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COMMENTATIONES MATHEMATICAF LJNIVERSITATIS CAROLINAE 

22.1 (1981) 

OHE AXIOM OF REFLECTION 

A. SOCHOR , P. VOPĚNKA 

Abstract: A new very strong axiom of the alternative 
set theory is formulated. This axiom makes possible perfor­
mance of further considerations and constructions. In the 
article some of its applications are shownj in particular, 
we construct a new type of standard extensions. 

Key words: Alternative set theory, endomorphic univer­
se, standard extension, ultrapower, enlargements. 

Classification: Primary 02K10, 02K99 

Secondary 02H20, 02H13 

The alternative set theory can be considered as an in­

tuitive theory similarly as the original Cantor's set theory 

was comprehended. In the book tvl the alternative set theory 

is described so that some basic principles are introduced as 

axioms from which all statements are derived. This approach 

makes it possible to formalize the alternative set theory 

and to construct a corresponding formal axiomatic theory (see 

[SI 3). Such a formalization cannot of course describe the al­

ternative set theory in the whole compilexity above all, from 

the following two reasons. 

At first in the alternative set theory intuitively taken 

we assume that for every property there is a class of all 

sets which fulfil this property. Formalizing this assump-
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tion, we have to formalize even the notion of property - this 

means that we are forced to restrict properties to propertie3 

which can be expreased in one formal language. Usually, we res­

trict ourselves to the usual language of set theory - to the 

language with the predicate 6 and one sort of variables only 

(cf. CSlj). This approach is convenient for the usual set-the­

oretical considerationa^on the other hand,in this article we 

shall show some sort of consideration which cannot be forma­

lized in the language in question. Any formal theory is dep­

rived of course from properties of such kind. 

Secondly, it is advantageous to formulate new axioms 

which are not provable from the original till yet postulated 

axioms. We know that we are able to develop a great deal of 

mathematics in the axiomatic system of the alternative set 

theory (see C VJ) but the development of mathematics in the al­

ternative set theory is apparently not finished and therefore 

it is not po39ible to guarantee that thia axiomatic syatem is^ 

9trong enough. Furthermore, accepting the intuitive approach 

to the alternative set theory, it is natural to look for fur­

ther axioms since it is our real endeavour to discover as many 

as possible true assertions independently whether we are able 

to prove them as theorems or if we formulate them as new axi­

oms if they are not provable. 

In this paper we are going to formulate the axiom of re­

flection which is consistent and independent to the alterna­

tive set theory as it was formulated in tVI or in CSI] and so 

that this axiom agrees with the alternative set theory intui­

tively taken - in other words, which is intuitively true. This 

axiom assert3 the existence of systems of clas3e3 (called 
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reflecting systems) which are on one side codable ("small") 

and which on the aecond side have the "same" property as the 

system of all clas3es. 

There are ultrafilters on reflecting sy3tems which pos­

sess no countable classes. Using the axiom of reflection we 

are able to create ultrapowers u3ing even such ultrafilters. 

Even these ultrapowers are isomorphic to the universal class 

and hence it is natural to combine both these constructions 

and this led us to the notion of ultralimit. In the second 

section we investigate properties of this notion. 

In IS-Vl} we dealt with a standard extension defined for 

all elements of one reflecting sy3tem - the system of all sub­

classes of the endomorphic universe in question. In the third 

section of the article we are generalizing the notion of stan­

dard extension also for other reflecting systems. Some proper­

ties of such a generalized notion are similar as in the origi­

nal case$on the other h a n d . , e . g M it is not clear whether for e-

very reflecting system there is at most one standard extension. 

Furthermore, we can construct standard ext ens ions, which corres­

ponds to "enlargements" investigated in nonstandard methods. 

At the end of the paper we are going to show that the genera­

lized notion agrees with the original one on a very large 

class (which is even an endomorphic universe). 

We use the results and notions of [VJ and [S-Vl]. 

§ 1. Reflecting systems. We claimed that there are pro­

perties of classes which cannot be expressed in the usual lan­

guage of set theory, i.e. using the predicate 6 and one sort 

of variables only. We are going to show an example of such a 
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property, following the Tarski s idea of satisfaction. 

Let us recall that every formula of the language FL^ is 

a set. Further if <?(Z) is a formula of the language FLy 

and if X is an arbitrary class then we use quite freely the 

symbol $>(X) and we say that the class X fulfils the proper­

ty «j> . However, thi3 needs a little explanation. Of course, 

if <j> is a metamathematical (concrete, expressible in the na­

tural non-formalized language) property> then we understand 

the meaning of the term cp(X) as usual, but we claim that this 

term is meaningful for every property g> e FLy. In the alter­

native set theory intuitively taken (cf.CVl), we assumed that 

for every (even intuitive) property y t n e class -fx, y (xH 

exists. Hence there is even the class of all formalizations 

of metamathematical formulas. Such a class must contain the 

class FLy (since the class FN is the smallest transitive pro­

per subclass of N) and therefore in the alternative set theo­

ry intuitively taken we are always justified to give a mean­

ing to the term gp(X) for every class X and for every op e 

e FL-... Moreover, every formula of the language FLy is a for­

malization of a metamathematical formula in this case and we 

are going to neglect the difference between this metamathema­

tical formula and its formalization. Some notes about the dif­

ference arising by formal approach can be found in CSll. 

Let Stsf(z,Z) be a property of pairs of a set and class 

defined for every formula of the language FL». and every class 

X by the equivalence Stsf ( *f,X) scf(X). We shall show that 

the property Stsf cannot be expressed in the usual language 

of set theory. To get a contradiction let us suppose that ijr 

is a formula of the language Fly such that for every a> € FL., 
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and every class X we have y (<j> ,X)g_Stsf ( y ,X) aft y(X). Put 

Y (z) s i Y ^z »z) • '-1her- for every g? e FLy we have y ( g> ) s 

s~i Stsf ( y, y )2t Stsf (-1 cp,G))s"i9>(g>).In particular, 

ijr(tjr) s -l ijr(ijr) which is a contradiction. 

Thus it is meaningful to deal with languages having more 

predicates since in such languages we can express more proper­

ties. This leads to the following definition. 

Let P-CZ-, »***»zk )>***»Pm^Zl»#*#>Zk * b e Pre^icate8* w® 
1 m 

define analogically the formulas of the language LQ(P,,...,P ) 

as the formulas of the language Lc were defined in § 5 ch. II 

[V] but with the following complements: 

(a) to the paragraph (1) of the definition of the alpha­

bet we give more the requirement that <11,0> ,•••, <10+m,0> 

are (code) the signs P , f . . . , . ,P respectively. 

(b) In the definition of formulas we add to the rule (1) 

that the words P-̂ ( P-̂ ,..., Pfc ),... ,P ( T
1-. ,..., P k ) are ato-

1 m 

mic formulas under the assumption that V^ are variables or 

constants for the elements of C. 

The class of all formulas constructed in the way describ­

ed above is denoted by .^(P-^,... ,Pm). The language FÎ (P-̂ ,..» 

...,P ) is quite analogically defined from the language 

LC(P-.,... ,P ) as the language F.L, is defined from the langua­

ge Lc. 

Let us remind that we are able to transfer the above des­

cribed consideration of the property Stsf quite mechanically 

for languages with predicates P̂ t •••>-?« and hence even in this 

case there are properties of classes which cannot be expressed 

in the language in question. Hence the alternative set theory 

intuitively taken cannot be formalized fully in any language 
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with finitely many predicates. We say that a class Tfi is a 

reflecting system (of classes) in the language FLC(P-,... 

...,Pm) (in symbols RefK Hf^i • • • >pm>
 i f f the following two 

conditions hold: 

(a) for every formula y(Z,Z, ,... ,Z, ) of the language 

FLC^P1»,## »Pm^ an(i every xx»«*«>xic 6 ^ we have 

(3x)9(x,x1,...,x]c)^(3x e 'H)9(x,x1,...,xk) 

(b) if {X^jneFN I s ^ then there is a coding pair 

<K,S> & 71 which codes {X^neFNj. 

A class fl satisfying the condition (a) only is called 

a simply reflecting system in the language FL^P^,...,Pm), in 

symbols SRefK 2?,Pi> • • • »Pm) • 71 is called a reflecting sys­

tem (simply reflecting system respectively) iff it is a refle­

cting system (simply reflecting system respectively) in the 

. language FLy. 

Let us emphasize that we did not express the predicate 

Refl(Z) in the language FLy. 

It is evident that if Hi is a reflecting system in the 

language FLC (P-^... >
p
m+1) ana

 if CgSC-^then ^ is a refle­

cting system in the language FLC (P-. ,... ,P ), too. 

Theorem. If 71/ is a simply reflecting system in the 

language FLC(P1,... ,Pm), then C Q. 71 • 

Proof. Let a set x^C be given and let y(z) be the for­

mula z = x. Then <p e FLC and we have obviously (3y) 9>(y). 

Therefore we get (3y 6 71 )<2>(y) by the definition of a sim­

ply reflecting system. 

If j is a formula of the language FI^(P.1. ,.. ,Pm) and if 
(24-) Jl is a system of classes, then <^Kryi $ he formula 
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resulting from <y by restriction of all quantifiers binding 

class variablea to the elements of % (quantifiers binding 

set variables are let without c h a n g e ) . 

By induction according to the complexity of the formu­

las we are able to demonstrate the following statement. 

Theorem. A system ^ is a simply reflecting system in 

the language FL^P-p... ,Pm) iff for every formula ^(Z^,... 

...jZ-^) of the language FLC(P-1,... ,Pm) and every X1,...,Xjce 

£ #t we have 

<p ( X-. , • . • , Xi_) f=r Cjp ( X-j , • • • , X>£ ) • 

In particular, if 7fl is a simply reflecting system,then 

( 02,) 
for every axiom 5? of the alternative set theory it is CJ> 

and hence 2R/ is closed under all usual set-theoretical opera­

tions. 

In CV3 it is proved that the system of all classes (of 

extended universe) is not codable. We can interprete this re­

sult that we are not able to sight the system of all classes 

as the whole or, in other words, that this system is not fi­

nished (neither potentially finished). In fact,we proved that 

this system is not codable by the Cantor's diagonal method -

this means that assuming that all classes of extended univer­

se are available (are in a list), then we can construct a new 

class of extended universe which is not in our list. 

On the other hand, it is very convenient to suppose that 

we are able to make a list of all possible properties of clas­

ses - in other words, to make a list of classes such that for 

every property if there is a class fulfilling it, then there 

is even a class in our system fulfilling the property in que-
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stion. Such an approach makes it possible for us - from some 

aspects - to sight the system of all classes of extended uni­

verse as the whole (as finished). Using our definition of a 

reflecting system, such a consideration leads us to the accep­

tance of the following axiom. 

Axiom of reflection. For every class X there is a cod-

able reflecting system 7i with X e 7R/ • 

We can prove that the alternative set theory with the 

axiom of reflection is consistent (relatively to ZF, say). On 

the other hand, this axiom is also independent (cf. [SI]). 

We have proved that there are properties which cannot be 

expressed in the usual language of set theory. Thus it is na­

tural to consider more complex languages. In this case we are 

led to accept the following general principle. 

Principle of reflection. For any predicates pi>•••>pm 

and every class X there is a codable reflecting system *H in 

the language FLyCP-p... ,Pm) with X e 2£ • 

Assuming the principle of reflection for predicates 

P1,...,Pm5we can demonstrate the following two results. 

Theorem. If tf is a codable system of classes,then the­

re is a codable reflecting system 7i in the language 

FIv(P1,...,Pm) with <J & 7* . 

Proof. Let a coding pair <K,S> code the system if and 

let 1ft/ be a codable reflecting system in the language 

FLY(P1,...,Pm) with <K,S> €• 3& . Then for every x we have 

x e #& and hence even SH lx\ & fl . 

Theorem. Let -( g^ (Z); oc e ilj be a sequence of for­

mulas of the language FLy-CP-̂ ,... ,Pm) so that for every cc s SL 
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the formula ( J X ) ^ (X) holds . Then there i s a codable c l a s s 

4X^,00 e SL% such that for every oc e Jl we have ^ ( X ^ c ) * 

Proof. Let 7L be a codable re f l ec t ing system in the 

language FLytP^,. . . ,Pm) and l e t a coding pair < H ,S > code #£ . 

For every oc e SI l e t F(oc ) be the smallest ord inal number 

such that the formula CfaiS" iF(cc)}) ho ld s . For every <sC * 

e XI the clas3 of a l l ft * SX for which i t i s g? c {$*i ( l i ) 

i9 non-empty. Hence dom(F) = Si . Therefore i t i s s u f f i c i e n t 

to put X^* S"-CF(ac)i . 

In part icular , we have proved the following form of the 

axiom of choice: 

( V n e F N ) ( 3 X ) <j>(n,X) - * ( 3X) ( Vn CFN) <f (n,X« in}) 

under the assumption that y i s a formula of the language 

§ 2* u l t r a l i m i t s . Let us remind that every r e f l e c t i n g 

system i s a ring of c las ses (cf . § 4 ch . I I LVj) and hence 

there are u l t r a f l I t e r s on i t . In th i s whole s e c t i o n , l e t 71 

and OPtl denote a re f l ec t ing system and an u l t r a f i l t e r on % 

r e s p e c t i v e l y . 

A mapping Q/JL with dom(#£ ) * -CG & 71 ; doa(G) • • j *. 

fc mgiWi ) £ V i s ca l l ed an u l tra l imi t on 7L ac a or d ing t o # t 

i f f for every G-,, . . . f\& dom(<2# ) and for every set-formula 

0>>(z2> • • • >zic' °-f* * n e language FL we have 

<j(W ( G 1 ) , . . . , VI ( 0 k ) ) s i x 5 9 ( G 1 ( x ) , . . . , G k c U ) J * Wt . 

Theorem. It QUI i s an u l t ra l imi t on 71 according t« 

Til j then a mapping $* with dom (^) * dom( Oil )& r n g ( $ ) £ V 
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i s an u l t r a l i m i t of 7i according t o 7^1 i f f t he r e i s a s i ­

m i l a r i t y H such t h a t dom(H)^ rng( OJJL ) and such t h a t for eve­

r y G e d o m ( ^ ) we have V (G) = U(<Ul (G)). 

Proof. I f G* i s an u l t r a l i m i t on %L according to #?t j 

then fo r every y«s rng( QM ) we define H(y) = 7? (G) where G 

i s a funct ion with ^ (G) = y . Evident ly , i f G-^Gg 6 dom(#g ) 

and <21jt (G^) = QU (G 2) , then f xjG-^x). = G 2 ( x ) J g M and hen­

ce ^ ( G 1 ) = tf (G2) according to the d e f i n i t i o n of u l t r a l i m i t . 

Fur ther , i f ^(z-^* * • • i z
k ) i s a set-formula of the language FL 

and i f G-^ . . . ,Gk a dom( *£ ) and <2(£ (G-,)' = y ^ . . . , 1iH\) = 

-= y k > t hen the equivalences y ( H ( y 1 ) , . . . ,H(y k ) ) s q> ("cT ( G - , ) , . . . 

. . . , .T(Gk))six- 9 ( G 1 ( x ) , . . . , G k ( x ) ) $ e ^ s g> (<Ztf ( 0 - ^ , . . . 

. . . , %£(Gk)) s y ^ i i ••• >vk) ho ld . Thus we have proved t h a t 

H i s a s i m i l a r i t y . 

On the other hand, i f H i s a s i m i l a r i t y with dom(H) a 

.5 r n g ( t e ), then for every set-formula <j> ( z l f . . . , z k ) of the 

language FL and for every G-, , . . . ,G ke dom( V£ ) we have 

<y(H( ^ ( G 1 ) , ) , . . . , H ( ^ ( G k ) ) ) s y ( «tf ( G - ^ , . . . , QU(\)) 2 

^ i x ; <y (G- L (x) , . . . ,Gk(x)) i c $fc and there fore the composi­

t i o n of H and <WL i s an u l t r a l i m i t on #t according to Wi * 

Let K denote the funct ion G such t ha t for every x e V 

we have G(x) = y . 

. Theorem. Let <Ul be an u l t r a l i m i t on % according to 

3% . Put F(y) = Oil (K ) for every y c V . Then F i s an endo-

morphism. 

Proof. Evident ly , the equa l i ty dom(F) - V h o l d s . I f 

g> ( z 1 , . . . , z k ) i s a set-formula of the language FL,then fo r 

every y l f . . . , y k we have 9 ( F ( y 1 ) , . . . ,F (y k ) ) -^ q> ( <Ul (Ky ) , . . . 
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. . . , Oil (K ) ) s ( x i » ( K ( x ) , . . • ,KV (x)) I e Tfo s 

s ^ > ( y ^ , . . . ,y k )>s ince the c l a s s -?x; c p ^ , . . . , y k ) } i s e i t h e r 

0 or V. 

Theorem. If V£ is an ultralimit on 0& according to 

KK j then rng(<2t£) is an endomorphic universe. 

Proof. We are going to verify the condition (3) of the 

first theorem of [S-V 1]. 

(a) Let <y (ZJZ-Ĵ , ... ,zk) be a set-formula of the languar-

ge FL and let %,...,Gk be elements of dom( Wi ) so that the 

formula ( 2 y) y Cy, M (G.,) ,..., W (Gk)) holds. Thus we have 

-,x;G y)<y(y,G1(x),...,G]£(x))3 6 ̂  and thence ty the axiom 

of choice there is a function G with { x;(3 y) cp (y,G-, (x),.. • 

...,Gk(x))i =4x;<y (G(x),G1(x),...,Gk(x))}&dom(G) = V. The­

refore according to the definition of a reflecting system we 

can suppose moreover that G e 71 . Hence <2(£ (G)erng(^) 

and we have <y ( QJU (G), ̂ ( G ^ ,.. *., %£(Gk)). 

(b) Let -l/.U€(Gn); n e M l be a countable function (which 

is a subclass of rng(1£fc)). Thus for every neFN, the class 

Xn =- {x;Fnc(^G0(x),...,Gn(x)l)J € 7TC . Let G e 71 be a func­

tion such that for every x c (-K-. - -C+T ) w e have G(x) = 

= -CG0(x) ,...,Gn(x){ and for every x e fUX n ;n eFNJ the set G(x) 

is a function with 4Gn(x) ;ne FN}£ G(x). Then evidently it is 

VJL (G) 2 *U&(Gn);n6FN? and FncCWl(G)). 

Theorem. If %l is a codable reflecting system,then the­

re is an ultralimit on % according to 7/1/ • 

Proof. Let a coding pair <K,S) extensionally code 71 » 

If R s SrHx*K;Fnc(SM*x?)& dom(S"{x3) = VJ,then by the proof 

of the last but one theorem of tVl there is an endomorphism 
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F-.̂  and a se t r such that F1"RSr and such tha' for every 

set-formula gp(z) of the language FL we have ( V x ) ( ( x s R & 

&Fin(x)) —> q (x)) —•• cp(r). For every G & #& with dom(G) = 

= V there i s exactly one x'eK so that G = R"-£xi. Hence put­

t ing Q' = r"«(F1(x)i, we see that # i s a s e t and moreover from 

the t r i v i a l fact ( V x £ R)(Fin(x) —> (Vy)Fnc(x"-£yD) and from 

the above stated property we conclude that G i s a funct ion. 

Let M denote the c lass of a l l s e t s of the form 

Ax; 9 » ( S L ( x ) , . . . , ^ c ( x ) ) & x6dom(3f1)8*....8cX6dom(^c) i where 

dom(G1) = . . . = dom(C^) = V, G-^ , . . . ,^ & ft, and where 

< j > ( z l f . . . , z k ) i s a set-formula of the language FL for which 

the statement -f x; <y(G1(x), • •• fG<k(x))i e &t ho ld s . Evident­

ly x-^,x2 6 M —> x-, n x 2 € M. For every set-formula 9 (z-^,.. • , z k ) 

of the language FL and for every G 1 , . . . , G k e 1R, with 

dom(G1) = . . . = dom(Gk) = V and for every x ^ M . ^ e K with 

G1 = R ^ x ^ &. . .& . Gk = R"-fxkJ we have 0**i"-fx; 9? (G 1 (x ) , . . . 

. . . , G k ( x ) ) $ = F 1 " 1 x ; 5 > ( ( R " ^ 1 l ) ( x ) , . . . , ( R w ^ k ? ) ( x ) ) | = 

= {x;^(( (F 1 "R)"^F 1 (? 1 )} ) (x) , . . . , ( (F 1 "R)"4F 1 (^ k )J) (x) ) f tx € 

* dom((P1"R)"fF1(x1)n^. .#&x6dom((F1"R)"^F1(xk)?)i c-

c . i x ; ( y ( ( r H F 1 ( x 1 ) ? ) ( x ) , . . . , ( r " - | F 1 ( x k ) i ) ( x ) ) a . . . & x & 

edom(r"^F1(x1) i )&X£dom(r"4F1(xk)?)} = -fx; g>(G 1 (x ) , . . . 

. . . , G k ( x ) ) & X6 dom(G1)€t . . . &. x £dom(^) J. We proved just now 

that every element of M i s nonempty. Thus we can choose an 

u l t r a f i l t e r 90t2 on the ring of a l l s e t - theore t i ca l l y def in­

able c las ses so that M £ ^t2« 

According to § 2 eh. V tVl there i s an endomorphism F2 

and a s e t d such that F2> fl^o^ a r e c o n e r e n ^ » If O 6 ^ & 

&dom(G) = V,then dom(G) e #fc and hence dom(G) 6 M from which 

the statement dedom(G) follows by the de f in i t ion of cohe-
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rentness . For every G c 3& with dom(G) = Vwe put <Ul(Q) -

= # ( d ) . I f Cj>(z l f . . . ,z^) i e a set-formula of the language FL 

and i f G - ^ , . . . ^ * dom( <2£i), then <j ( m i \ ) , . . . , W(\)) s 

9 g> ( G - ^ d ) , . . . ^ ( d ) ) a * <C x; cj ( ^ ( x ) , . . . , < ^ . ( x ) )& x cdonUG-,) 8c 

& . . . & x £ d o m ( 8 k ) $ ^ W 2 = ' t x t ; ^ ( 3 1 ( x ) , . . . , ' 8 ^ ( x ) ) A x 6 

c d o m ^ ) * . . .ScX6dom (G k ) ie M s i x j cp (G-L (x) , . . . , \ ( x ) ) l £ W,. 

We have proved that the mapping QUL i s an u l t ra l imi t on 96 

according to Hft . 

An ul tra l imi t IIZ on 3& according to ^ i s c a l l e d t o ­

t a l i f f mg(<26t) = V. 

Combining the r e s u l t s of th i s s ec t ion , we obtain the f o l ­

lowing r e s u l t . 

Theorem. I f ^ i s a codable r e f l e c t i n g system,then the­

re i s a t o t a l u l tra l imi t on #& according to $fc , 

Theorem. Let WL be a to t a l u l tra l imit on $Z according 

to M . Put X = * ^ ( G ) ; G€dom( <2# ) * . t x ; 0 ( x ) « X J € ^ 5 . 

Then for every normal formula cp ( z l f . . . jZ^jZ-^,... ,Zm) , for 

every G- . , . . . ,G. e dom( Q/Z ) and for every X- , , . . . ,X. e flfc we 

have 

c£ ( W (Q-,) , . . . , m (Gk) t \ , . . . , \ > s £x; <$>(G1(x),... ^ ( x ) , 

X-j , • • • jX-Ji 6- w l • 

Proof. According to the definition of ultralimit it is 

sufficient to deal only with the atomic formulas of the form 

z^€.Z-, but in this case the statement follows immediately 

from the definition of T. The induction steps for negation 

and conjunction are obvious. Let us consider the induction 

step of equivalences using the fact that <Ut is a total ul­

tralimit for the first equivalence and the fact that % is 
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a reflecting system for the last one: 

(3y) 9>(y, <2ie(G1),..., Vll\),\f...t\)=(3 GedomCZie )) 

(jOMMG), W (G-,),..., Wk\) ,\,..., V = ( J G 6dom( ̂ ) Hx; 

cp(G(x),G1(x),...,Gk(x),X1,...,Xm)5 e «4 s *x;(.3y) y(y, 

G1(x),...,Gk(x),X1,...,.X to)J e m . 

At the end let us note that all results of this section 

except the third arrl fifth theorem hold for simple reflect­

ing systems, too. 

§ 3. Standard extensions of reflecting systems. Let A 

denote an endomorphic universe in the whole of this section. 

A system 71 of subclasses of A is called a reflecting 

system on A iff the formu3a Refl {71) holds. Similarly we de­

fine simple reflecting systems and corresponding notions in 

more complex languages. 

Let us mention that ^ is a reflecting system iff it 

is a reflecting system on V. Moreover, let us note that if F 

is an endomorphism with rng(F) = A,then the following condi­

tions are equivalent (this follows trivially from the second 

theorem of § 1 ch. V LVJ): 

(a) 70 is a reflecting system on A 

(b) there is a reflecting system $ such that 71 = 

= -IF"X;X € £PJ 

(c) 4 P"1MXJX C 7l\ is a reflecting system . 

Up to the end of this section we shall suppose that A-#V 

and that ^ is a reflecting system on A. Let us realize that 

ken and that (V X e H )X£A. 

An operation Ex defined for all elements of 70 is cal­

led a standard extension of 71 iff for arbitrary n. .ial for-
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mula <y (Z-j_,... ,Zk) of the language FL^ and for arbitrary 

X-̂ ,..., Xk c 7Z we have 

<y
A(X1,...,Xk) s <$ (Ex(X1),...,Ex(Xk)) . 

Repeating the proof of the f i r s t theorem of § 2 L* S-V 13 , 

we get the following r e s u l t . 

Theorem. An opera t ion Ex defined for a l l elements*of #& 

i s a s tandard extension of 7R/ i f f for a r b i t r a r y normal f o r ­

mula c p ( z 1 , . . . , z k , Z 1 , , . . , Z ) of the language FL. and for a r ­

b i t r a r y X- . , . . . ,X^ 6 2& we have 

Ex(-i< x ^ . . . ^ ) * A;o$> (x-p . . . jX-^X-, , . . . ,\)l) = 

= ^ x - ^ , . . . ,x k >; ^ ( x - j ^ , . . . , x k , E x ( X 1 ) , . . . jExtX^)) I » 

Let us fix a standard extension Ex of H up to the end 

of this section. Using the definition of standard extension 

of #1 and the previous theorem,we see again that all formu­

las of the list on pp. 617 and 618 of [ S-V 1] hold. Moreover, 

repeating considerations of the second proof of the section 

in question, we obtain the following statement. 

Theorem. If <y (z ,Z-.,... ,Zk) is a normal formula of the 

language FL* and if X1,...,Xj6 71 , then the equivalence 

(3 x) < j ( x , E x ( X 1 ) , . . . , E x ( X k ) ) s ( . 3 xcA)c^(x,Ex(X1),...,Ex(Xk)) 

holds. 

Theorem. Ex(FN)4-FN. 

Proof. Let •& be the equivalence defined in § 1 ch. V 

LV3 and 3e t F be an endomorphism with rng(F) = A. Then 

iF "X;X g 71 I is a reflecting system and hence there is a 

class B G 71 so that F~ "B is a selector of this equivalence. 

Further, using the statement (Vx)(3y&A)xIy and the fact 
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that F is an endomorphism,we get that even B is a selector 

of the investigated equivalence. Furthermore (Vx9y e 

C Ex(B))(x+.y-~-> (3 ^ <s Ex(FL))(-i g> (x) s $> (y))). To obtain 

a contradiction,let us suppose that Ex(FN) = FN. In this ca­

se we have Ex(FL) = FL,since the class FL is defined by a nor­

mal formula from the clas9 FN. Therefore Ex(B)£B ia a selec­

tor of the equivalence -£ f too. Thus we have proved B = 

= Ex(B). On the other hand, there is a one-one mapping Q of A 

onto 3 and the statement B^Ex(B) is a consequence of the for­

mula Ex(dom(G)) = Ex(A) = V*k -= dom(G). 

Theorem. The class Ex(X) is fully revealed for every 

x e n, . 
Proof. It is sufficient to prove that Ex(X) is reveal­

ed according to the first theorem of this section and accord­

ing to the assumption that 9fc is a reflecting system. Let us 

assume that Ex(X) is not revealed for a class X c 7t . Then 

there is a countable class I-SEx(X) such that (Vu)(X5u—> 

—^~iu£Ex(X)). By the prolongation axiom there is a set f 

so that f"FN s- Y. Using our assumption we can conclude that 

(V<* 4 FN) (3/5 ^oo )f(/S)£Ex(X). On the other hand, 

(vyn6FN)fwn£Ex(X) and thence we obtain the statement 

( Voo )(f"o6 £Ex(X)~-> f(oo)cEx(X)). Moreover, by the last 

theorem Ex(FN)4-5N and therefore we get (3<y e Ex(W))t(y)$ 

4Ex(X). Thus we have proved the formula (3f)(( VoG )(tmcc c. 

£Ex(X)~-»f(oC)cEx(X))&(3^€. Bx(FK))f(y)4Ex(X)). By the 

definition of standard extension of 2Z we get (3 f)(( Vet ) 

(fffvfiX->f(cC)<£X)fc(3y 6 FN)f(^)4X) which is a contra­

diction. 
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Theorem. If X e fl£,then X = Ex(X) iff X is finite. 

Proof. If X is finite., then X is a set which is an ele­

ment of A. Hence the equality X = Ex(X) is obvious in this 

case. On the other hand, if X is an infinite class,then there 

is a one-one mapping feA such that fMFN5X. Thus Ex(fHFN) = 

= fwEx(FN)cEx(X). If we would have Ex(X) = X,then the formu­

la f"Ex(FN)c A would hold and therefore we would obtain 

Ex(FN)cA which contradicts Ex(FN)nA = FN4=Ex(FN). 

Repeating the proof or the fourth theorem before the 

last one of § 2 LS-V 11 we get the following statement. 

Theorem. If ucA,then u is a finite set. 

Theorem. For every X 6 9i we have Ex(P(X)) c P(Ex(X)). 

Proof. Using the last theorem and the definition of 

standard extension of 71 % we obtain Ex(P(X)) = ExUu; (Vx)(xe 

eu—->xeX)}) = Ex(iueA;(Vx)(xeu-^x€X)§)^Ex(-fueA;CV/ xe 

eAMxeu—>xeX)j) ={u,'(Vx)(xeu-^x£Ex(X){ = P(ExCX)). 

We are going to use the following lemma in the proof of 

the next theorem, however, let us realize that it is meaning­

ful itself since there are classes (eg.il) with (Vu)(unX^ 

:iFN) and thence there are elements of ^Z fulfilling the con­

dition of the lemma in question. 

Lemma. If X e H and if the formula (VueA)Xnu^FN 

holds,then Ex(P(X)) = PCEx(X)). 

Proof. According to the proof of the last theorem it is 

sufficient to show that under our condition it is iueA; 

(Vx)(xeu^xeX)5 = -iueA,(Vxa)(xeu-^ xeX)|, i.e. 

( V ue <-)(un Ac-X—> u£.X). If unA £X,then unA*=unX and hen­

ce the class uoA is at most countable. Using the eighth theorem 
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of § 4 ch. I r. V! relativised to the endomorphic universe A , 

we conclude that u is finite. Thus uc A and therefore the re­

quired implication is trivial. 

The next theorem will be later used for construction of 

particular standard extensions. 

Theorem. The following conditions are equivalent; 

(a) (3v)(AcVeEx(PCA))) 

(b) ( 3 X 6 n )(3v)(-|FN^X&X£veEx(P(X))) 

(c) (VX & n )(3v)(XoveEx(P(X))) 

(d) (VXe n )(3 v)(X£V6P(Ex(X))). 

Proof. The implication (a) —> (b) is obvious because the­

re is no countable endomorphic universe, the statement ( c ) — r 

— > (d) is a trivial consequence of the last theorem. The im­

plication (c)—•• (a) is evident and moreover the result (d) —> 

— . > (b) follows from the last lemma and from the fact that 

there is an uncountable X e 71 with (VueA)(XouiFN). 

Therefore it remains to prove the implication (b)—> (c) 

only. If X£A is a countable class,then our claim obviously 

follows from the fact that XSf"oC e Ex(P(X)) for every oc e 

e Ex(FN) - FN and every f e A with f"FN = X. Thence we can sup­

pose that there are X, u with IS ue Ex(P(X)) & -i(X^ FN) & X e H 

and that there is G e ^ which is a one-one mapping of X onto 

X. There are only finite subsets of X by the 3a st but one theo­

rem and therefore for every xeP(X), the class G"x is a set 

which is an element of P(X). According to the definition of 

standard extension of % , the class v = Ex(G)"u is a set 

which is an element of Ex(P(X)), furthermore we have X = 

= Ex(G)"X£Ex(G)"u and her.ce we have proved X9 v eEx(P(X)). 
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For every d we put A ^ t d l = 4 (Ex(G)) (d)-,G e H Sc d e 

e Ex(dom(G))}. 

In LS-V 13 we i n v e s t i g a t e d c l a s s e s of the form Atd3 whe­

r e d c U A. I f the re i s a countable c l a s s XB A with d e Ex(X) , 

then ACd] = A-g. {.dJ s ince fo r every G e 71 wi th d e Ex(dom(G)) 

we have (Ex(G))(d) = (Ex(G Is X) )(d) and moreover t he r e i s g&A 

such t h a t g I" X = G l̂  X. In the mentioned paper we f u r t h e r d e a l t 

with the s tandard extens ion of the r e f l e c t i n g system c o n t a i n ­

ing a l l subc lasses of A. In t ha t case we showed t h a t V = 

= U-tEx(X) ;X£A& Count (X)l and t h e r e f o r e , in t roduc ing c l a s s e s 

of the form AgldJ jwe should have got nothing new in t h a t c a ­

s e . 

Let F be an endomorphism with rng(F) = A. I f we put fli-s 

s .iF"lwX;X e 7l\ and M^ = i F ^ X j X e n & d eEx(X)$ , then 

#-•-, i s a r e f l e c t i n g system and fft-, i s an u l t r a f i l t e r on #£... 

I f G e 71 x and dom(G) =«-V-then FMG e n and dom(FHG) = A 

and thence d e dom(ExCFMG)). Thus i t i s meaningful t o def ine 

1(JL (G) = (Ex(F"G))(d) for a l l such G. The mapping <Ul i s an 

u l t r a l i m i t on 9i^ according to ^tj_ because for G 1 , . . . , G k e 

e 2^2_ with dom(G-.) = . . . = dom(Gk) = V and every set - formula 

c p ( Z l f . . . ,Z k ) of the language FL we have 

q(Wi ( G - J , . . . , W(\))~ 9 ( (Ex(GMG 1 ) ) (d) , . . . , (Ex(F"(*l k ) ) (d))^ 

=? deix; <y ( ( E x ( F t t G 1 ) ) ( x ) , . . . , (Ex(FMGk)) (x))i -s 

=sdeEx(4xeA; <y ((F-0^) ( x ) , . . . , (F"Gk) (x))}) --» 

*2deEx(F"-ixj <y (G1(x) , . . . , G k ( x ) } ) £ 

3tF""1"FM-C)c; g ( G 1 ( x ) , . . . , G k ( x ) H e a f l^gg**; < y ( G 1 ( x ) , . . . 

* .» ,G k (x ) ) J e aft-p 

Theorem. For every d the c l a s s Ag.^td.1 i s an endomorph-* 

i c un iverae . 
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Proof. We have A-̂ td.1 = 4(Ex(G))(d) ;0 & « & d e 

fe Ex(dom(G))i= -f (Ex(G)(d);G e ft g, dom(G) = A J = -£ (Ex(F"G))(d). 

G e ^1&dom(G) = Vj = rng(^). Hence it suffices to use 

the third theorem of the last section. 

Theorem. If A-^CcJ = A^Cdl^then there is a one-one map­

ping G e 1fl such that (Ex(G))(d) = c. 

Proof. There are H and H which are elements of 9v and 

such that (Ex(H))(d) = c and (Ex(H))(c) = d. Evidently d e 

& Ex(*X|S(H(x)) = x$) and we put G = H r-£x;H(H(x).) - x} and 

we get G(d) = c. We have to prove that G is a one-one-mapping. 

Let x,yedom(G) and x^-y. If we would have G(x) = G(y),then 

the statement H(x) = H(y) would hold and hence we would obtain 

H(H(x)) = H(H(y)). Further from the assumption x,yedom(G) we 

would get x = y which is a contradiction. 

We say that a set d is generic (w.r.t. Ex) iff ̂ --̂ .1.33= v» 

If c,d are generic,then there is a one-one mapping Gc ^ 

so that G(d) = c. 

For everydeV - A the class iX e -*& ; deEx(X)§ is an 

ultrafilter on % • 

We say that d realizes an ultrafilter ^t on ^ iff d e 

e Ex(X)s.X e W for every X e ̂  .An ultrafilter is reali­

zed if there is a set which realizes it. 

Let us mention that an ultrafilter Wtl on ^ is realized 

iff r% £Ex(X)-,X c #15^0. 

Theorem. Let ffifl be an ultrafilter on a reflecting sys­

tem £f . Then there is an endomorphism F such that there is a 

standard extension Ex on FM <f and moreover there is a set d 

which is generic and realizes Fw^t • 
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Proof. Let lit be a total ultralimit of if according 

to $£ . Put F(x) = ^ (Kx) for every set x, A = rng( <Ul) and 

Ex(FwX) = X for every X s <& . Then F is an endomorphism by 

the second theorem of the last section. Furthermore, using the 

last theorem of that section and the second theorem of § 1 ch. 

v [VJjWe can prove that the equivalence g? A(F(x-,),... ̂ (x^.), 

FHX1, •. • t*"
1^) — 9> ̂ xl» * * • t^t^t • * * »^m^ *x"> 9 ^xl> • • • *xk» 

Xlf...,\)i € ^ = 9 ( ^ ( 1 ^ ),..., U£&x ),Xlf...,Im) 3* 

s 9 (F(x1),...,F(xk),Ex(F'
,X1),...,Ex(F

MX1I1)) holdsfor every 

-%»••• >-C & & and every normal formula (̂ (z-,,... ,zk,Z-j,.. • 

...,Zm) of the language FL. Hence we have proved that Ex is a 

standard extension of FW£P. 

Let d = 111 (Id) where Id is the identity. It is d e 

€ Ex(F"X) = de Xs-Cx«,xeX} c ^ s X i ^ for every X e & . 

We proved just now that d realizes F" #3fc and therefore it re­

mains only to show that d is generic. If y is given,then the­

re is G e & with dom(G) = V 8c W(G) = y because <Ul is a 

total ultralimit. We have <x;G(x) = G(Id(x))J = V6^t and 

hence by the last theorem of the second section we get 

<Ul(G^ = G( nU(Id)),therefore at the end we obtain y = 

= (Ex(F"G))(d). Thus d is generic and we are done. 

We have of course proved a little stronger result. Let 

us formulate it explicitly. 

Let W be an ultrafilter on a reflecting system ZP and 

let <IM be a total ultralimit of JP according to 73t . Put 

F(x) = <UJL (K ) for every set x. Then F is an endomorphism and 

the operation Ex defined by Ex(FHX) = lis a standard exten­

sion of F" y . Furthermore , QJUL (Id) is a generic set such 
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that (VX e M ) <fctf(Id)*Ex(F«X). 

Theorem. For every reflecting system & there is an en-

domorphism F such that there is a standard extension Ex of 

Fw 9 with 

( VX e & )(3 u)FMX£u£Ex(F"X). 

Proof. By the las t theorem of the f i r s t part of th is 

section we have to construct an endomorphism F such that the­

re i s a standard extension of FW£P with 4 v;A£ vcEx(P(A))3 4-

4= 0 where A = rng(F). Let us real ize that 4 v;A£ v cEx(P(A))l = 

= n { ( u j x € u e E x ( P ( A ) H ; x 6 A } = O i ExC-Cue A;xe u £A$;xc A^. 

Let ffl be an u l t r a f i l t e r on Sf such that for every f i ­

n i te u, the class 4 v*,u§ v&Fin(v)} is an element of Ufa (such 

an u l t r a f i l t e r exists since for every f in i t e u-, -u^ we have 

- t v ^ S v&Fin(v)5 r\ k v-,u2c v&Fin(v) j2 { v^u-ju u 2 )£ v -k 

Sc F in(v)4^0) . Let F be an endomorphism such that there i s a 

standard extension Ex of Fn $f and such that Fn$fi i s r e a l i ­

zed. Let us put rng(F) = A. Then A«C Exttue Ajxe u SADjxe A?^ 

2 n k ExUu€A;xeuCA&Fin(tt)B;xcAiD C\ i Ex(FMX).|Xc Wl}* 

=$-0. This finishes the proof. 
i v * 

We define A™ = U i Ex(X) ;X£A&CountUH . 

Let us real ize that th i s definition has sense since for 

every countable X£A we have X e ^ J and hence Ex(X) i s def i ­

ned. 
Ex Theorem. A i s a revealed endomorphic universe. 

Proof. I f $ x ^ n c FNjs AEx,then there i s a sequence 

4Xn»,aciWi so that for every ncFN we have xncEx(.Xn)& Xn .£ 

£ AStCount(Xn). Put X a- KJ k j ^ j n e FN?. Evidently X i s a coun­

table subcla9S of A and further for every nc FN i t i s x^ 6 
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6 Ex(Xn)SEx(X)£: A
Ex. We have proved that A1* is revealed 

since Ex(X) is revealed. 

Let ^(ZjZ^,...,zk) be a set-formula of the 1 anguage PL 

and let x-p .. .,xke A
 x be given. Let us choose a countable 

class X£A so that <x1,... ,xk>eEx(X) and at the end let. us 

suppose that the formula (3 y) y> (y^,... ,xk) holds. Put Y = 

= -l<y1,...,y^>eX; (iycA) cpCy^,... ,ykH. Evidently , 

<x1,...,xk> £ Ex(Y) by the definition of standard extension 

of 9£ . Further we can choose a countable class Z£A such that 

(Vy1,...,yk)(-3 zeZ)« y19 •••,?£ c Y—> 9 (z^,... ,yk)). 

Therefore we have 

( V y 1 , . . . , y k ) ( 3 z e E x ( Z ) ) ( < y 1 , . . . , y k > C Ex(Y) —» 9? (z,y1,... 

...,yk)). 

S u b s t i t u t i n g the cons tan t s x - , , . . . , x , i n s t ead of the v a r i ­

ab les yi>»«'-«yk r e spec t ive ly , we obta in ( J z €Ex(Z)) 9 (ZjX-^,... 
Ex 

. . . , x k ) and thus even ( -3z€A ) <f ( Z j X ^ , . . . , 3 ^ ) . Thence to f i ­
n i s h the proof i t su f f ices to use a theorem of § 1 CS-V l l . 

Theorem. I f A 4*V then Sms(A ) , i . e . A i s a semise t . 

Proof. Let F be an endomorphism with rng(F) = A. There 

i s a one-one mapping of A onto F " i l , moreover, t he re i s a c e 

e V - A ^ and hence the re i s d e E x ( F M i l ) - V i Ex(X) ;X£FM.X!& 

9 tCount (X) i sEx(F M i l ) - U-C Ex( (F M i l )n<*);oce F M i l } . Thus 

f o r every 06 e F"J1 we have (FMJ! )n cC £ d and hence F"SX. £ d. 

I f we deal wi th the opera t ion P(z) defined in § 1 ch . I I CVJ , 

then from the statement V = U i F(oc); oc e - £ l ? we can conclu­

de t h a t A = U «C P(o<: ) , oc e F"JXj S P ( d ) , We proved j u s t now 

Sms(A). For every countable X£ k t he re i s u e A with Xc u and 

hence Ex(X)£u S U A . Thus AEx & U A and the re fo re the s t a -
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Ex 
tement Sms(A ) is a trivial consequence of the formula 

Sms(A). 

Theorem. I f X i s a countable subc lass of A,then Ex(X)n 

O A ^ = n i u n A E X } U € A & X c u } . 

Proof. I f X 9 u € A , t h e n X n u S A and moreover, u n A e 3£ , 
Ex 

s ince both X and u are elements of 9£ . Hence Ex(X)r\A Ss 
£ E x ( u r \ A ) n A = u n A • To prove the converse imp l i ca t i on 

Ex l e t us assume tha t y e A , i . e . t h a t there i s a countable c l a s s 

Y£A such t h a t yeEx(Y) and t h a t y e A -C U A A B x j u e A & X S u 5 , 

There a re u ^ u ^ e A so t h a t u ^ U g = O&Xcu-^&CY - X ) c u 2 « 

Evidently we have y e u ^ . Since y^Ugt t n e f o r m u l a y + -S-c(r - X) 

follows from the f i r s t p a r t of the proof. However, t h i s imp­

l i e s y cEx(X) . 
Ex Let us consider the opera t ion £F(X) = Ex(X)nA defined 

for every X * 71 . Since A2* = V I Ex(Y);Y£A&Count(Y) J,we 

have <T(X) = U i Ex(X) nEx(Y);YS A& Count(Y)§ = U i E x i X n Y ) ; 

Y£AfcCount(Y)J= U i Ex(Y)n A & ;T£X&Count(Y)?« U { y ( Y ) , Y c 

5 XLCount(Y)}. 
Ex A i s an endomorphic universe and hence we are ab le to 

l&c apply the r e s u l t s of [S-V 1] consider ing A as the un ive r sa l 

c l a s s . In t h i s case there i s a s tandard extension of the re f ­

l e c t i n g system on A cons i s t ing of a l l subclasses of A (cf. the 

mentioned a r t i c l e ) and the operat ion .3f(X) agrees with t h i s 

standard extens ion. 

R e f e r e n c e s 

[V.3 P. VOPfiNKA: Mathematics in the alternative set theory, 
Teubner-Texte, Leipzig 1979. 

110 



IS 11 A. SOCHOR: Metamathematics of the alternative set 

theory, I, Comment. Math. Univ. Carolinae 

20(1979), 697-722. 

[S-V 1] A. SOCHOR and P. VOPllNKA: Endomorphic universes and 

their standard extensions, Comment. Math. 

Univ. Carolinae 20(1979), 605-629. 

L*S-V 2] A. SOCHOR and P. VOPSNKA: Revealments, Comment. Math. 

Univ. Carolinae 21(1980), 97-118. 

Matematický ústav ČSAV Matematický ústav 

Žitná 25 Universita Karlova 

Praha 1 Sokolovská 83 

Československo 18600 Praha 8 

Československo 

(Oblátům 6.6. 1980) 

- 111 -


		webmaster@dml.cz
	2012-04-28T06:40:51+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




