flx ), Ex(F"X)), ..., Ex(F"X))) holds for every
Xjseee Xy € ¥ and every normal formula g:(zl,...,zk,zl,...
...,Zm) of the language FL. Hence we have proved that Ex is a
standard extension of F"&.

Let d = U{ (Id) where Id is the identity. It is 4 ¢
e Ex(F'X)=deX={x;xeX} € M =X ¢ M for every X e & .
We proved just now that d realizes F"2! and therefore it re-
mains only to show that d is generic. If y is given,then the-
re is G € ¥ with dom(G) = V & UL(G) = y because UL is a
total ultralimit, We have {x3;G(x) = G(Id(x))}{ = Ve % and
hence by the last theorem of the second section we get
UL(GY = G( UL(IA)),therefore at the end we obtain y =
= (Ex(F"G))(d). Thus 4 is generic and we are done.

We have of course proved a little stronger result. let
us formulate it explicitly.

Let 4 be an ultrafilter on a reflecting system & and
let UL be a total ultralimit of & according to #¢ . Put
F(x) = U (Kx) for every set x. Then F is an endomorphism and
the operation Ex defined by Ex(F"X) = X is a standard exten-

sion of F*¢ . Furthermore, £ (Id) is a generic set such
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that (VX e ¢ ) L (1Id)e Ex(FrX),

Theorem. For every reflecting system & there is an en-
domorphism F such that there is a standard extension Ex of
Y with

(VXe & )3 uF'XcucEx(F'X),

Proof. By the last theorem of the first part of this
section we have to construct an endomorphism F such that the-
re is a standard extension of F"$¥ with 4 v;Ac veEx(P(A))T 4
% O where A = rng(F). Let us realize that 4v;ASveEx(P(A))i=
= N{{u;xcuecEx(P(A))3;x Al = N{Ex({fue AjxeucA)y;xe A3,

let 27 be an ultrafilter on ¥ such that for every fi-
nite u, the class §vjucv&Fin(v)} is an element of ¢ (such
an ultrafilter exists since for every finite u,,u, we have
iviu € v&Fin(v)i n iviu,e vE&Fin(v)32 {vi(uyuuy)ev &

% Fin(v)%4#0). Let F be an endomorphism such that there is a

standard extension Ex of F*& and such that F*#/ is reali-
zed. Let us put rng(F) = A. Then N4 Ex(fueA;xeu<sAP;xe al2
2N {Ex(lueh;xeuc AL Fin(w)Pxec A¥D M 4 Ex(F"X) ;X c Wi+
4+0. This finishes the proof.*

We define AX = U { Ex(X);X€ AR Count (X)3.

Let us realize that this definition has sense since for
every countable X€A we have X € A and hence Ex(X) is defi-

ned.

Theoren. AEx is a revealed endomorphic universe.

Proof. If{x ;ne¢FN}c AExX ,then there is a sequence
{X,3ne FN} so that for every neFN we have x & Ex(xn)& X s
€ A% Count(X,). Put X = U { X ;neFN{, Evidently X is a coun-
table subclass of A and further for every ne FN it is x, €
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[ lht(Xn)EEx(X)e AFX, We have proved that AEx is revealed
since Ex(X) is revealed.

Let y(z,zl,...,zk) be a set-formula of the 1anguage FL
and let Xpseeey Xy € AEx be given. lLet us choose a countable
class XS A so that {Xj,...,X >€Ex(X) and at the end let us
suppose that the formula (3y) ¢ (y,%;,...,%) holds. Put Y =
=4yqseees ¥y P€X; (Ay€h) @(y,¥yye00,¥ )8 Evidently, ‘
(xl,...,xk) € Ex(Y) by the definition of standard extension
of A . Further we can choose a countable class Z& A such that
(Vyl,...,yk)(_fl 2€Z) (K yyseee,y? € Y @ (2,57500053y)) e
Therefore we have
(Vy1seeesyy (A2 €Ex(Z)) (K yqyeee,yy > €Ex(Y) — @ (2,77900-
...,yk)).

Substituting the constants xy,...,%,  instead of the vari-
ables y,,...,y, respectively,we obtain (32€Ex(Z))g:(z,xl,...
..eyX) and thus even (3Jze AEx)cf(z,xl,...,xk). Thence to fi-~
nish the proof it suffices to use a theorem of § 1 [S-V 11,

Theorem. If Am#v then Sms(AEx), i.e. ABX

is a semiset.
Proof. Let F be an endomorphism with rng(F) = A. There
is a one-one mapping of A onto F"X. , moreover,there is a ce
eV - A™ and hence there is de Ex(F* Q) - U4 Ex(X);XeF" Q&
&L Count(X)§ S Ex(F' Q) ) - ULEx((F'QX )net);ce F*O. ¢ . Thus
for every o e F'L we have (F'X2 )n o £ d and hence F'Q = 4.
If we deal with the operation P(z) defined in § 1 ch. II [VJ,
then from the statememt V = U {P(e); oc € L% we can conclu-
de that A = U{P(«),c e F".0} € P(d). We proved just now
Sms(A). For every countable XS A there is ueA with Xcu and

hence Ex(X)eu & U A. Thus ABx e U A and therefore the sta-
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tement Sms (AEx) is a trivial consequence of the formula

Sms(A).

Theorem. If X is a countable subclass of A,then Ex(X)n
na® =Ny unAEx;ue A&Xcsul.

Proof. If XSueA,then XnuSA and moreover, unde R,
since both X and u are elements of ® . Hence Ex(X)n AFx ¢
€ Ex(uni)n ABx - unAEx. To prove the converse implication
let us assume that ye AEX, i.e. that there is a countable class
Y<c A such that ye Ex(Y) and that ye N\ { un AEx;ue A& Xcus.
There are u;,u,€A so that yynu, = 0% Xcu & (Y - x)<_=,u2.
Evidently we have y€ u,. Since y4¢u,, the formula Yé¢Ex(Y - X)
follows from the first part of the proof. However, this imp-
lies y e Ex(X).

let us consider the operation F(X) = Ex(X)n ABX gefihed
for every X ¢ R . Since AR - Uy Ex(Y);Yc A& Count(Y)§,we
have % (X) = U{ Ex(X) nEx(Y);Yc A& Count (¥)§= U { Ex(XnY);
Ye A% Count(¥)}= U € Ex(Y)n APX;Y € X & Count (Y)3= U { 7 (¥),Yc
€ X% Count(¥)}.

AEx is an endomorphic universe and hence we are ahle to

apply the results of [ S-V 1] considering AEx

as the universal
class, In this case there is a standard extension of the ref-
lecting system on A consisting of all subclasses of A (cf. the
mentioned article) and the operation 3°(X) agrees with this

standard extension.
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