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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

22,2 (1981) 

CONSTRUCTION OF CARTESIAN CLOSED TOPOLOGICAL HULLS 
Jiří ADÁMEK, George E. STRECKER 

Abstract: H. Herrlich and L.D. Nel proved that any ca-
tegory which has a cartesian closed topological extension, 
preserving finite products, has a smallest such extension, 
called the CCT hull. The present paper is devoted to a direct 
construction of this hull. 

Key words: Topological category, cartesian closed cate­
gory, initially complete category, CCT hull, power-closed sink. 

Classification: 18D15, 18D99, 54A99 

§ 0. introduction. There are two essential properties of 

a concrete category for it to be "topologically adequate": 

(a) Initial completeness, i.e., the existence of an ini­

tial structure for each structured source. An initially comple­

te category has e.g. all limits and colimits constructed on 

the level of sets, and a lot of other convenient properties. 

(b) Cartesian closedness, i.e., the existence of well-

behaved function spaces. 

The category of topological spaces fails in (b); the ca­

tegory of compactly generated Hausdorff spaces fails in (a) 

and the category of compact Hausdorff spaces fails in both. 

We are interested in extensions of a concrete category into a 

category with one, or both, of the properties (a) and (b). 
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Systematic methods for extending concrete categories to 

initially complete ones have been studied by many authors; 

see, e.g., [AHS-. 2; ^i* H e2 3' HS2> Hu> R^* F o r examP--ef i*1 

LAHS-.1 it is shown that, whenever a category % has any initi­

al completion, then it has a smallest one, the so-called Mac-

Neille completion^which.can be described as the category of 

"closed" sinks in % . 

Cartesian closed topological categories have also been 

studied extensively; see, e.g., [AK; An2f B; HN; M; N; Wj. H. 

Herrlich and L.D. Nel proved in [HNJ that whenever a category 

% has any cartesian closed topological (CCT) extension, pre­

serving finite products, then it has a smallest one, the so-

called CCT hull of X . The existence of a CCT hull is charac­

terized in [AK] by the condition "strictly small-fibred", ex­

plained below. 

In the present paoer we introduce the notion of power-

closed sinks, and, analogously to the case of Mac Neille com­

pletion, we prove that for any strictly small-fibred category-

its CCT hull is the category of power-closed sinks. 

§ 1. The definition of a CCT hull 

--••l* General assumptions. Throughout the paper, we deal 

with concrete categories (over sets); i.e., pairs (X, II ) con­

sisting of a category 3C and a faithful, amnestic functor 

II : % —> Set. (Amnesticity means that any isomorphism f in 

'JC , such that f is the identity map, is itself an identity 

morphism.) V/e use the same symbol for a morphism f:A—:> B in 

% and its underlying maD f: I A I —> I Bl. Finally , we assume 
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that % has at most one void object, i.e., an object A with 

\k\ = 0. 

1.2. A structured map from a set X is a pair (A,a) , whe­

re A is an object of 3C and a;X—> 1 Al is a map; we denote it 

by 

X-A-MAl. 

A family (possibly large) of structured maps fi*om X is called 
a structured source on X. Let A be a structured source on X; 

then an object C with ICI = X is the initial lift of the sour­

ce A if 

(i) a:C—> A is a morphism for each X - a>l A\ i n A ; 

(ii) given an object C' and a map f;|C'l-—;> X such that 

a , f ;c'—> A is a morphism for each a e A then also f :C '—> C 

is a morphism. 

A concrete category is initially complete if each struc­

tured source has an initial lift. 

1.3. Dually, a structured map into a set X is a map a: 

: IA \—> X; we denote it by (A, a) or |A| ~-a> X. A family of , 

structured maps into X is a structured sink on X. The final 

lift of a structured sink A is an object C with 1C1 = X such 

that, given an object C' and a map f:X—:>ICl, then f:C —*-C' 

is a morphism iff each f • a:A—> C', a 6. & , is a morphism. 

Initial completeness is equivalent to each structured sink 

having a final lift. 

1.4. Recall from tHe-,1 that a concrete category % is 

topological if it is 

(i) initially complete; 

( i i ) small-fibred, i . e . , for every set X the collectio 
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of a l l objects A with (A| = X i s a (small) s e t ; 

( i i i ) has constant morphisms, i . e . , every constant map 

f : |A l—* |Bl i s a 3C-morphism f:A~-* B. 

1.5. A concrete category is said to have concrete finite 

products if it is finitely productive and its forgetful func­

tor preserves finite products; (equivalently, if the product 

of any finite family of objects A• , iel, is the initial lift 

of the source of projections 

t/ є 
i> I A.I )

T
, where X = .TT

T
 I A. i in Set). 

1 X
 1/61

 1 

Particularly, each topological category has concrete finite 

products. 

1.6. Let A and B be objects of a category % with finite 

concrete products. Their (canonical) power-object 

B
A 

i s an object on the set of a l l morphisms from A to B: 

|B A I = hom (A,B) 

with the following universal property. Given an object D and 

a map f:\Di—> hom (A,B) then 

iff 

f:D—->B
A
 is a 3C-morphism 

f:DxA—>B is a dC-morphism, 

where f is the map defined by: f(d,a) = [f(d)J (a). This noti­

on has been introduced by P. Antoine CAn
2
l. 

1.7. A cartesian closed topological ( s h o r t l y CCT) cate­

gory is a topological category such that each pair of its ob-
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jects has a power-object. Equivalently, a CCT category is a 

topological category % such that, for each object A, the 

functor 

Ax - ; X~~*% 

has a right adjoint (namely, the functor X »—-> Xr). This equi­

valence, and other important properties of CCT categories, are 

i 3 proved in tHen3 . 

1.8. Given a concrete category % , we are interested 

in its finitely productive CCT extensions. (I.e., in CCT cate­

gories £& , containing $£ as a full, concrete subcategory , 

closed under finite products.) Note that if CJC has such an ex­

tension then it has 

(i) concrete finite products, 

(ii) constant morphisnis. 

This follows from the fact that each CCT category has both. 

(These two conditions are not sufficient.) Even a topological 

category can fail to have such an extension, as proved in [AJQ. 

On the other hand, if $C has a finitely productive CCT 

extension then it has a smallest one, called the CCT hull of 

% . It can be characterized as a finitely productive CCT ex­

tension contained in each such extension. Also, it can be cha­

racterized internally as follows. 

--•9. Definition [HNj. Let iC be a concrete category with 

finite concrete products and constant morphisms. Its CCT hull 

is a CCT category £& , in which $C is a full, concrete subca-

+) A concrete subcategory of a concrete category £ is a sub­
category 3C with an underlying functor arising as a rest­
riction of that of £6 . 
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tegory such that 

(i) % is finally dense + ) in X * 

(ii) The power-objects of 3C -objects are initially den­

se in + ) « - í g . 

1.10. Remarks, (a) It is easy to check that, since 3C 

is finally dense in £b , all initial lifts in $C are also 

initial lifts in £& . Particularly, since <£ has finite con­

crete products, it follows that 3C is closed to finite pro­

ducts in <~£ • 

(b) In [HNJ the condition (i) is stated in a seeming­

ly stronger ways each ^£-object L is a final lift of an epi-
0/4 

sink (iA.| -—> X) of $C-objeet3, i.e., a sink such that X =-

= Ua- (1A.1 ). Since % has constant morphisms, these two con­

ditions are equivalent: enlarging a given sink by arbitrary 

constant structured maps does not change the final lift. 

(c) The least initial completion of % , called the 

Mac Neille completion, is characterized analogously: it is 

an initially complete category ^ in which 3C is a full, con­

crete subcategory which is both finally and initially dense. 

See [AH&jJ. 

!*!!• Definition. Let % be a concrete category with 

finite concrete products. Two structured maps |Al — ^ X and 

| 4*\ —-->x are said to be productively equivalent, in symbols 

(A,a) «£ x (A
#,a#), 

if for an arbitrary map 

+ ) A class <€ of objects of a concrete category %£> is initi­
ally dense if each S6 -object is the initial lift of a 
source of structured maps into ^-objects. .Dually: final­
ly dense. 
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h : X x l B | --> 1 Cl, where BfC c 3C f 

we have j 

h*(axljg« ):Ax B — > C is a 3C-morphism 

iff 

h*»(a#x ligi ) :A'x B — > C is a $-morphism. 

1.12, Definition. A concrete category is said to be 

strictly small-fibred if it has finite concrete products and 

for each set X the productive equivalence ^ ^ is small (i.e., 

it has a$small set of representatives). 

1*13. -theorem [AK]. Let X be a concrete category with 

finite concrete products and with constant morphisms. Then 

% has a CCT hull iff % is strictly small-fibred. 

Remark. "Usual* topological categories (and all of their 

full subcategories) are strictly small-fibred. Ievertheless, 

a topological category is constructed in [AKl which fails to 

be strictly small-fibred. 

§ 2. The category of power-closed sinks 

2.1. Throughout this section, % denotes a fixed con­

crete category with finite concrete products and constant 

morphisms. 

Given objects P and Q of % , for each map f :X--thorn (P,Q) 
A 

we define a map fsXxlPl—>IQ! by 
? (x ,p ) = [ f ( x ) l (p) for - -*Xf p e IPI. 

2*2* Convention. Let A = (lA^I —-*->• X ) i g I be a structu­

red sink. Denote by Jl the source of all (non-structuredl) 

maps p:X —> hom (P,Q), where P,Q c 30 , such that for each 
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iel 

p • a^A-xP —~>Q is a morphism in $C • 

2*3. Definition. Let A be a structured sink on a set X. 

the power-closure of A is the sink A of all structured maps 

lAl——> X with the following property: for each p;X—> hom(P,Q) 

in A4", 

p * a:AxP—> Q is a morphism in £fc . 

If A - A , we call /I a power-closed sink. 

Note that each structured sink *r2 fulfils A c A ^ A . 

fact that il 

bry the source A 

The fact that il is power-closed means that A is "determined" 

2«4* Example. For each object B of % denote by B° the 

following structured sink on the set X = IBI: 

B° a-ilAJ-^ X|a:A—>B is a morphism in * ? ; 

then B° is power-closed. 

Proof. Let lAl—>X belong to B0; we shall prow that 

a:A—>B is a morphism in % . 

We use the map p:X—>hom (B,B), assigning to each xeX 

the morphism p(x):B —> B, which is constant with the value x. 

Note that pe (B0)^ since for each morphism »QiA —-> B the 

map p * aQ: lA xBl —> IBI is defined by 

pT>Q(t,x) = tp(a0(t))] (x) =- a0(t). 

Thus, 

P^o = * 1 # ( l o x l B ) : V B ^ B ' 

where 5f,:BxB—>B is the first projection. Therefore, p*a : 

:A x B—>B is a morphism in % ; i.e., an element of B°. 

Since ae B° and p e (B°) , by the definition of power-
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closure p * a : A x B —> B is a morphism of % .It suffices to 

exhibit a morphism r:A—> AxB such that a = p * a - r. For thi 

choose an arbitrary morphism rQ:A—> B. This is possible sinc< 

if X 4=0 then r can be any constant map; if X = 0 then (Ai = 

= 0 (because we have a map a; lAl—^ X) and, by the standing 

hypothesis of 1.1, it follows that A = B and r = 1„. Now, 

let r:A—> AxB have components 1> and r . Then, for each t £ 

a IAI, 

p C a T (t) = p"^a (t,rQ(t)) = [p . a(t)J (rQ(t)) = a(t). 

Thus, 

a = p * a • r;A—> B 

is a morphism of % , which was to be proved. 

2-5. Remark. Each power-closed sink A on a set X is a 

sieve in the terminology of P. Antoine [An^]; i.e., 

(i) A is closed under composition (in the sense that 

for each \k\ -—> X in A and each morphism f:A'—> A we have 

l A ' I ^ X i n A ) ; 

(ii) Jt contains all constant structured maps into X. 

Proof, (ii) Let 1 AJ ™̂ -> X be constant with a value 

x e X. For each map p:X-~-> horn (P,Q) the map p.a:lAxP| — > 

— ^ IQ1 is defined by 

p^a(t,x) = Lp(a(t))] (x) = Lp(xQ)J (x). 

Thus p • a is the composition of .the second projection Ax P —» 

—> P and the morphism p(xQ);P—* Q. Thus, p* a is a morphism 

in % . 

Since this holds in particular for each p e A , we 

3ee that a €. A = A . 

(i) Let p € A be arbitrary. We know that p * a: Ax: 
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x P — > Q is a morphism and we are to prove that so is 

p- a • f : A ^ P — > Q. 

This i s a consequence of the fac t tha t f x l p : A x P — > A x P i s 

a morphism and the following lemma. 

2 .6 . Lemma. Given objects P and Q and maps 

Y JL> x - ** hom (P,Q) 

• then 

gCf = ^* (f x*l l p | ):XxlPl —> I Ql. 

Proof. 'For a r b i t r a r y y e Y , p e t P l we have 

^ f * ( y , p ) = t g ( f ( y ) ) 3 (p) 

as well as 

g . ( f x l l p | ) ( y , p ) = g ( f ( y ) , p ) =Cg( f (y ) ) J (p ) . 

2.7. Proposition. Let % be a strictly small-fibred ca­

tegory. Then for each set X the conglomerate of all power-clo­

sed sinks on X is small. 

Proof. Since the equivalence «^x of Definition 1.11 has 

a set of representatives (say, of cardinality oo)f it suffices 

to prove that each power-closed sink A is closed under this 

equivalence, i.e., 

lAl — > X in A implies I A'I — > X is in A whenever 

(A,a) «^x (A',a'). 

Then power-closed sinks can be indexed by sets of representa-

, tivea of *&%§ hence, the number of all power-closed sinks on 

the set X cannot exceed 2 . 

Let A be power-closed and let (A,a) «* x (A',a'). Assu-
Qj CL.' 

ming tha t l A l — y X i s in A t we a r e ' t o show tha t lA'l —> X.v 

i s in ,A . Given p:X—? hom (P,Q) in A , we know tha t 
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p • a:AxP-^ Q is a $C -morphism. By Lemma 2.6, this means that 

p# (axl|p, ):AxP—> Q is a % -morphism. 

Since (A,a) <=^x (A',a
#), we have 

^« (ax l|p, ) = p - a': A 'x P —> Q is a % -morphism. 

Thus, since Jl is power-closed, (A',a') must belong to it. 

2-8» Corollary. For each strictly small-fibred category* 

the conglomerate of all power-closed sinks is legitimate, i.e., 

is isomorphic to a class (in the Bernays-Godel terminology). 

Even if all power-closed sinks form a legitimate conglo­

merate, we cannot, strictly speaking, work with the "class of 

all power-closed sinks". (Since a power-closed sinkfwhich is 

itself a proper class, cannot be a member of a class.) Never­

theless, we shall disregard this difficulty which is„ evident­

ly, only formal: instead of the "class" of power-closed sinks, 

considered below, we would formally work with an arbitrary 

class isomorphic to it. 

2.9. Definition. Let 3C be a strictly small-fibred ca­

tegory. Then its category of power-closed sinks is the follow­

ing concrete category, denoted by PCS(3C): 

Objects are all power-closed sinks. 

Morphisms from a sink Jl = (A- —----> X)T to a sink .B = 
% i x 

a (B .—--£> X)j are maps f:X—=> Y such that for each i e l there 

e x i s t s j e J with A. = B. and f • â  = b - ; 

the fo rge t fu l functor i s defined by | (Ai --H* X) 1 = X. 
A i B j 

ai\J/ hi\\j/ 
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It is easy to see that PCS(3G) is indeed a correctly de­

fined concrete category (up to the tolerance mentioned in 

2.8). 

Identifying 3C-objects B with the power-closed sinks B? 

of 2.4, the category % becomes a full, concrete subcategory 

of PCS (X). Indeed, each 3C-morphism f:B —> C is clearly a 

sink-morphism f:B°—•> C°. Conversely, if f;B°—> C° is a sink-

morphism then 

| B i ~ ^ IBI in B° implies iBl —---?-> Id in C°, 

hence, f:B—y C is a X -morphism. 

2.10. Proposition. Let % be a strictly small-fibred ca­

tegory with constant morphisms. Then PCS (&) is a topological 

category. 

Proof, (i) PCS {%) is initially complete. To prove 

this, consider a structured source (X —--> ' ̂ i' ̂ T 

X 

1 V 
ү 

to power-closed sinks Jli, Define a structured sink ? on X 

to consist of precisely those structured maps iCl > X which 

satisfy, for each i€l: 

IC1 ** ' V I± is in A ± . 

A) ^ i s power-closed. Let iDi ^X be a structured map 

in 3T . We are to show that (D,d) e <t . 

d 
- > X 

iai * 
Y^—i^hom (P,W). 
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For each i £ I the structured map I D I ~~-&--!—> Y. is in A** 

(Indeed, let p:Y^—.> hom (P,Q) be an element of A • ; then 

p • *±:* ~^ n o m (Pf^) is easily seen to be an element of *€* * 

Hence, by the hypothesis on d, 

d ; D ^ P — > Q is a #-morphism.) 

Since Ai is a power-closed sink, it follows that a• • d 

belongs to it (for each i e l ) ; in other words, d is an eleme^ 

of <€ . 

B) ^ is the initial lift of the given source. Let 3 ^ e 

a pover-closed sink on a set Z and let f:Z—>X be 

K 
a map such tha t aj, * f: 33 —-£* -A^ i s a sink-morphism for eac^ 

i e l . We are to show tha t then f; 33 —> < i s a sink-morph-

ism. Indeed, given IB)—> Z in 35 we know tha t 

a^ • f • b 
i e l — -> Y i i s in -A± 

for each i e l . This means tha t (3 , f • b) i s in ^ . 

( i i ) PCS ( # ) i s smal l - f ibred; see Proposi t ion 2 .7 . 

l i i i ) PCS (3C) has constant raorphi3ins. This follows im­

mediately frora pa r t ( i i ) of Lemma 2 . 5 . 

2 . 1 1 . Proposi t ion. For each s t r i c t l y small-f ibred c a t e ­

gory with constant morphisms % , the category PCS K%) i s car­

t e s i an c losed. The power-object o2 s i rks A and 33 (with \A\-

= Xj 1̂ 31 s Y) i s the sink 33 of a l l s t ructured maps 

l c l - £ > h o m (A,33) such tha t 
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„ . c • (lnx a) 
|A| -2i> X in Jl implies |CxA| - >Y in <B * 

Proof. A) Hie above sink 20 is power-closed. To pro­

ve this, consider an arbitrary structured map 
c —-. 

IC I—-^hom (*/l,(0) in 3 ^ . We shall prove then (C ,c ) is 
A ao 

an element of 3b . Thus, given IA |—--> X in Jl we are to 
verify that the structured map 

| C0x Ao| —l-!
0* I CQi x X -!°> Y 

is in (B . Now, J3 is power-closed; therefore it suffices to 

show that c Q » (lxaQ) e 0$ . Hence, for each p :Y —> hom (PfQ) 

in (J& we shall prove that 

po*^o" d x a o ' ^ ^ ^ x P — > Q is a ^C-morphism, 

thus concluding the proof of A). 

First, we define a map 

p:hom ( Jl, (Ji) —> hom (A QxP fQ) f 

for which we shall verify that it is an element of ( cB^ ) * . 

.Let he hom ( J i , 3 3 ) be any sink-morphism; then \AQ I -—> X in A 

implies * 
h » a_ 

U 0I %> Y is in 33 . 

4, 
Since p e CB , it follows that 

Q is a JC-morphism.-

Put 

p(h) = p * h*a for each he hom (->£fJ3)# 

We prove that p is in (CB^)4', i.e., that given 

iCl-^hom (J l , iB) in $F 

then 
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"p. c:Cx(A 0xrp)—>Q is a ^-morphism. 

Since c is in (& and a is in Ji , we conclude that 

c .(lxa 0):!CxA 0l 

Thus, p e (B implies that 

r o c". (lxa Q):CxA oxP 

and it suffices to show that 

I i s iri ŰЬ 

Q i s a 3£-morphisra 

o " ' " ' " " O ' 

Indeed, for a r b i t r a r y points z e | C l , x e . A o l and te |Pl we 

have 

p . c ( z , x , t ) = [ p ( c ( z ) ) 3 ( x , t ) = [ pQ • c(z) • a Q 3(x , t ) = 

= C(pQ. c ( z ) ) ( a 0 ( x ) ) ] ( t ) 

as well as 

^TTTn^r^( z ,x,t) = [(p0. S • (lxaQ))(z,x)](t) = 
= L(p 0 . g ) ( z , a Q ( x ) ) J ( t ) = t ( p 0 . c ( z ) ) ( a Q ( x ) ) J ( t ) . 

Since p is in (:# ) and c e & we conclude that 

p. c :CxA x P — > Q is a X -morphism. 

This concludes the proof since, as above, p • c = 

B) The category PCS (X) has finite concrete products, 

since it is topological. It remains to be shown that the sinks 
a 

5} have the required universal property. Indeed, let A , Cft 

and if be power-closed sinks with underlying sets X, Y and Z 

respectively; let f:Z—> horn (.A ,35) be an arbitrary map. 

Then 
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f: <tf —> .#> i s a sink-morphism 

i f f for a r b i t r a r y IC J - % Z in ¥ and IA i ~2-> X in A we ha­

ve : 

f • c • d c x a ) : ICxAl—> Y i s in <B . 

On the other hand, the product *€ x Jl consists of all 

structured maps 
(c ,a) 

| D | y ZxX 

where ( c , a ) i s the map with components \V\ —?> Z in *£ and 

|D|--L-> x in A . Hence 

f: <€ x Jl—>33 i s a sink-morphism i f f 

for a r b i t r a r y \C\ JL^> z in <€ and \A\ ------> X in Jl we have: 

f • ( e x a ) : iCtxAl—> Y i s in (Q . 

But by Lemma 2 .6 , 

f • ( c x a ) ~ f • C • ( l c x a ) , 

hence the two condit ions on f coincide . 

^•12* Remark. P a r t i c u l a r l y , given objects A and B in 

tr 

Cl J L > hom (A,B) which f u l f i l : 

o A0 

X , the power-sink (B ) cons i s t s of those s t ruc tured maps 

£:CxA--~>B is a ^-moronism. 

A 

We denote this sink by B . 

§ 3. The description of the CCT hull 

3»1« theorem. For each strictly small-fibred category 

% with constant morphisms the CCT hull is the category 

PCS {%) of power-closed sinks. 

Proof. We know that PCS (X ) is a CCT category (2.10 
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and 2.11) which contains X as a full, concrete subcategory 

(2.9). 

(i) % is finally dense in PCS (3C). Indeed, each power-
ai 

closed sink A = (|A,| —±-> X) T is the final lift of itself, 
x a. 

i.e., more precisely, of the sink (|A.| > X ) T . 
(ii) The power-objects of X are initially dense in 

a, 
PCS ( X ) . I*et A- {IAJJ—=> X ) x be a povrer-closed sink with t 

# = (X JXhom CP.,Q-))j. 

We shall prove that then A is the initial lift of the source 

P, P, 
( X _ J L > l Q ^ \ ) J 

P. 
(where the sinks Q.*5 are as described in 2.12). 

J 
First, for each jeJ, 

P6: A — * # 

is a sink-morphism. Indeed, given tAl ~—> X in A then p. € 
J 

c A implies that 

p.* a: Ax P-—-> Q. is a $C -morphism, 
J J J 

in other words that 

p • • a P . 
\k\ —-?—^ horn (P-,Q-) i s an element of Q , J . 

J J J 

Secondly, l e t (B he. a power-closed sink and l e t f : l 3 , - > 
P, 

— y X be a map such that p- • fidi > Q.J are sink-morphisms 
J j 

& -JL+ A 

for all j eJ. '!h are to show that also f: 42 —*- A is a 
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sink-morphism, i.e., that given |B. ? Y in ($ then 

1 B\ f
 * > X is in X . (Then, of course, f. b is an element 

of Jt .) Poi 

phism, thus 

of JL .) For each p. in A we know that p • • f is a sink-aor-

P , 
p.. f. Ь.ІBІ — * hom (PД.QJ) is in Q.

J
. 

This means that 

p • • f • b : B x P . — > Q. i s a X-moronism. 
J J o 

3.2. Corollary. For each category % with finite conc­

rete products and constant morphisms the following conditions 

are equivalent: 

(i) % has a finitely productive CCT extension; 

(ii) % has a CCT hull; 

(iii) for ea6h set X the conglomerate of all power-clo­

sed sinks on X is small; 

(iv) PCS (#) is a CCT hull of 1C i 

(v) % is strictly small-fibrejd. 

Let us remark that the proof of (v) =£> (ii), presented 

in the current paper, is much simpler than the original proof 

of [AK3, where an extension of % is constructed by a compli­

cated transfinite induction. 
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