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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
22,3 (1981) 

ULTRAFILTER WITH ^PREDECESSORS IN RUDIN-FROLIK ORDER 
L. BUKOVSKÝ, E. BUTKOVIČOVÁ 

Abstract; We describe a construction of an ultrafilter 
p on the set |N of integers with countable set of types of 
predecessors of p in the Rudin-Frolik order. The relation
ship between characters of ultrafilters and Rudin-Frolik or
der is studied and the obtained result is used in the above-
mentioned construction. 

Key words; Ultrafilter, type of ultrafilter, Rudin-Fro
lik order, character of a filter, P-point. 

Classification: 04A20 

§ 0. Introduction* The main result of this paper is a 

proof of the following theorem. 

Theorem A. There exists an ultrafilter p on the set \H 

such that the set of types 

(0.1) i*Cq); qi-pJ 

in the Rudin-Frolik order is isomorphic to the inverse order 

of the set of natural numbers. 

Assuming the continuum hypothesis, this theorem has been 

proved by A. Louveau 111 and R.C. Solomon LT21. Our proof does 

not need any set-theoretical assumption and works in any rea

sonable set theory, e.g. in the Zermelo-Fraenkel set theory 

with the axiom of choice. By a slight modification we obtain 

also 
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Theorem B, There exists a sequence "Cpni*- € W i of ul-

trafilters such that the set of types 

l * < q ) ; P n . fT G < - s P n i 

*o 

has cardinality 2 for each n e N and there is no ultra-

filter p smaller than each pn, n 6 IN in the Rudin-Prolik or

der. 

As usually in such a situation, the desired ultrafilter 

is constructed by the transfinite induction. Using simple re

ductions everything we ask from the ultrafilter being const

ructed is to behave well in relation to a family of sets of 

cardinality continuum. On each step of the transfinite induc

tion exactly one set of this family is considered. Therefore 

we must not construct the ultrafilter before the continuum'th 

step. As far as we know there was only one useful technology 

for keeping the transfinite construction of an ultrafilter not 

to finish before continuum steps: the method of independent 

sets developed by K. Kunen [5.1,161. 

In this paper we present another method for keeping the 

transfinite induction not to finish very early. The method is 

based on a simple relationship between the character (= local 

weight) of points of a set and the character of points of its 

closure (theorem 2.1). 

The paper is organized as follows. The first section con

tains necessary facts concerning Rudin-Frolfk order. The se

cond part studies local weights of points in £1M . The third 

part contains proofs of the theorems A and B. The fourth part 

is devoted to some related open problenm. 
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§ 1. Preliminaries. The notations used in this paper are 

much as in the most recent literature, e.g. W.W. Comfort and 

S. Negrepontis t33, but for the reader's convenience, we shall 

remind some notions. 

In the whole paper we shall deal with filters and ultra-

filters on the set H of natural numbers only. The Stone-Cech 

compactification /3N is assumed to be the set of all ultra-

filters on M * For a set A £ M , the set s(A) consists of 

all ultrafilters containing the set A. The family {s(A)5 A a 

& iN} is the clopen basis for the topology on /-*N . A set 

U £ jh Hi is a neighborhood of an ultrafilter p € |3W if 

and only if there is a set Ac p such that s(A)sU. 

In the next, by a discrete set X £ /3 IN we always under

stand an infinite countable discrete subset of fih . Moreover, 

we always assume that 

(1.1) X =--txn;nc Nl 

and L , n e H are subsets of H such that 

(1.2a) A n A A m s & for n + m> 

(1.2b) A n e x n 

and 

(1.2c) ^ V - 1 1 * ' 

It is well known that every homeomorphism of /SIN onto 

fSIH is induced by a permutation of the set N . Two ultra-

filters p,q e ft ft are said to be type equivalent iff there 

exists a homeomorphism h of jSW onto £W such that h(p) « q. 

The type of p is denoted by r(p). Thus, -r(p) - t(q) if and 

only if p. q are type equivalent. Sometimes, the t.vDe xM 
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i3 simply denoted by p. We shall deal with properties of ul-

trafilters that are invariant for the type equivalence. 

Let X be a discrete set. Then there exists a unique ho-

neomorphism h of j3M into (hU such that 

(1.3) h (n) = x for every n e IN . 

If p e f3 iN , the ultrafilter q = h(p) is denoted by .S(X,p). 

The type of _2(X,p) does not depend on the enumeration (1.1) 

of the set X. One can easily 3ee that _2 (X,p) belongs to the 

closure X" of the set X and that for every set A & IN the fol

lowing holds true: 

(1.0 A e ;S(X,p)25 in;ke xj c p =s h""1 (s(A)n X) e p. 

Conversely, if r eX then there exists a unique ultrafil

ter il(X,r) such that 

(1.5) ZS(X,nu,r)) = r. 

It is easy to see that 

(1.f>) A€.Q(X,r):=E U . i t r . 
' %, & A Ti 

If q « ̂ (X,p) for some discrete set X, we shall write 

p£ i. The relation £; , introduced by Z. Frolik L 4 1 and later 

studied by M.E. Rudin U03, is called the Rudin-Frolik order. 

The basic properties of the Rudin-Frolik order are presented 

e.g. in [10Jf[1tJ,[23. We remind the most important for our 

considerations. 

Let X, Y be discrete sets X M x ^ n € \H I , Y = ^ y n '
n € 

c M$ , P = 2 ( X , q ) , r « S t t - j ) . Then the following holds 

true: 

(1.71 if p = r, Y £ X - X, then .i c: q. 
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Now, let q = j. Then 

(t.8) per if and only if ̂ n ^ ^ y ^ 6 <-• 

For any ultrafilter x we have 

(1.9) if xeXnY then il (X,x), SL(Y,x) 

are type equivalent. 

Speaking about types of ultrafilters we always consider 

uniform ultrafilters only. Thus, e.g. a uniform ultrafilter 

p has the minimal Rudin-Frolik type iff for any uniform ultra-

filter qSp, q is type equivalent to p. The height of a (uni

form) ultrafilter p in the Rudin-Frolik order is the cardina

lity of smaller types, i.e. 

^ ( q ) ; qs p} * 

Thus p is minimal if and only if its height is 1. 

We recall that a uniform ultrafilter p is said to be P-

point (selective) iff for any system A , n 6 IN , A ^ p, 

m.e4l ̂ n = ^ there exists a set Acp such that for each ne 

e IN , A^A^c ^ ( A J J A A * 1). Every P-point is Rudin-Frolik 

minimal. By K. Kunen [63, there are Rudin-Frolik minimal ultra-

filters which are not P-points. 

A filter & on M can be represented by the non-empty 

closed subset 

s(^) s- n 4s(A);A e 3*i 

of (3N . If 3r1 & 72 then 8 ( ^ ) 2 8 ( ^ 2 ) , For an ultrafilter 

j we have s (j) =- \ j I. 

If 5$ is a family of subsets of M with the finite in

tersection property then (.©) denotes the filter generated 

by 5i , i.e. 
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Ae (ft ) =2 O B | , , . * f ^ € 3b ) lÊ n ... A B n s A . 

If ^ is a filter, A a subset of IN such that M - A £ & 

then ('JuiA^ is simply denoted by (^,A). If f 8 (^)t # 

is closed for finite intersections, then 3b is said to be a 

basis of the filter ? . 

A sequence "Ĉ Ui nclN of d i s c r e t e subsets of /3lN is cal

led a discrete sequence iff for every n € IN 

One can easily see that for a discrete sequence iX^nelN ' 

the sets .3^, n e IN are mutually disjoint, i.e. 

(t.tt) \ n \ ' & for n+m* 

R.C. Solomon in [12J, p. 211 has shown an important tech

nical property of discrete sequences. 

Lemma t (R.C. Solomon). Let f ̂ -"-^H °e a discrete se

quence, pn, p being ultrafilters such that p - 2i(Xn,pn) for 

every n £ IN .If there exists an ultrafilter q such that 

q£ pn for every n € IN then there exists a discrete set 

* £ ĵ VlN *n suc** that P 6 * and il(Y,p)c Pn for every n e IN . 

If B is a subset of a topological space T then the cha

racter 3f,(B) is the minimal cardinal oc such that there ex

ists a system of open seta It * oc such that an open set V 

contains B if and only if As ¥ for some A e & . If $ is a 

filter on N then the character ^(s(£'))f also simply deno

ted %{$) is the minimal cardinality of a basis of the fil

ter tf . Remark that a filter f is principal if and only if 

%(f) = t. If & is non-principal then ^(ST) 2: -KQ. 
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k filter *& is said to be adherent to a discrete sequen-

ce l-y neN iff 

(1.12) 8 ^ ) ^ ( a Q N ^ * 0 . 

.Let Y be a discrete subset of ^ L ^ Xn, i-<niI1£|M being a dis

crete sequence. A filter .f adherent to *£-Onc|N Presses down 

the set X iff there exists a set k G & and a natural number 

n € IM such that 

(1.13) XnsU) £ U X. 
nr*+nv m 

Similarly, the filter JT pushes out the set X iff there exists 

a set it G *$ such that 

Ct .14) s U ) n X = 0. 

Both properties are hereditary. If ^fi ̂  are filters, 3 ^ 

presses down (pushes out) a set X then the filter ^ also 

does so. 

The filter & can press down (can push out) the set X 

iff there exists a filter f such that 

(t.15a) ^ * $', 

(1.15b) ^ ( ^ O - ^ ^ C ^ ) • *0t 

(1.15c) $' is adherent to iX^i ne# 

and #' presses down (pushes out) the set X. 

Lemma 2. Let * x
n$ n 6R be a discrete sequence, Y being 

a discrete subset of the union Ul|N X^. Let j be an ultrafil-

ter adherent to the sequence iXJi ^ . 

a) If j pushes out the set Y then j^Y. 

b) If jeX and j presses down the set Y then there ex-
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ists a natural number m such that XMY-j) and HCX^iJ) are 

type equivalent. 

Proof. The part a) is trivial: if «j pushes out the set 

Y then by (1.T4) we obtain j^Y. 

Now suppose jeY. Since j presses down the set I there 

exists a natural number n e iN and a set Aej such that 

Then 

J e X n a U ) * ^dr.r.X) » « * * < - . * - • > . • 

i.e. j belongs to .^n Y for some m. The lemma follows by (1.9) < 

q.e.d. 

Corollary 1. Let { X^ ne^ be a discrete sequence, j be

ing an ultrafilter adherent to it. If every discrete subset 

Y of ^ ^ X ^ is either pushed out or pressed down by the ul

trafilter j then there is no ultrafilter q such that 

q «= -CLC-̂ tJ) for every n e iM . 

Proof. Directly from the lemma t and lemma 2. 

q.e.d. 

§ 2. Characters and Rudin-Prolik order. Every non-tri

vial ultrafilter on ftl has character greater than ^0« The 

Martin's axiom (see L83) implies that every non-principal ul-
*o 

trafiltear on W has character 2 . K. Kunen 153 and J. Baum-

gartner and R. Laver £1] have constructed models of set the-

ory in which 2 =- -*2
 ana* there exists a selective ultrafil

ter with character .̂.. B. PospiSil [93 has shown that there 
2*° -*o 

exists 2 ultrafilters of character 2 • K. Kunen [63 has 

- 436 



shown that there exists a Hudin-Prolitc .minimal ultrafiltar 
*o with character 2 . 

The character of an ultrafilter behaves well in relation 

to the Rudin-lrolix order. The simple and important relit ion-

ship between characters and Hudin-Prbllk order is «xpr<*»#ed 

in the following 

Theorem T. I#et X be a discrete set, p, q being noli-tri

vial ultrafilters such that p = -S(X,q). Then 

t(p)^X(q)-Ainf s u g A ? l ( x n ) . 

Proof. Let 3 be a basis of the ultrafilter p, 35 -

It is clear that the set (see (1.2)) 

iinj -2-tt-̂ *- x^; B e B { 

is a basis for the ultrafilter q = il(X,p). Thus % (p) £ ^(q)» 

Now, suppose, to get a contradiction, that there exists a 

set Acq such that for every ne A. the character ?t (x^ *8 

greater than %(p). Thus the system 

{ Ann B; B e Bin xR 

is not a basis of the ultrafilter xn for any ne A. Therefore, 

there exists a set C RG x^ such that Cn contains no ^ n B e i ^ . 

B e 3 as a subset. We denote 

C = ̂ A<Cn^V-
By (1.4), we have Ccp. Since 3 is a basis of p, there exists 

a set B € % such that BS.C. Since An's are disjoint, for eve

ry n € A we have Cr\An = C . (1.4) implies that the set 

i n; B A A^e J^jnA 

437 



belongs to the u l t r a f i l t e r q, e s p e c i a l l y , there e x i s t s a na

tural number n€ A such that BnA^e x n . On the other hand 

BnA^fiCnA^ * Cn 

- a contradic t ion . 

q . e . d . 

It seems that the theorem 1 is in some sense the best 

possible. We need a notion. A set 3£ £ IN of functions from 

H into N is said to be a dominating family iff for every 

function f 6 ti there exists a function g <s 36 such that 

g(n)2Tf(n) for each n e IH . There are models of set theory 

*o in which 2 > &. and there exists a dominating family of 

cardinality v..,. Also, there are models of set theory in 
*o which every dominating family has power 2 (e.g. the Martin 

axiom implies this). Moreover, it is known that for any se

lective ultrafilter p there exists a dominating family X 

such that % 4* ̂ (p). 

Now we shall give an upper bound for the character of a 

produced ultrafilter. 

Theorem 2. Let ̂  be a dominating family, 3? » A # 

Let X be a discrete set such that every element of X is type 

equivalent to a given P-point p. For any ultrafilter q we ha

ve 

%( 2S(Xfq>)* A - j(,(p). *(q). 

Proof. We suppose denotations of (1.1) and (1.2). Let 

.3 be a basis of p, % = \ (p) and f be a basis of q, ? » 
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Since each x e X is type equivalent to the ultrafilter 

p, there exists a one-to-one mapping fn of U onto IN such 

that 

(2.1> x^ M f ^ C Z ) ; Z e p K 

For given Be<B , C e *€ , h e #6 we denote 

We show that 4D B c h;B e J5 ,C e *€ ,h c 3£ $ is a basis of 

the ultrafilter S(X,q). The theorem then follows, 

let A e ̂ (X,q). Then we have 

E M ' *->A.A A G x^J € q. 

By (2.1) , for every n c B we obtain 

fn(AnA A ) e p . 

Since p i s a P-point there exists a set Pe p such that 

P - t^ik^cs A) is finite for every neE. For neE, let g(n) 

be the least natural number such that 

P -<0f1f...,g(n)}cfn(AhnA)> 

Prom the definition of the dominating family it follows that 

there exists a function h e #£ such that g^-h. Since ;B , *£ 

are bases of p, q, respectively, there are sets B e 3$ , C e f 

such that B£F, C£E. One can easily check that 

DB,C,h £ A' 
q.e.d. 

Thus, if 2 °> -X|t A = x(p) s X^> = *t> then the 

estimate given in the theorem 1 is the best possible. Indeed, 

this situation occurs in the model of f. 11. 
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„JB the:third part we need a stronger version of the . 

theorem f, from which the theorem T actually follows. We ha

ve presented the direct proof of the theorem 1 because of 

its simplicity. 

"Lemma 3* Let Xf 2 fee discrete subsets of £N , Z£.3f-

- X. Let the filter $ be such that 

(2.2) S(^)AZ4-0 

and for every ze Z the inequality 

(2.3) %(&{X9z)) > n,{f) 

holds true. 

Then there exists a set P & IN such that 

(2.4) Z5s(D) 

and 

(2.5) 8(f)nX - s(D)-f0. 

Proof. Suppose (1.1) and (1 .2) . Let Z = fz n ; n e IM } , 

B n £ 2 n ' V Bm = 0 f o r n * m a n d *LVN **h = IN ' 

Let 5b be a basis of & such that 3? » ^ (tfO. We denote 

s* *<C&X; (.3 A 6 fcn*n) S ( E ^ A A ) A X^Ci . 

One can easily see that z* is a filter on X and that 

(2.6) z£e { s(A)r.X; Aez ni. 

The last ultrafilter is type equivalent to J-l(X,zn)f thua 

by (2.3) its character is greater than W . Evidently ^(z* ) 

is not greater than W . Therefore, in (2.6) the equality does 

not hold true, i.e. there exists a set ̂ e z such that 

s(En)n X £ z n . Set 

440 -



(2.7) Dn ̂ { ^ A ^ \£8(^ABn)l. 

Then I^e %n and 

(2.8) 8(Bn)As(yn X » s(Bn)ns(Dn)nX. 

Now, denote 

/n. e m n 

Since D n € z n > we obtain Z s s ( D ) , i.e. (2.4) holds true. 

For to prove (2.5) we let A e W . Since J$ is a basis 

of & , there exists a set A's 3 such that A'ss A. 

Then by (2.2) there exists m c IN such that k'& zm. Then al-" m 

so s(A'n B^n Xez* . Since sd^JnX^z* f we have 

s(A'nBm)nX - s(^|) + 0-

By (2.7), Da^Bh »*-<* therefore (B̂ 's are disjoint) 
Bn " D - \ ~ V 

Using (2.8) we obtain 

s(A)n (X - s(D))2s(A')n (X - s(D)) a 

2 s(A')n s(Bm)n X - s(D) = 

= s(A')ns(B m)nX - a(D ) = 

= s(A'nB m)nX - s(Em)4-0. 

q.e.đ. 

§ 3. Proof of main theorems. We start with an important 

technical auxiliary result. 

Lemma 4. Let t h e f i l t e r 7t be adherent to a d i s c r e t e s e 

quence i y n 6 | j . Let X be a d i s c r e t e s e t , Y Q ^ X^ such t h a t 

(3.T) 9 ( v ( a ( X n J y ) ) > %(<$ ) 

for every y & Y n X ^ - X r i , n G IN . 
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If $ cannot press down the set Y then T can push out 

the set Y. 

Proof. Let B £ N be such that B e y, B n B / • 0 for 

Denote 

Yn M y e l j (3mm) y 6 \ ] , 

By ( t . 1 1 ) we have 

Evidently 

(3 .2 ) Yo s ( - Vn> Q U X_. 

Since the f i l t e r £ cannot press down the s e t Y, then e i ther 
v n e ^ or ( ^ f - Vn) i s not adherent to i - ^ S ^ u • In both c a 

ses 

s ( - Vn)n s ( ; ? ) *kr\iT£ « *• 

Hence, for every n c iM we have 

( 3 . 3 ) 8 ( V ) n s ( ? ) nfl Q k l E * **• 
n Ate.N * 

Let #' = (^u W0,V1,...>Vnf...}). Evidently, neither $' can 

press down the set Y. Hence, for each n e IN and for each A e 

e $' we obtain 

(3.4) Xn.U) iJ-^V 

If s(A)nY = 0 for some A e $" then we are ready. The fil

ter &' pushes out the set Y. Thus, we shall suppose that 

s(A)n Y+0 for each A e £". 

Then from (3.4) we obtain 

s(A)n ̂ 4 0 . 

Therefore 
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8 ( f ) n ï n + 0 . 

Now, using the lemma 3 , we get a s e t D & IN such that 

(3.5a) r a S 8 ( V » 

(3 .5b ) в ( Ѓ ' ) п X̂  - aiЂ^)^ 0. 

For y e ïпXj^ we s e t 

I s Л B глБ . y mv-cnг y a 

It is clear that \ e y 9 ^ E S.E ana E s-B • Now we denote 

E = U. E 

and 

$"'« < 2", - E). 

We start with showing that ST" is adherent to the sequen

ce iXj-Ĵ gft • I-«t A e #"' , i.e. there exists a set B e $' such 

that B - ES.A. Then 

s(A)n X^2 S ( B A V
n
 - E)n X^. 

Since 

we obtain 

s(A)n X n 2 3CnAs(BAVn) - s ( D n ) . 

This set is non-empty by (3.5b). 

Since -E e IF" and s(-E) A X = 0, #*" pushes out the set 

T. 

Evidently %{$" ) & %{$ ) < MQ9 therefore f can push 

out the set Y. 

q.e.d. 

We are ready to present a proof of the main result. 

Proof of the theorem A. We start constructing a discre-
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te sequence i^m^ suc** t h a t f o r e v e r y n € ** 

(3.6) the height of x c l ^ i s n 

and for every n,m e W , n<m, 

(3.7) for each xeX^, ^ ( i l ( ^ , x ) ) « 2 . 

According to K. Kunen £63 there exists a Rudin-Frolik 
•K0 

minimal ultrafilter x with character 2 • Let X^ * ixQ kj ke 

c N$ be a discrete set such that each x0 k is type equiva

lent to x. We define by inductions 

(3'8) V l , k - S<*».*o,k>' 

-•* Ao,kc*o,k» Ao,k"Ao,k' * <* t o r k + k ' ana*.VwA.'k = 1N' 

By induction we set 

(3.9) Vl.k" U ^ î ^fi Ao,kЬ 

Using (t.4) one can easily show that i ^
n 6
H

 i a a
 discrete 

sequence. By induction, for m>n, it is easy to prove that 

-CH-K^x^
 k
) is type equivalent to X L ^

 k
 and therefore, agads 

by induction, theorem 1 and (3.8), we obtain (3.7). 

The assertion (3.6) follows by induction and (1.8) from 

(3.8) 

Now, l e t {X~; £ < 2 i be an enumeration of a l l discrete 

subsets of the union L^ X^ Using the lemma 4 we can define 

a sequence - i 3 v { 5 f < : 2 0 $ o f f i l t e r s such that 

a) 1T0 i s the f i l t e r of a l l cofinite subsets of N; 

b) J j t - . ^ ^ for A l imit; 

c) ?c+1 either presses down or pushes out the set X^ 

and £ £ ̂ c + T; 

d) % ( ^ ) -̂  J • -*0 for each f < 2 °; 
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e) each % is adherent to *fxn^tt€^ * 

Now, let p be any ultrafilter extending the filter 

LJM ? and adherent to -t^S^n • W e denote qn « H (X^p). 

One can easily see (using 3*6) and (1.9)) that 

ItCq); qcp* • i*(<ln); n € IN J . 

q.e.di 

Proof of the theorem B is almost the same as that of the 

theorem A just you must start with an ultrafilter x with cha

racter 2 ° and 2 ° predecessors. The existence of such an ul

trafilter follows by A.K. Steiner and E.F. Steiner £13-1, B. 

PospiSil £91 and theorem 1. 

q.e.d. 

Let us remark that the theorem 1 has been used in the 

proof of the theorem A indirectly via the lemma 4 and hence, 

via the lemma 3 which is a strengthening of the theorem 1. 

§y K. Kunen [61 there are 2 Rudin-Frolik minimal ul-

-*o 

trafilters with character 2 . Taking in the proof of the the

orem A different x 's we obtain different ultrafilters p's 

with countable set of predecessors (0.1). 

§ 4. Some open problems. As far as we know that was P. 

Simon who raised the following question. 

Problem 1. If p is a non-minimal ultrafilter, does the

re exist an ultrafilter q such that f(q) t (p) and there is 

ro type between r(q) and t(p) ? In other words, does every 

non-minimal ultrafilter have an immediate predecessor? 

Prof. J. Jakublk asked another question. 
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Problen 2. Does there exist an infimum of any finite 

set of type? 

The question whether there exists an ultrafilter with cha

racter smaller than continuum is undecidable. Moreover, neither 

we know to answer the following two questions. 

Problem 3. If there exists a Rudin-Frolik minimal ultra-

filter with character smaller than continuum, does there exist 

a non-minimal ultrafilter with such character? 

Problem 4. Does the existence of an ultrafilter with cha

racter smaller than continuum imply the existence of a Rudin-

Prolik minimal ultrafilter with such character? 

.The theorem 2 gives a partial answer to the problem 3 and 

the positive answer of the problem 1 implies positive answer 

to the problem 4. 
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