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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

22,2 (1981) 

CONSTRUCTION OF CARTESIAN CLOSED TOPOLOGICAL HULLS 
Jiří ADÁMEK, George E. STRECKER 

Abstract: H. Herrlich and L.D. Nel proved that any ca-
tegory which has a cartesian closed topological extension, 
preserving finite products, has a smallest such extension, 
called the CCT hull. The present paper is devoted to a direct 
construction of this hull. 

Key words: Topological category, cartesian closed cate
gory, initially complete category, CCT hull, power-closed sink. 

Classification: 18D15, 18D99, 54A99 

§ 0. introduction. There are two essential properties of 

a concrete category for it to be "topologically adequate": 

(a) Initial completeness, i.e., the existence of an ini

tial structure for each structured source. An initially comple

te category has e.g. all limits and colimits constructed on 

the level of sets, and a lot of other convenient properties. 

(b) Cartesian closedness, i.e., the existence of well-

behaved function spaces. 

The category of topological spaces fails in (b); the ca

tegory of compactly generated Hausdorff spaces fails in (a) 

and the category of compact Hausdorff spaces fails in both. 

We are interested in extensions of a concrete category into a 

category with one, or both, of the properties (a) and (b). 

- 235 -



Systematic methods for extending concrete categories to 

initially complete ones have been studied by many authors; 

see, e.g., [AHS-. 2; ^i* H e2 3' HS2> Hu> R^* F o r examP--ef i*1 

LAHS-.1 it is shown that, whenever a category % has any initi

al completion, then it has a smallest one, the so-called Mac-

Neille completion^which.can be described as the category of 

"closed" sinks in % . 

Cartesian closed topological categories have also been 

studied extensively; see, e.g., [AK; An2f B; HN; M; N; Wj. H. 

Herrlich and L.D. Nel proved in [HNJ that whenever a category 

% has any cartesian closed topological (CCT) extension, pre

serving finite products, then it has a smallest one, the so-

called CCT hull of X . The existence of a CCT hull is charac

terized in [AK] by the condition "strictly small-fibred", ex

plained below. 

In the present paoer we introduce the notion of power-

closed sinks, and, analogously to the case of Mac Neille com

pletion, we prove that for any strictly small-fibred category-

its CCT hull is the category of power-closed sinks. 

§ 1. The definition of a CCT hull 

--••l* General assumptions. Throughout the paper, we deal 

with concrete categories (over sets); i.e., pairs (X, II ) con

sisting of a category 3C and a faithful, amnestic functor 

II : % —> Set. (Amnesticity means that any isomorphism f in 

'JC , such that f is the identity map, is itself an identity 

morphism.) V/e use the same symbol for a morphism f:A—:> B in 

% and its underlying maD f: I A I —> I Bl. Finally , we assume 
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that % has at most one void object, i.e., an object A with 

\k\ = 0. 

1.2. A structured map from a set X is a pair (A,a) , whe

re A is an object of 3C and a;X—> 1 Al is a map; we denote it 

by 

X-A-MAl. 

A family (possibly large) of structured maps fi*om X is called 
a structured source on X. Let A be a structured source on X; 

then an object C with ICI = X is the initial lift of the sour

ce A if 

(i) a:C—> A is a morphism for each X - a>l A\ i n A ; 

(ii) given an object C' and a map f;|C'l-—;> X such that 

a , f ;c'—> A is a morphism for each a e A then also f :C '—> C 

is a morphism. 

A concrete category is initially complete if each struc

tured source has an initial lift. 

1.3. Dually, a structured map into a set X is a map a: 

: IA \—> X; we denote it by (A, a) or |A| ~-a> X. A family of , 

structured maps into X is a structured sink on X. The final 

lift of a structured sink A is an object C with 1C1 = X such 

that, given an object C' and a map f:X—:>ICl, then f:C —*-C' 

is a morphism iff each f • a:A—> C', a 6. & , is a morphism. 

Initial completeness is equivalent to each structured sink 

having a final lift. 

1.4. Recall from tHe-,1 that a concrete category % is 

topological if it is 

(i) initially complete; 

( i i ) small-fibred, i . e . , for every set X the collectio 
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of a l l objects A with (A| = X i s a (small) s e t ; 

( i i i ) has constant morphisms, i . e . , every constant map 

f : |A l—* |Bl i s a 3C-morphism f:A~-* B. 

1.5. A concrete category is said to have concrete finite 

products if it is finitely productive and its forgetful func

tor preserves finite products; (equivalently, if the product 

of any finite family of objects A• , iel, is the initial lift 

of the source of projections 

t/ є 
i> I A.I )

T
, where X = .TT

T
 I A. i in Set). 

1 X
 1/61

 1 

Particularly, each topological category has concrete finite 

products. 

1.6. Let A and B be objects of a category % with finite 

concrete products. Their (canonical) power-object 

B
A 

i s an object on the set of a l l morphisms from A to B: 

|B A I = hom (A,B) 

with the following universal property. Given an object D and 

a map f:\Di—> hom (A,B) then 

iff 

f:D—->B
A
 is a 3C-morphism 

f:DxA—>B is a dC-morphism, 

where f is the map defined by: f(d,a) = [f(d)J (a). This noti

on has been introduced by P. Antoine CAn
2
l. 

1.7. A cartesian closed topological ( s h o r t l y CCT) cate

gory is a topological category such that each pair of its ob-
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jects has a power-object. Equivalently, a CCT category is a 

topological category % such that, for each object A, the 

functor 

Ax - ; X~~*% 

has a right adjoint (namely, the functor X »—-> Xr). This equi

valence, and other important properties of CCT categories, are 

i 3 proved in tHen3 . 

1.8. Given a concrete category % , we are interested 

in its finitely productive CCT extensions. (I.e., in CCT cate

gories £& , containing $£ as a full, concrete subcategory , 

closed under finite products.) Note that if CJC has such an ex

tension then it has 

(i) concrete finite products, 

(ii) constant morphisnis. 

This follows from the fact that each CCT category has both. 

(These two conditions are not sufficient.) Even a topological 

category can fail to have such an extension, as proved in [AJQ. 

On the other hand, if $C has a finitely productive CCT 

extension then it has a smallest one, called the CCT hull of 

% . It can be characterized as a finitely productive CCT ex

tension contained in each such extension. Also, it can be cha

racterized internally as follows. 

--•9. Definition [HNj. Let iC be a concrete category with 

finite concrete products and constant morphisms. Its CCT hull 

is a CCT category £& , in which $C is a full, concrete subca-

+) A concrete subcategory of a concrete category £ is a sub
category 3C with an underlying functor arising as a rest
riction of that of £6 . 
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tegory such that 

(i) % is finally dense + ) in X * 

(ii) The power-objects of 3C -objects are initially den

se in + ) « - í g . 

1.10. Remarks, (a) It is easy to check that, since 3C 

is finally dense in £b , all initial lifts in $C are also 

initial lifts in £& . Particularly, since <£ has finite con

crete products, it follows that 3C is closed to finite pro

ducts in <~£ • 

(b) In [HNJ the condition (i) is stated in a seeming

ly stronger ways each ^£-object L is a final lift of an epi-
0/4 

sink (iA.| -—> X) of $C-objeet3, i.e., a sink such that X =-

= Ua- (1A.1 ). Since % has constant morphisms, these two con

ditions are equivalent: enlarging a given sink by arbitrary 

constant structured maps does not change the final lift. 

(c) The least initial completion of % , called the 

Mac Neille completion, is characterized analogously: it is 

an initially complete category ^ in which 3C is a full, con

crete subcategory which is both finally and initially dense. 

See [AH&jJ. 

!*!!• Definition. Let % be a concrete category with 

finite concrete products. Two structured maps |Al — ^ X and 

| 4*\ —-->x are said to be productively equivalent, in symbols 

(A,a) «£ x (A
#,a#), 

if for an arbitrary map 

+ ) A class <€ of objects of a concrete category %£> is initi
ally dense if each S6 -object is the initial lift of a 
source of structured maps into ^-objects. .Dually: final
ly dense. 
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h : X x l B | --> 1 Cl, where BfC c 3C f 

we have j 

h*(axljg« ):Ax B — > C is a 3C-morphism 

iff 

h*»(a#x ligi ) :A'x B — > C is a $-morphism. 

1.12, Definition. A concrete category is said to be 

strictly small-fibred if it has finite concrete products and 

for each set X the productive equivalence ^ ^ is small (i.e., 

it has a$small set of representatives). 

1*13. -theorem [AK]. Let X be a concrete category with 

finite concrete products and with constant morphisms. Then 

% has a CCT hull iff % is strictly small-fibred. 

Remark. "Usual* topological categories (and all of their 

full subcategories) are strictly small-fibred. Ievertheless, 

a topological category is constructed in [AKl which fails to 

be strictly small-fibred. 

§ 2. The category of power-closed sinks 

2.1. Throughout this section, % denotes a fixed con

crete category with finite concrete products and constant 

morphisms. 

Given objects P and Q of % , for each map f :X--thorn (P,Q) 
A 

we define a map fsXxlPl—>IQ! by 
? (x ,p ) = [ f ( x ) l (p) for - -*Xf p e IPI. 

2*2* Convention. Let A = (lA^I —-*->• X ) i g I be a structu

red sink. Denote by Jl the source of all (non-structuredl) 

maps p:X —> hom (P,Q), where P,Q c 30 , such that for each 
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iel 

p • a^A-xP —~>Q is a morphism in $C • 

2*3. Definition. Let A be a structured sink on a set X. 

the power-closure of A is the sink A of all structured maps 

lAl——> X with the following property: for each p;X—> hom(P,Q) 

in A4", 

p * a:AxP—> Q is a morphism in £fc . 

If A - A , we call /I a power-closed sink. 

Note that each structured sink *r2 fulfils A c A ^ A . 

fact that il 

bry the source A 

The fact that il is power-closed means that A is "determined" 

2«4* Example. For each object B of % denote by B° the 

following structured sink on the set X = IBI: 

B° a-ilAJ-^ X|a:A—>B is a morphism in * ? ; 

then B° is power-closed. 

Proof. Let lAl—>X belong to B0; we shall prow that 

a:A—>B is a morphism in % . 

We use the map p:X—>hom (B,B), assigning to each xeX 

the morphism p(x):B —> B, which is constant with the value x. 

Note that pe (B0)^ since for each morphism »QiA —-> B the 

map p * aQ: lA xBl —> IBI is defined by 

pT>Q(t,x) = tp(a0(t))] (x) =- a0(t). 

Thus, 

P^o = * 1 # ( l o x l B ) : V B ^ B ' 

where 5f,:BxB—>B is the first projection. Therefore, p*a : 

:A x B—>B is a morphism in % ; i.e., an element of B°. 

Since ae B° and p e (B°) , by the definition of power-

242 



closure p * a : A x B —> B is a morphism of % .It suffices to 

exhibit a morphism r:A—> AxB such that a = p * a - r. For thi 

choose an arbitrary morphism rQ:A—> B. This is possible sinc< 

if X 4=0 then r can be any constant map; if X = 0 then (Ai = 

= 0 (because we have a map a; lAl—^ X) and, by the standing 

hypothesis of 1.1, it follows that A = B and r = 1„. Now, 

let r:A—> AxB have components 1> and r . Then, for each t £ 

a IAI, 

p C a T (t) = p"^a (t,rQ(t)) = [p . a(t)J (rQ(t)) = a(t). 

Thus, 

a = p * a • r;A—> B 

is a morphism of % , which was to be proved. 

2-5. Remark. Each power-closed sink A on a set X is a 

sieve in the terminology of P. Antoine [An^]; i.e., 

(i) A is closed under composition (in the sense that 

for each \k\ -—> X in A and each morphism f:A'—> A we have 

l A ' I ^ X i n A ) ; 

(ii) Jt contains all constant structured maps into X. 

Proof, (ii) Let 1 AJ ™̂ -> X be constant with a value 

x e X. For each map p:X-~-> horn (P,Q) the map p.a:lAxP| — > 

— ^ IQ1 is defined by 

p^a(t,x) = Lp(a(t))] (x) = Lp(xQ)J (x). 

Thus p • a is the composition of .the second projection Ax P —» 

—> P and the morphism p(xQ);P—* Q. Thus, p* a is a morphism 

in % . 

Since this holds in particular for each p e A , we 

3ee that a €. A = A . 

(i) Let p € A be arbitrary. We know that p * a: Ax: 
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x P — > Q is a morphism and we are to prove that so is 

p- a • f : A ^ P — > Q. 

This i s a consequence of the fac t tha t f x l p : A x P — > A x P i s 

a morphism and the following lemma. 

2 .6 . Lemma. Given objects P and Q and maps 

Y JL> x - ** hom (P,Q) 

• then 

gCf = ^* (f x*l l p | ):XxlPl —> I Ql. 

Proof. 'For a r b i t r a r y y e Y , p e t P l we have 

^ f * ( y , p ) = t g ( f ( y ) ) 3 (p) 

as well as 

g . ( f x l l p | ) ( y , p ) = g ( f ( y ) , p ) =Cg( f (y ) ) J (p ) . 

2.7. Proposition. Let % be a strictly small-fibred ca

tegory. Then for each set X the conglomerate of all power-clo

sed sinks on X is small. 

Proof. Since the equivalence «^x of Definition 1.11 has 

a set of representatives (say, of cardinality oo)f it suffices 

to prove that each power-closed sink A is closed under this 

equivalence, i.e., 

lAl — > X in A implies I A'I — > X is in A whenever 

(A,a) «^x (A',a'). 

Then power-closed sinks can be indexed by sets of representa-

, tivea of *&%§ hence, the number of all power-closed sinks on 

the set X cannot exceed 2 . 

Let A be power-closed and let (A,a) «* x (A',a'). Assu-
Qj CL.' 

ming tha t l A l — y X i s in A t we a r e ' t o show tha t lA'l —> X.v 

i s in ,A . Given p:X—? hom (P,Q) in A , we know tha t 
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p • a:AxP-^ Q is a $C -morphism. By Lemma 2.6, this means that 

p# (axl|p, ):AxP—> Q is a % -morphism. 

Since (A,a) <=^x (A',a
#), we have 

^« (ax l|p, ) = p - a': A 'x P —> Q is a % -morphism. 

Thus, since Jl is power-closed, (A',a') must belong to it. 

2-8» Corollary. For each strictly small-fibred category* 

the conglomerate of all power-closed sinks is legitimate, i.e., 

is isomorphic to a class (in the Bernays-Godel terminology). 

Even if all power-closed sinks form a legitimate conglo

merate, we cannot, strictly speaking, work with the "class of 

all power-closed sinks". (Since a power-closed sinkfwhich is 

itself a proper class, cannot be a member of a class.) Never

theless, we shall disregard this difficulty which is„ evident

ly, only formal: instead of the "class" of power-closed sinks, 

considered below, we would formally work with an arbitrary 

class isomorphic to it. 

2.9. Definition. Let 3C be a strictly small-fibred ca

tegory. Then its category of power-closed sinks is the follow

ing concrete category, denoted by PCS(3C): 

Objects are all power-closed sinks. 

Morphisms from a sink Jl = (A- —----> X)T to a sink .B = 
% i x 

a (B .—--£> X)j are maps f:X—=> Y such that for each i e l there 

e x i s t s j e J with A. = B. and f • â  = b - ; 

the fo rge t fu l functor i s defined by | (Ai --H* X) 1 = X. 
A i B j 

ai\J/ hi\\j/ 
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It is easy to see that PCS(3G) is indeed a correctly de

fined concrete category (up to the tolerance mentioned in 

2.8). 

Identifying 3C-objects B with the power-closed sinks B? 

of 2.4, the category % becomes a full, concrete subcategory 

of PCS (X). Indeed, each 3C-morphism f:B —> C is clearly a 

sink-morphism f:B°—•> C°. Conversely, if f;B°—> C° is a sink-

morphism then 

| B i ~ ^ IBI in B° implies iBl —---?-> Id in C°, 

hence, f:B—y C is a X -morphism. 

2.10. Proposition. Let % be a strictly small-fibred ca

tegory with constant morphisms. Then PCS (&) is a topological 

category. 

Proof, (i) PCS {%) is initially complete. To prove 

this, consider a structured source (X —--> ' ̂ i' ̂ T 

X 

1 V 
ү 

to power-closed sinks Jli, Define a structured sink ? on X 

to consist of precisely those structured maps iCl > X which 

satisfy, for each i€l: 

IC1 ** ' V I± is in A ± . 

A) ^ i s power-closed. Let iDi ^X be a structured map 

in 3T . We are to show that (D,d) e <t . 

d 
- > X 

iai * 
Y^—i^hom (P,W). 
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For each i £ I the structured map I D I ~~-&--!—> Y. is in A** 

(Indeed, let p:Y^—.> hom (P,Q) be an element of A • ; then 

p • *±:* ~^ n o m (Pf^) is easily seen to be an element of *€* * 

Hence, by the hypothesis on d, 

d ; D ^ P — > Q is a #-morphism.) 

Since Ai is a power-closed sink, it follows that a• • d 

belongs to it (for each i e l ) ; in other words, d is an eleme^ 

of <€ . 

B) ^ is the initial lift of the given source. Let 3 ^ e 

a pover-closed sink on a set Z and let f:Z—>X be 

K 
a map such tha t aj, * f: 33 —-£* -A^ i s a sink-morphism for eac^ 

i e l . We are to show tha t then f; 33 —> < i s a sink-morph-

ism. Indeed, given IB)—> Z in 35 we know tha t 

a^ • f • b 
i e l — -> Y i i s in -A± 

for each i e l . This means tha t (3 , f • b) i s in ^ . 

( i i ) PCS ( # ) i s smal l - f ibred; see Proposi t ion 2 .7 . 

l i i i ) PCS (3C) has constant raorphi3ins. This follows im

mediately frora pa r t ( i i ) of Lemma 2 . 5 . 

2 . 1 1 . Proposi t ion. For each s t r i c t l y small-f ibred c a t e 

gory with constant morphisms % , the category PCS K%) i s car

t e s i an c losed. The power-object o2 s i rks A and 33 (with \A\-

= Xj 1̂ 31 s Y) i s the sink 33 of a l l s t ructured maps 

l c l - £ > h o m (A,33) such tha t 
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„ . c • (lnx a) 
|A| -2i> X in Jl implies |CxA| - >Y in <B * 

Proof. A) Hie above sink 20 is power-closed. To pro

ve this, consider an arbitrary structured map 
c —-. 

IC I—-^hom (*/l,(0) in 3 ^ . We shall prove then (C ,c ) is 
A ao 

an element of 3b . Thus, given IA |—--> X in Jl we are to 
verify that the structured map 

| C0x Ao| —l-!
0* I CQi x X -!°> Y 

is in (B . Now, J3 is power-closed; therefore it suffices to 

show that c Q » (lxaQ) e 0$ . Hence, for each p :Y —> hom (PfQ) 

in (J& we shall prove that 

po*^o" d x a o ' ^ ^ ^ x P — > Q is a ^C-morphism, 

thus concluding the proof of A). 

First, we define a map 

p:hom ( Jl, (Ji) —> hom (A QxP fQ) f 

for which we shall verify that it is an element of ( cB^ ) * . 

.Let he hom ( J i , 3 3 ) be any sink-morphism; then \AQ I -—> X in A 

implies * 
h » a_ 

U 0I %> Y is in 33 . 

4, 
Since p e CB , it follows that 

Q is a JC-morphism.-

Put 

p(h) = p * h*a for each he hom (->£fJ3)# 

We prove that p is in (CB^)4', i.e., that given 

iCl-^hom (J l , iB) in $F 

then 
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"p. c:Cx(A 0xrp)—>Q is a ^-morphism. 

Since c is in (& and a is in Ji , we conclude that 

c .(lxa 0):!CxA 0l 

Thus, p e (B implies that 

r o c". (lxa Q):CxA oxP 

and it suffices to show that 

I i s iri ŰЬ 

Q i s a 3£-morphisra 

o " ' " ' " " O ' 

Indeed, for a r b i t r a r y points z e | C l , x e . A o l and te |Pl we 

have 

p . c ( z , x , t ) = [ p ( c ( z ) ) 3 ( x , t ) = [ pQ • c(z) • a Q 3(x , t ) = 

= C(pQ. c ( z ) ) ( a 0 ( x ) ) ] ( t ) 

as well as 

^TTTn^r^( z ,x,t) = [(p0. S • (lxaQ))(z,x)](t) = 
= L(p 0 . g ) ( z , a Q ( x ) ) J ( t ) = t ( p 0 . c ( z ) ) ( a Q ( x ) ) J ( t ) . 

Since p is in (:# ) and c e & we conclude that 

p. c :CxA x P — > Q is a X -morphism. 

This concludes the proof since, as above, p • c = 

B) The category PCS (X) has finite concrete products, 

since it is topological. It remains to be shown that the sinks 
a 

5} have the required universal property. Indeed, let A , Cft 

and if be power-closed sinks with underlying sets X, Y and Z 

respectively; let f:Z—> horn (.A ,35) be an arbitrary map. 

Then 
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f: <tf —> .#> i s a sink-morphism 

i f f for a r b i t r a r y IC J - % Z in ¥ and IA i ~2-> X in A we ha

ve : 

f • c • d c x a ) : ICxAl—> Y i s in <B . 

On the other hand, the product *€ x Jl consists of all 

structured maps 
(c ,a) 

| D | y ZxX 

where ( c , a ) i s the map with components \V\ —?> Z in *£ and 

|D|--L-> x in A . Hence 

f: <€ x Jl—>33 i s a sink-morphism i f f 

for a r b i t r a r y \C\ JL^> z in <€ and \A\ ------> X in Jl we have: 

f • ( e x a ) : iCtxAl—> Y i s in (Q . 

But by Lemma 2 .6 , 

f • ( c x a ) ~ f • C • ( l c x a ) , 

hence the two condit ions on f coincide . 

^•12* Remark. P a r t i c u l a r l y , given objects A and B in 

tr 

Cl J L > hom (A,B) which f u l f i l : 

o A0 

X , the power-sink (B ) cons i s t s of those s t ruc tured maps 

£:CxA--~>B is a ^-moronism. 

A 

We denote this sink by B . 

§ 3. The description of the CCT hull 

3»1« theorem. For each strictly small-fibred category 

% with constant morphisms the CCT hull is the category 

PCS {%) of power-closed sinks. 

Proof. We know that PCS (X ) is a CCT category (2.10 
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and 2.11) which contains X as a full, concrete subcategory 

(2.9). 

(i) % is finally dense in PCS (3C). Indeed, each power-
ai 

closed sink A = (|A,| —±-> X) T is the final lift of itself, 
x a. 

i.e., more precisely, of the sink (|A.| > X ) T . 
(ii) The power-objects of X are initially dense in 

a, 
PCS ( X ) . I*et A- {IAJJ—=> X ) x be a povrer-closed sink with t 

# = (X JXhom CP.,Q-))j. 

We shall prove that then A is the initial lift of the source 

P, P, 
( X _ J L > l Q ^ \ ) J 

P. 
(where the sinks Q.*5 are as described in 2.12). 

J 
First, for each jeJ, 

P6: A — * # 

is a sink-morphism. Indeed, given tAl ~—> X in A then p. € 
J 

c A implies that 

p.* a: Ax P-—-> Q. is a $C -morphism, 
J J J 

in other words that 

p • • a P . 
\k\ —-?—^ horn (P-,Q-) i s an element of Q , J . 

J J J 

Secondly, l e t (B he. a power-closed sink and l e t f : l 3 , - > 
P, 

— y X be a map such that p- • fidi > Q.J are sink-morphisms 
J j 

& -JL+ A 

for all j eJ. '!h are to show that also f: 42 —*- A is a 
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sink-morphism, i.e., that given |B. ? Y in ($ then 

1 B\ f
 * > X is in X . (Then, of course, f. b is an element 

of Jt .) Poi 

phism, thus 

of JL .) For each p. in A we know that p • • f is a sink-aor-

P , 
p.. f. Ь.ІBІ — * hom (PД.QJ) is in Q.

J
. 

This means that 

p • • f • b : B x P . — > Q. i s a X-moronism. 
J J o 

3.2. Corollary. For each category % with finite conc

rete products and constant morphisms the following conditions 

are equivalent: 

(i) % has a finitely productive CCT extension; 

(ii) % has a CCT hull; 

(iii) for ea6h set X the conglomerate of all power-clo

sed sinks on X is small; 

(iv) PCS (#) is a CCT hull of 1C i 

(v) % is strictly small-fibrejd. 

Let us remark that the proof of (v) =£> (ii), presented 

in the current paper, is much simpler than the original proof 

of [AK3, where an extension of % is constructed by a compli

cated transfinite induction. 
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