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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

22,4 (1981) 

ON INTERPRETABIUTY IN THEORIES CONTAINING ARITHMETIC II 
Petr HAJEK 

Abstract: InTestigated are Peano arithmetic PA and its 
conserratiTe extension ACAQ using classes. (Instead, one 

could speak on set theories ZP and GB.) IpA (and XJ^CA ^
 a®-ao-

tes the class of all PA-sentences <p such that (PA + 9? ) is 
relatiTely interpret able in PA ((ACAQ + g>) is relatiTely in-
terpretable in ACA0). Independent .2?° sentences g> are clas
sified according to whether g> e IpA, <p <£ ~-AQA » (~*9 ) £ 

o 
6 XACA * (Ko*e *na* n& c a n n e v e r be in- *PA#^ T n i s &ives 

eight types of independent 2)° sentences* it is shown that 
each type is non-empty. This subsumes and completes most 
known results on the relation of IpA and I^Q^ • Main results 

are obtained by combining and generalizing methods of SolOTay 
and Smorynski; a generalized fixed point calculation for a 
modal propositional calculus, which seems to be of independent 
interest, is presented and heaTily used# 

Key words; RelatiTe interpret ability, modal logic, arith
metic 

Classification: 03P25, 03B45. 03?30 

§ 1. Introduction 

1.1. Let PA be Peano arithmetic and let ACAQ denote the 

second-order theory with two sorts of Tariables (number Tari-

ables x,y,..« and class Tariables X,Y,...) haTing axioms PA 

minus the induction schema for number Tariables, a new predi

cate € such that t e Z is well formed iff t is a number term 
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and X is a class term and two groups of second order axioms: 

Arithmetical comprehension: for each formula <p in which 

no class variable is quantified and which does not contain 

the variable Xf the following is an axiom: 

(3X)(Vx)(xeX m y ) 

Induction axiom: 

(OeX£(Vx)(xeX-> S(x)eX))~-» (Vx)(xeX). 

It is well known that ACA0 is a conservative extension 

of PA (each model of PA is expandable to a model of ACA ) ana 

that ACA is finitely axiomatizable (imitate the proof of 

Me tat he or em 1 in 121), Thus we can claim that 

PA:ACAQ = ZF:GB 

where ZP and GB is the Zermelo-Fraehkel and Godel-Bemays set 

theory* And indeed, our results remain valid if we replace 

the pair (PAfACA0) by (ZFfGB) or another similarly related 

pair of theories containing PA. But since our investigation 

concerns PA-sentences we shall speak on PA and ACA , 

1»2„ Por each theory T containing PAf let I,-, denote the 

set of all PA-sentences $> such that (T + cp ) is relatively 

interprttable in T in the sense of Tarski, Mostowski and Ro

binson 1171* I*tt us survey the known facts on IpA and IACA . 

(1) Ip A^I A C A 5 IPA is TT0-complete (Solovay 1143) but 
o 

3.ACA is recursively enumerable. 
o 
(2) IpA - IACA #=0. In l5l9 a TT °. sentence 9? is con-

0 

struoted such that g> e IpA - 1ACA provided PA is o -consis

tent} in ill the assumption of o-consistency is replaced by 

that of (mere) consistency. Solovay exhibited a 21J sentence 
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SP e XPA ~ "̂ ACA ^cf# ^10^* Lindstrom independently show-
o 

ed that for an appropriate binumeration oc of PA, the 2S -. 

sentence -i Con^ is in I ? A - I A Q A • Lindstrom also const-
o 

rueted a TT^ sentence y> such that both <p and ~icp belong 
t0 J P A " JACA (see [81)-o 

O) XACA " ^PA*0' InE6:i ii? is s n o w n ttot if this 
o 

difference is non-empty then it must contain a IT? senten

ce! SoloTay constructed such a sentence 1143. His proof will 

be sketched and analyzed below. 

(4) The following are equiTalent; (i) (p e lpA$ 

(ii) g> is TT ? conserratiTe ( TT^-con), i.e. for each TT? 

sentence jr (PA + <p ) h ar* implies PA Y- sr * (iii) for each 

n, ? A j ~ C o n ( p A r n ) + ^ (where PAr n denotes the set of all axi

oms of PA that (i.e. whose Godel numbers) are less than n). 

See C3],t6J. Consequently, if if is a TT® sentence and y e 

e I p A then PA r~ & • 

1.3. The aboTe lead to the question what possibilities 

we h&Te for independent S ? sentences <p according to the 

questions whether g> e IpA, g> e I A C A t (-ig> )£ I A C A .(If <p 
o o 

is an independent S ? sentence then necessarily ("~»g? )#IpA# 

see the end of 1.2. Logically, we haTe eight types: 
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!<y Є ІPA ? Є ІACA
0 

(-Ì9>)£І 
0 

1 ao yes yes 

2 ao yes no 

3 ao ao yes 

4 a a no 

5 yes yes yes 

6 yes yes no 

7 yes ao yes 

8 yes no no 

We shall show that there are formulas of all these eight ty

pes. 

1.4* How let us make some preliiiJlnary observations. 

.First it is easy to see that the formula ~i Con^ (where oo 

is the natural PR-binumeration of PA) is of type 6, since 

we hare PAn(Con^== Con
ACA
 ) (here Con

ACA
 i« expressed us-

o o 

ing the finitely many axioms sufficient to axiomatize ACA
Q
)s 

it is easy to show (-iCon^)e I
P A
, (*nCon

ACA
 )

 e
 *ACA

 f 

TJx Q 0 

(cf* Ell, [163). But we shall show another sen-C o a
ACA* ^ACA^ 

o o 

tence of type 6 below* 

Second, observe that a formula q> of type 7 has the ni

ce property that <p & I
p A
 - I

A C A
 and (-19? )€ IACA^ - IpAi 

thus g> is a S J sentence showing that IpA - ^XGA 

empty and ng> is a TT® sentence showing that IACA 

ІS ПOП-

- I. 
PA 

— xf 

is non-empty. 

Third, we should make clear what means will be used in 

our proofs* Main tool for showing that semetaiag is -^
 A C A

0 

will he the SolOYay's method described below* Maia tool for 
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showing that somethiag is uaproTable or is aot ia T-^GK w ^ ^ 

be a geaeralized Smoryaski's fixed poiat calculatioa for fi

xed poiats defiaed by meaas of arithmetically iaterpreted 

modal logic* So show that something is or is aot ia IpA> we 

shall show that the formula ia questioa is or is aot TT°-con. 

Aad ia oae case, where these methods fail, we shall imitate 

a construction due to Madstrom. 

1.5. Most of our (aoa)iaterpretability results will 

follow rather quickly aad easily from SoloTay's coastructioa 

aad from our generalization of Smorynski's fixed poiat calcu

lation, The coatributioa to arithmetical iaterpretatioas of 

modal logics presented ia § 3 is hoped to be of independent 

iaterest. Bote that § 3 does aot depend oa § 2. 

§ 2. SoloTay#s coastructioa analysed 

2.1. SoloTay constructed a TT? senteace <j? e I^Q^ -

- IpA (ia fact, ia I G B - Izp) ia 1976; a full proof is coa-

taiaed ia a letter by SoloTay to the preseat author. Siace 

I14J has still aot beea fiaished, we shall giTe here a more 

or less detailed sketch of SoloTay's proof ia a form that 

enables us to obtain some general coasequeaces concerning 

I.ACA* This is done with kind permissioa of Professor SoloTay. 

2.2. First, SoloTay uses a rather specific proTabili-

ty predicate related to Herbrand's analysis. Let (Pa)c be 

the eoaserratiTe exteasioa of PA haTiag the followiag pro

perty: For each seateace (Ji)f (x) of (PA)C there is a 

witnessing coastaat crg xw( x)
 o:? (-?A)C such that the follow-
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ing witnessing axiom is an axiom of (PA)Q: 

(J3x)Y(*)— > cG3x)iKx) is *ae millima"L x sucli ^^ F ( X ) » 

Let A (PA) "be the set of closed instances of axioms of 

(PA) , of equality and identity axioms and of the logical 

axioms (Vx)\p (x) —•> ty (t)# Then we haTe the following lem

ma ([9 J p. 49): 

Let <p he a closed formula of (PA) . Then (PA)C t— <?> 

iff 9 is a tautological consequence of A(PA). 

Following SoloTay, call a satisfactory sequence on n 

each function s associating with each (PA) sentence less 

than n zero or one such that s commutes with logical connec-

tiTes and giTes the Talue one to each element of A (PA). 

Then eTidently we haTe the following: 

Let 9 he a closed formula of (PA)C. Then (PA)C H <p 

iff there is an n such that for each satisfactory sequence 

s on n we haTe uicp ) = 1. 

Say that g? is proTed on leTel n if each satisfactory 

s on n giTes Talue 1 to g> . Prom now on, saying n <$> i s 

proTable" for a (PA) -formula cp we shall always mean nthe

re is an n such that £> is proTable on leTel ntt. 

2.3. Lat us work in ACAQ extended conserratiTely by 

adding witnessing constants from (PA)C and the correspon

ding witnessing axioms. Let us make the following defini

tion: A class Z is a satisfaction relation on i (in sym

bols: fr(Zf j)) if (roughly)Z is a function associating (1) 

with each pair (t,u) where t is a term of (PA)C whose Go-

del number is less that j and u is a sufficiently long se-
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quence of numbers a number and (2) with each pair (afu) 

where a is a (PA)C formula whose Godel number is less than 

n and u is a satisfactorily long sequence of numbers a 

truth value 0 or 1 such that 

(a) Z(x . ,u) =- (u),, Ztt-ĵ  + t2,u) = Z(tltu) + Z(t2,u) etc., 

(b) Z(t1 = t2,u) =- 1 iff Z(t1,u) = Z(t2,u) and 

(c) the obvious Tarski's conditions for truth of composed 

formulas are valid. 

Boring details of elaboration of this (evident) defini

tion are left to the reader, 

2.4. The following lemma is obvious: 

Lemma. (1) (3Z)Tr(Z,0) 

(2) (3Z)Tr(Z,j)-> (3Z)Tr(Z,rj + 1) 

(3) a?p(z1,d1) & TT(ZZ9iz)^ix^rj2 —•> Z-̂ 9 z2. 

Caution: But the statement ( V j)(3 Z)Tr(Z, j) is unpro

vable in ACAQ (pedantically: in ACA0)C) since it implies e-

vidently Con^ where oc is the natural binumeration of PA. 

This shows that the induction scheme 

(y(0)&(Vx)(y(x) -> rCS(x)))-^ (Vx)v(x) 

is unprovable in ACAQ (which is well known). 

2.5. In ACAQ, assume Tr(Z,j). Then Z defines a true 

satisfactory sequence a on j - restriction of s to pairs 

(a,0) where a is a (PA)c-sentence, a--.Q. Thus: if (f is pro

ved of level n and Tr(Zfn) then <p is true, i.e. Z(cp,0) =- 1. 

2.6. "It's snowing" - it's snowing-metatheorem: Let f 

be a (PA)c-formula whose Godel number is less than j. Then 

ACA0i- TrCZ,j)^9Cx0,...fxn)»2(cy(x0,...,xn),x0,...>xn)=- 1. 
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(Proof by induction on the length of <p •) 

2.7. Let Trn(x) be the ̂ -predicate of PA which is 

a truth predicate for 2t^-sentences constructed in the usu

al way} in particular, we have PA t~ g? SE Trn( Jo ) for each 

S ° sentence g? . We have the following lemma: 

Lemma (in ACA ). Let a € _S ° and let Tr(Zfx) where x 

is the Godel number of a. Then Z(a,0) » l iff Trn(a). 

(By induction on a.) 

2.8 (cf. 1181). Say that n is occupable (Ocp(n)) if 

(3Z)Tr(Z,n). By the above, Ocp(n) is not equivalent to any 

formula not containing bound class variables. The heart of 

Solovay's construction is the following theorem: 

2*9. Theorem. Let cp be a PA-formula and let ACA* be 

an extension of kQk such that ACA* proves "there is a sa

tisfactory sequence s of non-occupable length such that 

s(cp) = 1M. Then (ACAQ + 9 ) is interpretable in ACA*. 

Sketch of the proof: First we define an interpretation 

of ((PA)C + 9 ) in ACA* and then extend it to an interpreta

tion of ACAQ. The first idea is: consider values »(a) for 

occupable a (pedantically: for a of occupable Godel no.) -

this gives something as a complete Henkin extension and one 

could try to use it for a definition of an interpretation of 

PA putting 

Number* (x)sx is a Henkin constant, Ocp(x) and 

( Vy<x)(y a Henkin constant —> s(rx » y"1) = 0; 

Number* (x) & Number * (y) & Number* (z ) 

x +** y = z iff s(rx + y -» z"1) m 1 
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and analogously for successor and multiplication. 

We would be obliged to proTe an "it's snowing1' - it's snow

ing theorem saying 

lumber* (x ) k.»« —> 
Gfc) 

—> C 9* (xof...)=s.s(cp (x0,...)) • 13. 

But this requires closedneas of Ocp to some operations; 

and we only know that Ocp is closed under successor. The 

alteraatiTe is not to use all Henkin constants of occupable 

Godel no but to restrict oneself to x satisfying another 

non-arithmetical predicate I(x) such that 

(1) I(x)—^Ocp(x) 

(2) I(0)^(Vx)(I(x)-^I(x + 1)) 

(3) I is satisfactorily closed 

is proTable in ACA*. 

SoloTay's analysis shows that (a) under an appropriate 

coding of formulas, it suffices to haTe in (3) Kx) — > 

—>*I(xl06 x) and (b) using Ocp(x), we can indeed define a 

predicate I(x) such that (1) - (3) is proTable. This conc

ludes the construction of an interpretation of (PA + <p ) in 

ACA; . 

How this interpretation is extended to an interpreta

tion of ACA as follows: Define 

Class * (x)sx is a (PA)c-formula with just one free Tariab-

le T, I(x) and ( Vy<x)(y is a (PA)C formula with just T 

free—> s(( V T ) ( X S y)) * 0). 

Then (in ACA*) no x is both a number* and a class * i put 

ffumber *(x)& Class * (y) ->> (xe*ysS(y(x)) » 1) 
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where y(x) means formal substitution of the constant x into 

the formula y for the variable v). 

Then the validity of the induction axiom for classes in 

the interpretation is clear (since a is satisfactory and, 

thanks to the sufficient closedness of I, if y is a formula 

as above and I(y) then for the sentence z expressing the 

least element principle for y we have also I(z)). To prove 

arithmetical comprehension in the interpretation it is use

ful to deal with MGodel operations" as in £21 and to show 

closedness of classes under Godel operations in the sense of 

the interpretation. Here again we profit from the satisfac

tory closedness of I: if a class t is defined by a formula 

y such that I(y) then the formula defining the result of a 

Godel operation applied to Y must also satisfy I. This con

cludes our proof-sketch. 

The construction of a promised TT ̂ -sentence in I^Q^ ~ 

- Ip» will be almost immediate from the preceding thrown 

and from the modal considerations of the next section. 

§ 3. Some modal calculations 

3.1. Arithmetical interpretations of some modal propo-

sitional calculi turned out to be a powerful tool for uni

fying some self-referential investigations and also for so

me negative results. See 11151, -"131, till, 141. We shall desc

ribe a modal system as close to that of Smorynski [11] as 

possible. We differ from Smorynski in two aspects: first, 

we want to prove a theorem applying to Ro«ser~like sentences 
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as well as to Guaspari-like sentences, thus we hare to ge

neralize. On the other hand, in this paper we shall not need 

Sheperdson's generalization of Rosser sentences: in this as

pect we are less general. 

3*2- Language; Propositional variables p, q»...j prepo

sitional constants 1 , T . Connectives &,v ,-J , etc.} mo

dalities O $ A , V # Rosser witness comparisons -4 , ̂  » Cru-

aspari witness comparison ^ . 

3.3. fformulas and S-formulas. Propositional variables 

and constants are formulas; formulas are closed under logi

cal connectives and modalities. A formula is an 3-formula if 

it begins with a modality (is of the form DA, A A, V A ) . If 

A, B are S-formulas then A. 4 B, k-4 B, A ^ B are formulas. 

3.4. Arithmetical interpretation. For each propositio

nal variable p, p* is a sentence of PA. Modalities are in

terpreted by some ^?-formulas with one free variable and 

with just one unbounded existential quantifier. If a modali

ty 0 is interpreted by oc(x) and if A* = y then (ElA)* » 

SB O C ( Y ) - Necessity D is in this paper always interpreted 

by the formula (3y)(x is proved (in (PA)C) on level y), de

noted by Pr(x). A and V will be interpreted (1) either 

by the preceding provability formula or (2) by Intp(x) i.e. 

by (J3y)(y is a witnessed interpretation of (ACA. + x) in 

ACAQ) (where a witnessed interpretation is a tuple consist

ing of formulas defining numbers, classes, basic arithmeti

cal operations and membership in the aenae of the interpre

tation and from an ACAQ-proof of the conjunction of inter

pretations of finitely many axioms axiomati^ing A.CAQ plus 
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of x)j (3) or by (Pr(x) vlntp(x)) (rewritten as a Zl -pfor

mula with one existential quantifier). 

Hote that Pr uses a fixed binumeration oo of (3?A)C (ta

ke the natural one); sometimes we shall write Pr,̂  instead 

of I*r. Similarly, Iatp uses the natural binumeration fi (by 

listing) of ACA0i we write Intp^ instead of Intp if neces

sary. 

The arithmetical interpretation ;* commutes with logi

cal connectives. 

If A, B are S-formulas, A* « (3y)f (y) (« $> ) and B*-« 

» (olx)%(*) &* T ) then A 4 B and A*V B are interpreted as 

follows: 

U4 B)* • (3y)(T(y)&(Vz^y)n^(2)) 

U X B)* « (3y)(TCy)^(V.i^y)n^ (2)) 

la words, the former formula says that there is a wit

ness y for $ suoh that no z<y is a witness for *¥ ; simi

larly the latter. 

The definition of* (A^ B)* (for S-formulas A, B) is a 

bit more complicated. 

Uote that A* can have one of the following three forms: 

^o6 (f >» ^ A (^>» (Pr<*v Int*t3 >(^> 

for some q> . I»et (06+ u)(x) be the formula oc(x)vx » u* 

similarly (fo+ u)(x). Let Tr be the ^ J-truth predicate for 

^ ^-sentences. Then (A ̂  B)* says: 

There is a witness y for -?rc+u(5*) (Intp +̂U(cp ), 
p^ c + u(^) vlntp^+u(§p ) respectively), where u is a true 

iS-j-aentence, such that for no z-try, 2 is a witness for Hf . 

(Recall that Tf » B* #) 
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For example, if A* » Intp« (<̂  ) then (A^ B)* says "fhere 

is a true 2j?-sentence u such that there is a witnessed in

terpretation y of (ACAQ + ̂  ) in (ACAQ + u) such that for no 

a<y, % is a witness for 3-T ." 

For proTability, we may say that <?> is proTed on leTel 

y in (PA) + u iff each satisfactory sequence s on y such 

that s(u) » 1 giTes s(<p) = 1 (i.e., u1-^ $p is proTed4 on 

leTel y in (PA)C). 

In particular, if p* Is 9 then (On jir^Dp)* is 

(3y)(-i<p proved on level y&( v*z<y)C <ip not proved on le

vel z) and ( D i p ^ i p ) is (3y) (for some true S?^senten

ce u, u -^-ijp proved on level y&(V»<y)(cp not proved on 

level z). 

This completes the definition of an arithmetical inter

pretation * of modal formulas. 

Remark, fhe reader acquainted with 133 and/or 1X21 will 

now see why *-.? is called Gfuaspari witness comparison: simp

ly because witness comparison is combined with truth defini

tion for 2J ̂ -formulas. (But apparently not all of our fixed 

points using ̂  are particular oases of Smorynski's *Guas-

pari sentences of the first kind".) 

3*3. Axioms for modal formulas* 0 Taries over D 9A 9 

V ) £. Taries OTer 4 , -< , & . 

(Al) Propositional tautologies 

(A2) Xecessitations of tautologies 

(A3) A — > p A, A£B ->D(A£B) for all S-formulas A, B 

(A4) D ( A - ^ B ) - * ( D A — > D B ) for all A, B 

(A5) ACB—>A$ A,^ B — > A ^ B : A4B-> A=$ B 
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gKAvB-*- (A4B==-i (B-<A))) for all S-formulas A, 3 

(A6) (Q(A9:B)8<B) —•A for all S-formulas A, B 

(A7) i ( D A - ^ 0 A ) for any A 

(A8) D (A —» B) —=> ( 0 A —> 0 B) for any A, B 

(A9) ( 0 A —>-*a~ir\) for any A 

(A10) Q(A—>-»D i A ) - > D~\ A for any A 

The only deduction rule is modus ponens. This conclu

des the definition of our (tentative) modal calculus. 

Remark. (Al) - (A5) - (A7) - (A8) are like in Smoryi-

ski llll. The axiom (A6) is important for £ "bexng ^ j 

for -=. being 4 or -4 it is easily derived from the remain

ing ones. (A9) is Smorynski's superconsistencyj (A10) is 

Godel's second incompleteness theorem. 

3.6. We shall show that each arithmetical interpreta

tion of each axiom is provable in (PA + Conp.) (pedantical

ly, in (PA + Con^); note that by our choice of oc and (2 

we have PA I— Con^— Con^ ). 

Everything is clear except (1) A ^ B —> A and (2) 

(QU.2 B)8.B)--^ A. 

(1) Pirst let A* be Pr o C(^). Reason in PA. Evident

ly, (A^ B ) * implies (3u)(u true ^ ° , & is ((PA)C + u)-

provable). But since each true -2*1°-sentence is (PA)c-pro-

vable, we have Pr o C(^). If A* is Intp^ (g> ) then we rea

son in PA as follows: ( 3u)(u true %^» (ACA + ̂  ) inter-

pretable in (ACA + u)). But since each true .^5?-sentence 

is ACA -provable, there is an interpretation of (ACAQ + ̂  ) 

in AC A . For Pr^ v Intp^ argue similarly. 
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(2) Let B* be (3z)^(z)i first, let A* be Pr^ (f ), 

Let b be a witness for (3 z) %(%)• Then ^(b) and 

P r o C ( ( 3 y ^ b ) ( . 3 u true 2,J)(?is (?AC + u)~proved on l^vel 

y))„ Let 6lt + ..9&n be all ̂  ^-sentences such that ur->^ 

is (PA)c-proved on & level £ bj we have Pr^ (.£v<- True( «ri))f 

thus Pr^ ( V e . ) , Proc( V ^ — * $ P ) and hence Pr^ (cp)% 

For A* = Intp^ (<jp ) the proof is similar. (Hote that if 

i-p...,! are interpretations of (ACAQ + cp ) in (ACAQ + 6±) 

then they can be combined into a single interpretation i of 
no, 

(AOA0 + p ) in (ACA0 + A ^ e±).) 

Lemma 3.7 (Till ) . U (AsB)—* ( 0 A s JZ1 B) 

3.8. Main theorem. Let S be .^ or ^ and assume 

[S(p s ( A -i P £ V p)). 

(1) Prom th i s assumption, the following is provable in our 

logic; 

~»P, "I D p , - i P - i p , A n P —*- V P 

(?) If, moreover, £ i s -^ then the following is provable. 

- iVp , I A I P , D ( p ~ ^ i ( V p ^ A - i p ) ) , i D h V p - l A n p ) 

Proof. (1) Let A be ( A i p s V p ) * 

(a) pKA h D A (by (A3) H- D p (lemma)p n A ~i p (A9) 

p h A h A i p (by A5) 

Thus p n contradiction, hence *~ ~i P* 

(b) D P r - P A 8 c V p (Lemma and A7) I - A ~» P U6) 

D P H " i A " i p (A9) 

(c) D - i p r - A i p t - ( A n p £ y p ) v ( V p £ A - i p ) H 

H 7 p S A i P h 7 p i 

D n p h - n V i * ) P h - i V p 
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(d) / i i p h V p as in (c). 
(2) 

(a) vrph-(A-»p4Vrp)v(7p-(A"-ip)H(7p-< Anp)H 
r - D ( V p ^ A i p ) h D(^(^np-4Vp))HD-»p, hut 
h i D i p * 

(b) H D ( p ~ > ( A - i p 4 7p)), and h D ( ( A - i p ^ V p ) - ^ 
—>-r(Vp-<A-ip))f thus h D ( p - ^ i ( 7 p ^ A - i p ) . 

(c) D ( - I ( 7 P - < A - I P ) ) H D ( V P - ^ ( A - I P ^ V P ) ) 

h D ( V p - ^ p ) 
r-Q(~ip —*-iVp) 
h D ( i p - > n D p ) 

r - D d n p ) 
hDp, a contradiction. 

3»9» Corollary, Fix one of possible meanings of A $ V 

and S. . Let 9? he a fixed point such that the arithmetical 

interpretation of p by 9? makes S (p a. ( A ~ . p £ \ 7 p ) PA-

provable. Ehen 

(1) fP is false, g? is unprovable, ig> is unprovablej 

if -igp> is A then g? is V • 

(2) If s is 4 then 9? is not V f n<p is not A and 

<p is TT°~nonconservative: the sentence interpreting 

~i (Vp -4 Anp) shows it. 

3*10* Remark. If £ is -̂  and we succeed to show that 

fp is not V (so that, consequently, ig> is not A ) then <p 

is TTj-conservative: Let & be a 2-J °-sentenoe such that 

PAh-g?—>-»€? , i#e. PA I— cf —>-i<p $ then let d be a witness 

pectively (choose according to the meaning of A )• Argue in 
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(PA +-igp ): If & were true then beneath d there would be 

a witness for Vp, since there is no such witness, 6" must 

be false. We have proved ~\€ in (PA +n^>). 

§ 4* Interpretability in PA versus in ACA . Investiga

tions of § 2 and § 3 yield almost immediately examples of 

seven types of independent formulas. Let us begin with TT?-

nonconservative <p , i.e. <f> 4 IpA* 

4#1. <p =-? (n-icp4 QfP ) (Solovay). Obviously, #> is 

independent. We show that (ACAQ + ~i qp ) is interpret able in 

ACA0. It suffices to find an interpretation in (ACA0 + g> ). 

Argue in the last theory. There is a witness for £3~ig> * 

call least such witness nQ. Clearly, nQ is not occupable (see 

2.5 and 2.6). Consider n - 1: it is not a witness for Qg? 9 

thus there exists a satisfactory sequence s on n - 1 such 

that s(g?) » 0. How 2.9 applies. 

This is how Solovay constructed his example (except that 

he did not formulate explicitly 2.9)- Observe, furthermore, 

that (ACAQ + J? ) is interpretable in ACA0. Since (ACA@ + 

+ -i 0onACA ) is interpretable in ACA0 (of. e.g. tl63) it 

suffices to find an interpretation in (ACAQ + n ConACA + 
o 

+ -i g? ), but the last theory proves Q <p -< Q i cp . .Let nQ be 

the least witness for Dg> and continue as above. Thus g> 

is of type (l)(from 1.3). 

In the sequel, let A denote the modality of interpre-
A 

tabllity and let Q denote disjunction of provability and 

interpretability. 
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4.2. <f 2 ( D i g > 4 D j > ) . 

Clearly, n <p 4 *ACA * w e 8 n o w *kftt S> * XACA # A ^ a i n 

o o 
i t suffices to interpret (ACA + cp ) in (ACA + ~i CoaACA + 

o ° o 

+ -i$>). The last theory proves (Og>-< D-ig> ); *«* »0 "be 

the least witness for P y • Then nQ is not oecupable and 

n0 is neither a witness for A~ig? nor a witness forD~iy. 

Thus there is a satisfactory s on nQ such that a(g>) » 1. 

Apply 2.9. Thus g> is of type (2). 

4.3. <P = (D~ig» 4 D ^ ) . 

Clearly, <p <£ I AQ A • $o prove (ig? )e I AQ A argue in 

(ACA0 + 9 ) as in (1). Thus 9? is of type (3). 

4#4# y s s ( A ~ . c p 4 A 9 ) (Hijek £63). 

Clearly, <p , (~i 9 )£ IACA . Thus g<> is of type (4). 

How let us consider fixed points with --3 * recall 3.10 

telling that, if we prove that <p is not V then $> is TT ̂-con

servative, i.e. g> e lpA. 

4.5. cp 3 (D-i p -̂  Dcp). 

Clearly, $p is independent. This already shows that g> 

is TT ̂ -conservative. We show that (ACAQ + -j<p ) is inter-

pretable in (ACA0 + <p ). Argue in the last theory. Let n 

be the least number such that for some true ̂  ?-sentenoe u, 

u —> -icp is proved on level nQ. If nQ is oecupable, 

Tr(Z,n0), then necessarily 2(u,0) » 1 (see 2.7) and 

Z(~i§> ,0) « 0 (see 2.6), thus for the true satisfactory se

quence we have s(u —> -1 <p ) =- 0, a contradiction. This shows 

that nQ is not oecupable and n is not a witness for Qg> ; thus 

there is an s on n - 1 such that s(-t<p > = 1. Apply 2.9. 
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T© prove that (ACA0 + 9 ) is interpretable in ACAQ, 

consider (ACA^ + n CoaACA + ~»p ) * the last theory proves 

Dg> ^ P i ? (since ~i Con implies ( D - i g M D c p ) v 

v( D#> -4 0~i£> ) which implies (Q-i<p<£ Qg> ) v 

v ( D j > - ^ D i 9 ) ) # OJhus proceed analogously. We see that 

g> is of type (5). 

4.6. SPsDi^^D?. 

Again, g> being not Q , <p is TT^-con. Consequently, 
A 

—»<p i s not O and hence not A f i . e . (ng> )^I^rjA * ^° 
o 

prove <p e IAQA consider (ACA + "nGoaACA + "̂ !̂  ) a s above. 
o o 

Thus g> i s of type (6). 
A . 

4 .7. <p s (a~~iq> & D p). 

We prove g> 4 *ACA * Assume ^ e contrary and let i be 
o 

the least witness for Ag> . Work in (ACAQ + p ). Arguing as 

in the second half of 3.$ we show that ng> is provable (in 

PA), which is a contradiction. Thus indeed p 4 *ACA * Con~ 
A 0 

sequently, g> is not D and therefore y is TTJ-con. To 

show that (ij))€ I A C A , argue in (ACAQ + g> ). Let nQ be the 

least number such that u — > i p is provable on level n0, 

where u is true SiJ-sentence. As in 4.5, show that n0 is not 

occupable. Continue as usual; g> is of type (7). 

4.8. tofortunately, the author was unable to show that 

the fi3Q>oint <p ~{ hi<p ^ Aq> ) (or similar fixpoints with 

some A replaced by D ) is of type (8). This is definitely 

a fault of beauty* but this gives us an opportunity to pre

sent an entirely different method due to Lindstrom 181. Our 
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proof is a combination of his proofs of Theorem 2 and Theo

rem 5. (I was suggested by Svejdar to try to use LindstxiSn^s 

Theorem 2.) 

We are going to construct a formula of type (8) as 

n Con , where «/ is an appropriate PR-binumeration of PA. 
<-C 

Let oo be the natural binumeration of PA and for each PA-

sentence cp , let ool<pl (x) 35 (06 (x) & beneath x, there is 

no Q-proof of J" ). (Q is the usual finite subsystem of PA.) 

Put 
f(j> ) - n Con^-j , ̂  • ^ 1 f(*)eIACA0*»

 Y2 a *» * 

T«Ty J^ACA*-o 
Claim. I f Q 1 - 1 9 then cp$ Y i u Y 2 » t l i u a Y l u Y2 i s a o ~ 

no-consistent with Q i n Lindstrom's terminology. 

Proof of the claim. I f Q *-1 <p then PAi-Coi^r^^j , thus 

ACA h - i f ( y ) and f(<p)t£IA (-A . Furthermore, PA i~ rQ H -I j p 
o 

thus PA. H rQ r/-^?"1 ( s ince PA H COIIQ) and hence ACAQ H-

h o c C j ) ] - ? 06 f thus ACAQ H Con^ r^j = Coa^ , which implies 

Con £ - 4 --AcA • k̂® claim i s proved. 

By [8] Lemma 1, there i s a <p such that ne i ther g> nor 

ng> i s i n Th(Q)uY 1uY 2 (where Th(Q) i s the s e t of a l l f o r 

mulas provable in Q). We show that f(-icj> ) i s our formula of 

type ( 8 ) . F i r s t , we have f(-]<p ) * ~l Coi-oC,r(>)j • Since Q {-/-<£>, 

ocZcpl l?inumerates PA and hence ( 1 ^on^t^ e P̂A ^**m --13)* 

Second, ( -19 ) ^ Y 1 , thus f H g * )4IACA i t l l i r d t ? 4 Y2» t l m s 

o 

-itincp )4^xck " Illis concludes the proof. 

4.1 - 4.8 prove the following 

4.9. Main theorem II. Bach type (from 1.3) is non-empty. 
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4.10. Remark * After having read a preprint of this pa

per, Lindstrom gave simple alternative proofs of existence 

of sentences of types (2),(3),(4),(6),(7), assuming existence 

of sentences of type (1) and (5)i his proofs use results of 

[8]. I present my original proofs since I believe that modal 

considerations of § 5, which make explicit the modal nature 

of proofs of existence af seateaces of type (1) and (5), are 

of independent interest as a contribution to arithmetic in

terpretations of modal logic, and having our main theorem 

3.8, proofs of existence of seateaces of types (1) - (7) are 

reasonably simple. 
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