Commentationes Mathematicae Universitatis Carolinae

Petr Hájek

On interpretability in theories containing arithmetic. II.

Commentationes Mathematicae Universitatis Carolinae, Vol. 22 (1981), No. 4, 667--688
Persistent URL: http://dml.cz/dmlcz/106110

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ON INTERPRETABILITY IN THEORIES CONTAINING ARITHMETIC II Petr HAJEK

Abstract

Investigated are Peano arithmetic PA and its conservative extension ACA_{a} using classes. (Instead, one could speak on set theories $Z F$ and GB.) $I_{\text {PA }}$ (and $I_{A C A}$) denotes the class of all PA-sentences φ such that (PA $+\varphi$) is relatively interpretable in PA $\left(\left(A C A_{0}+\rho\right)\right.$ is relatively interpretable in $A C A_{0}$). Independent \sum_{1}^{0} sentences φ are classified according to whether $\varphi \in I_{\mathrm{PA}}, \varphi \in I_{\mathrm{ACA}_{0}}$, ($\neg \varphi$) ϵ $\in I_{A C A_{0}}$. (Note that $\neg \varphi$ can never be in $I_{P_{A}}$) This gives eight types of independent Σ_{l}^{0} sentences; it is shown that each type is non-empty. This subsumes and completes most known results on the relation of $I_{P A}$ and $I_{A C A_{0}}$. Main results are obtained by combining and generalizing methods of Solovay and Smorynski; a generalized fixed point calculation for a modal propositional calculus, which seems to be of independent interest, is presented and heavily used.

Key words: Relative interpretability, modal logic, arithmetic

Classification: 03F25, 03B45, 03F30

§ 1. Introduction
1.1. Let PA be Peano arithmetic and let $A C A_{0}$ denote the second-order theory with two sorts of variables (number variables x, y, \ldots and class variables X, Y, \ldots) having axioms $P A$ minus the induction schema for number variables, a new predicate \in such that $t \in Z$ is well formed iff t is a number term
and X is a class term and two groups of second order axioms:
Arithmetical comprehension: for each formula φ in which no class variable is quantified and which does not contain the variable X, the following is an axiom:

$$
(\exists X)(\forall x)(x \in X \equiv \varnothing)
$$

Induction axiom:

$(0 \in X \&(\forall x)(x \in X \rightarrow S(x) \in X)) \rightarrow(\forall x)(x \in X)$.
It is well known that $A C A_{0}$ is a conservative extension of PA (each model of PA is expandable to a model of $A C A_{0}$) ana that A_{0} is finitely axiomatizable (imitate the proof of Metatheorem 1 in [2]). Thus we can claim that

$$
P A: A C A_{0}=Z P: G B
$$

where ZF and GB is the Zermelo-Fraenkel and Gödel-Bernays set theory. And indeed, our results remain valid if we replace the pair (PA,ACA $)$ by ($Z F, G B$) or another similarly related pair of theories containing PA. But since our investigation conceras PA-sentences we shall speak on PA and ACA.
1.2. For each theory T containing $P A$, let I_{T} denote the set of all PA-sentences φ such that $(T+\mathscr{P}$) is relatively interpretable in T in the sense of Tarski, Mostowski and Robinson [17]. Let us survey the known facts on $I_{P A}$ and $I_{A C A_{0}}$.
(1) $I_{P A} \neq I_{A C A_{0}} ; I_{P A}$ is Π_{2}^{0}-complete (Solovay [14]) but $I_{A_{C A}}$ is recursively enumerable.
(2) $I_{P A}-I_{A C A_{0}} \neq 0$. In [5], a Π_{2}^{0} sentence φ is constructed such that $\varphi \in I_{P A}-I_{A C A_{0}}$ provided PA is ω-consistent; in [7] the assumption of ω-consiatency is replaced by that of (mere) conaistency. Solovay exhibited a \sum_{1}^{0} sentence
$\mathscr{P} \in I_{P A}-I_{A C A}$ (cf. [10]). Lindström ind ependently showed that for an appropriate binumeration \propto of PA, the Σ_{i}^{0} sentence \neg Con $_{\propto}$ is in $I_{P A}-I_{A C A}$. Lindström also constructed a Π_{2}^{0} sentence φ such that both φ and $\neg \varphi$ belong to $I_{P A}-I_{A C A_{0}}$ (see [8]).
(3) $I_{A C A_{0}}-I_{P A} \neq 0$. In [6] it is shown that if this difference is non-empty then it must contain a TT $_{1}^{0}$ sentence; Solovay constructed such a sentence [14]. His proof will be sketched and analyzed below.
(4) The following are equivalent: (i) $\varphi \in I_{P A}$; (ii) φ is Π_{i}^{0} conservative ($\Pi_{1}^{0}-\mathrm{con}$), i.e. for each Π_{i}^{0} sentence $\pi(P A+\varphi) \vdash \pi$ implies $P A \vdash \pi$; (iii) for each $n, P A F C o n_{(P A r n)}+\bar{\rho}$ (where PArn denotes the set of all axioms of PA that (i.e. whose Gödel numbers) are less than n). See [3],[6]. Consequently, if π is a Π_{i}^{0} sentence and $\varphi \in$ $\in I_{P A}$ then $P A \vdash \varphi$.
1.3. The above lead to the question what possibilities we have for independent Σ_{1}^{0} sentences φ according to the questions whether $\varphi \in I_{P A}, \varphi \in I_{A C A_{0}}$, $(\neg \varphi) \in I_{A C A_{0}}$. (If φ is an independent Σ_{1}^{0} sentence then necessarily $(\neg \varphi) \notin I_{P A}$. see the end of 1.2. Logically, we have eight types:

	$\varphi \in I_{\text {PA }}$	$\varphi \in I_{A C A_{0}}$	$(\neg \varphi) \in I_{A C A}$
1	no	yes	yes
2	no	yes	no
3	no	no	jes
4	no	no	no
5	yes	yes	yes
6	yes	yes	no
7	yes	no	yes
8	yes	no	no

We shall show that there are formulas of all these eight types.
1.4. Now let us make some preliminary observations. First it is easy to see that the formula 7 Con $_{\alpha}$ (where \propto is the natural PR-binumeration of $P A$) is of type 6, since we have PAt $\left(\mathrm{Con}_{\infty} \equiv \mathrm{Con}_{\mathrm{ACA}}{ }_{0}\right.$) (here Con ACA_{0} is expressed using the finitely many axioms sufficient to axiomatize $A_{0} A_{0}$); it is easy to show $\left(\neg \mathrm{Con}_{\alpha}\right) \in I_{P A},\left(\neg \mathrm{Con}_{A C A_{0}}\right) \in I_{A C A}{ }_{0}$ $\operatorname{Con}_{A_{C A}} \neq I_{A C A}$ (cf. [1],[16]). But we shall show another sentence of type 6 below.

Second, observe that a formula φ of type 7 has the nice property that $\varphi \in I_{P A}-I_{A C A_{0}}$ and $(\neg \varphi) \in I_{A C A_{0}}-I_{P A}$; thus \mathscr{P} is a Σ_{i}^{0} sentence showing that $I_{P A}-I_{A C A_{0}}$ is nonempty and $\neg \varphi$ is a Π_{i}^{0} sentence showing that $I_{A C A_{0}}-I_{P A}$ is non-empty.

Third, we should make clear what means will be used in our prools. Main tool for showing that something is in ACA。 will be the Solovay's method described below. Main tool for
showing that something is unprovable or is not in $I_{A C A_{0}}$ will be a generalized Smoryniskis fixed point calculation for fixed points defined by means of arithmetically interpreted modal logic. Fo show that something is or is not in $I_{P A}$, we shall show that the formula in question is or is not Π_{i}^{0} con. And in one case, where these methods fail, we shall imitate a construction due to Jindström.
1.5. Most of our (non)interpretability results will follew rather quickly and easily from Solevay's construction and from our generalization of Smoryński's fixed point calculation. The contribution to arithmetical interpretations of modal logics presented in $\$ 3$ is hoped to be of independent interest. Note that § 3 does not depend on § 2 .

§ 2. Soloray's construction analyzed

2.1. Solovay constructed a Π_{1}^{0} sentence $\varphi \in I_{A C A_{0}}$ -- $I_{P A}$ (in fact, in $I_{G B}-I_{Z P}$) in 1976; a full proof is contained in a letter by Solovay to the present author. Since [14] has still not been finished, we shall give here a more or less detailed sketch of Solovay's proof in a form that enables us to obtain some general consequences concerning $I_{A C A}$. This is done with kind permission of Professor Solovay. 2.2. First, Solovay uses a rather specific provability predicate related to Herbrand's analysis. Let $(P A)_{c}$ be the conservative extension of PA having the following property: For each sentence $(\exists x) \psi(x)$ of (PA) C_{c} there is a witnessing constant ${ }^{c}(\exists x) r(x)$ of $(P A)_{c}$ such that the follow-
ing witnessing axiom is an axiom of $(P A)_{C}$:
$(\exists x) \psi(x) \longrightarrow c^{c}(\exists x) \psi(x)$ is the minimal x such that $\psi(x)$. Let $\Delta(P A)$ be the set of closed instances of axioms of $(\mathrm{PA})_{c}$, of equality and identity axioms and of the logical axioms $(\forall x) \psi(x) \rightarrow \psi(t)$. Then we have the following lemma ([9] p. 49):

Let φ be a closed formula of (PA). Then (PA) $c_{c} \vdash \varphi$ iff φ is a tautological consequence of $\Delta(P A)$.

Following Solovay, call a satisfactoxy sequence on n each function s associating with each $(P A)_{c}$ sentence less than n zero or one such that s commutes with logical connectives and gives the value one to each element of $\Delta(P A)$. Then evidently we have the following:

Let φ be a closed formula of (PA) c_{c}. Then $(\mathrm{PA})_{c} \vdash \mathscr{P}$ iff there is an n such that for each aatisfactory sequence s on n we have $s(\varphi)=1$.

Say that φ is proved on level n if each satisfactory s on n gives value 1 to φ. From now on, saying " φ is provable" for a (PA) $c_{\text {-formula } \varphi} \varphi$ we shall always mean "there is an n such that φ is provable on level $n^{\prime \prime}$.
2.3. Let us work in $A C A_{0}$ extended conservatively by adding witnessing constants from $(P A)_{C}$ and the corresponding witnessing axioms. Let us make the following definition: A class Z is a satisfaction relation on j (in symbols: $\operatorname{Tr}(Z, j)$) if (roughly)Z is a function associating (1) with each pair (t, u) where t is a term of $(P A)_{c}$ whose Gödel number is less that j and u is a sufficiently long se-
quence of numbers a number and (2) with each pair (a,u) where a is a (PA) formula whose Gödel number is less than n and u is a satisfactorily long sequence of numbers a truth value 0 or 1 such that
(a) $Z\left(x_{j}, u\right)=(u)_{j}, Z\left(t_{1}+t_{2}, u\right)=Z\left(t_{1}, u\right)+Z\left(t_{2}, u\right)$ etc.,
(b) $Z\left(t_{1}=t_{2}, u\right)=1$ iff $Z\left(t_{1}, u\right)=Z\left(t_{2}, u\right)$ and
(c) the obvious Tarski's conditions for truth of composed formulas are valid.

Boring details of elaboration of this (evident) definition are left to the reader,
2.4. The following lemma is obvious:

Lemma. (1) ($\exists \mathrm{Z}) \operatorname{Tr}(\mathrm{Z}, 0)$
(2) ($\exists \mathrm{Z}) \operatorname{Tr}(Z, j) \rightarrow(\exists Z) \operatorname{Tr}(Z, j+1)$
(3) $\operatorname{Tr}\left(z_{1}, j_{1}\right) \& \operatorname{Tr}\left(z_{2}, j_{2}\right) \& j_{1} \leq j_{2} \rightarrow Z_{1} \subseteq Z_{2}$.

Caution: But the statement $(\forall j)(\exists Z) \operatorname{Tr}(Z, j)$ is unprovable in $A C A_{0}$ (pedantically: in $\left.A C A_{o}\right)_{c}$) since it implies evidently Con α where α is the natural binumeration of PA. This shows that the induction scheme
$\left(\psi(0) \&(\forall x)\left(\psi^{(}(x) \rightarrow \psi(S(x))\right) \rightarrow(\forall x) \psi(x)\right.$ is unprovable in A_{0} (which is well known).
2.5. In $A C A_{0}$, assume $\operatorname{Tr}(Z, j)$. Then Z defines a true satisfactory sequence s on j - restriction of s to pairs (a, ϕ) where a is a $(P A)_{c}$-sentence, $a \leq j$. Thus: if f is prom ved of level n and $\operatorname{Tr}(Z, n)$ then φ is true, i.e. $Z(\varphi, \phi)=1$.
2.6. "It's snowing" - it's snowing-metatheorem: Let φ
 $\left.A C A_{0} \vdash \operatorname{Tr}(z, j) \rightarrow \varphi\left(x_{0}, \ldots, x_{n}\right) \equiv z\left(\overline{\varphi\left(x_{0}, \ldots, x_{n}\right.}\right), x_{0}, \ldots, x_{n}\right)=1$.
(Proof by induction on the length of φ.)
2.7. Let $\operatorname{Tr}_{n}(x)$ be the Σ_{n}^{0}-predicate of PA which is a truth predicate for Σ_{1}^{0}-sentences constructed in the usual way; in particular, we have PA $\vdash \varphi \equiv \operatorname{Tr}_{n}(\bar{\rho})$ for each $\sum{ }_{\mathrm{n}}^{0}$ sentence φ. We have the following lemma:

Lemma (in ACA A_{0}. Let $a \in \sum_{n}^{0}$ and let $\operatorname{Tr}(Z, x)$ where x is the Gödel number of a. Then $Z(a, \phi)=1$ iff $\operatorname{Tr}_{n}(a)$.
(By induction on a.)
 $(\exists Z) \operatorname{Tr}(Z, n)$. By the above, $\operatorname{Ocp}(n)$ is not equivalent to any formula not containing bound class variables. The heart of Solovay ${ }^{\text {E }}$ construction is the following theorem:
2.9. Theorem. Let φ be a PA-formula and let $A C A A_{0}^{\prime}$ be an extension of $A C A_{0}$ such that $A C A_{o}^{\prime}$ proves "there is a sam tisfactory sequence s of non-occupable length such that $s(\varphi)=I^{\prime \prime}$. Then (ACA $+\varphi$) is interpretable in $\mathrm{ACA}_{0}^{\circ}{ }_{0}^{\circ}$

Sketch of the proof: Pirst we define an interpretation of $\left((P A)_{c}+\varphi\right)$ in $A C A_{0}^{0}$ and then extend it to an interpreter tion of ACA_{0}. The first idea is: consider values sía) for occupable a (pedantically: for a of occupable Gödel no.) this gives something as a complete Henkin extension and one could try to use it for a definition of an interpretation of PA putting

Number* $(x) \equiv x$ is a Henkin constant, $0 c p(x)$ and
$(\forall y<x)\left(y\right.$ a Henkin constant $\rightarrow s\left({ }^{\Gamma} \mathbf{x}=J^{7}\right)=0 ;$
Number* (x) \& Number* (y) \& Number* (z)

$$
x+* y=z \text { iff } s\left(\Gamma_{x}+y=z\right)=1
$$

and analogously for successor and multiplication.
We would be obliged to prove an "it's snowing" - it's snowing theorem saying

Number* $\left(x_{0}\right) \& \ldots \rightarrow$
(*)
$\rightarrow\left[\varphi^{*}\left(x_{0}, \ldots\right) \equiv s\left(\bar{\varphi}\left(x_{0}, \ldots\right)\right)=11\right.$.
But this requires closedness of Ocp to some operations; and we only know that Ocp is closed under successor. The alternative is not to use all Henkin constants of occupable Gödel no but to restrict oneself to x satisfying another non-arithmetical predicate $I(x)$ such that
(1) $I(x) \rightarrow 0 \operatorname{cp}(x)$
(2) $I(0) \&(\forall x)(I(x) \rightarrow I(x+1))$
(3) I is satisfactorily closed
is provable in $\mathrm{ACA}_{0}{ }^{\circ}$.
Solovay's analysis shows that (a) under an appropriate coding of formulas, it suffices to have in (3) $I(x) \longrightarrow$ $\rightarrow I\left(x^{\log x}\right.$) and (b) using $\operatorname{Ocp}(x)$, we can indeed define a predicate $I(x)$ such that (1) - (3) is provable. This conaludes the construction of an interpretation of $(P A+\mathscr{P}$) in $A C A_{0}^{\prime}$.

Now this interpretation is extended to an interpretation of ACA_{0} as follows: Define Class* $(x) \equiv x$ is a (PA) $c^{\text {-formula with just one free variab- }}$ le $V, I(x)$ and $(\forall V<x)\left(y\right.$ is a $(P A)_{c}$ formula with just V free $\rightarrow s((\forall \nabla)(x \equiv y))=0)$. Then (in $A C A_{0}^{*}$) no x is both a number* and a class*; put Number $*(x) \&$ Class $*(y) \rightarrow\left(x \epsilon^{*} y \equiv S(y(x))=1\right)$

Where $y(x)$ means fomal substitution of the constant x into the formula y for the variable v).

Then the validity of the induction axiom for classes in the interpretation is clear (since a is satisfactoxy and, thanks to the sufficient closedness of I, if y is a formula as above and $I(y)$ then for the sentence z expressing the least element principle for y we have also $I(z)$). To prove arithmetical comprehension in the interpretation it is useful to deal with "Gödel operations" as in [21 and to show closedness of classes under Gödel operations in the sense of the interpretation. Here again we profit from the satisfactory closedness of I : if a class Y is defined by a formula y such that $I(y)$ then the formula defining the result of a Gödel operation applied to Y must also satisfy I. This concludes our proot-sketch.

The construction of a promised $\Pi_{I^{-s e n t e n c e}}^{0}$ in $I_{A C A_{0}}{ }^{-}$ - $I_{\text {PA }}$ will be almost immediate from the preceding theorem and from the modal considerations of the next section.

§ 3. Some modal calculations

3.1. Arithmetical interpretations of some modal propom sitional calculi turned out to be a powerful tool for unifying some self-referential investigations and also for some negative results. See [15],[13],[1]],[4]. We shall describe a modal system as close to that of Smoryński [11] as possible. We differ from Smorynski in two aspects: first, we want to prove a theorem applying to Rosser-like sentences
as well as to Guaspari-like sentences, thus we have to generalize. On the other hand, in this paper we shall not need Sheperdson's generalization of Rosser sentences: in this aspect we are less general.
3.2. Ianguage: Propositional variables p, q,...; propositional constants \perp, T. Connectives $\&, V, 7$, etc.; mom dalities \square, Δ, ∇. Rosser witness comparisons \prec, \prec; Guaspari witness comparison \triangleq.
3.3. Formulas and S-formulas. Propositional variables and constants are formulas; formulas are closed under logical connectives and modalities. A formula is an s-formula if it begins with a modality (is of the form $\square \mathrm{A}, \triangle \mathrm{A}, \nabla \mathrm{A}$). If A, B are $S-f o r m u l a s$ then $A \nsim B, A \nmid B, A \triangleq B$ are formulas.
3.4. Arithmetjesl intexpretation. For each propositional variable p, p^{*} is a sentence of PA. Modalities are interpreted by some $\sum_{1}^{0}{ }_{1}^{-f o r m u l a s ~ w i t h ~ o n e ~ f r e e ~ v a r i a b l e ~ a n d ~}$ with just one unbounded existential quantifier. If a modality \square is interpreted by $\propto(x)$ and if $A^{*}=\psi$ then $(\nabla A)^{*}=$ $=\alpha(\bar{\psi})$. Necessity \square is in this paper always interpreted by the formuls ($\exists \mathrm{y}$) (x is proved (in (PA) ${ }_{c}$) on level y), denoted by $\operatorname{Pr}(x) . \Delta$ and ∇ will be interpreted (1) either by the preceding provability formula or (?) by Intp(x) i.e. by $(\exists y)\left(y\right.$ is a witnessed interpretation of (ACA $O_{0}+x$) in $A C A_{o}$) (where a witnessed interpretation is a tuple consisting of formulas defining numbers, classes, basic arithmetical operations and membership in the sense of the intexpretation and from an $A C A_{0}$-proof of the conjunction of interpretations of finitely many axioms axiomatizing $A C A$
of x); (3) or by $(\operatorname{Pr}(x) \vee \operatorname{Intp}(x))$ (rewritten as a Σ_{1}^{0}-form mula with one existential quantifier).

Hote that Pr uses a fixed binumeration α of $(P A)_{c}$ (ta ke the natural one); sometimes we shall write Pr_{α} instead of Pr. Similarly, Intp uses the natural binumeration β (by listing) of $A C A_{0}$; we write Intp $_{\beta}$ instead of Intp if necessaxy.

The arithmetical interpretation $*$ commutes with logical connectives.

If A, B are S-formulas, $A^{*}=(\exists y) \psi(y)(=\Phi)$ and $B^{*}=$ $=(\exists x) \not x(x)(=\Psi)$ then $A \prec B$ and $A \prec B$ are interpreted as follows:
$(A \npreceq B)^{*}=(\exists y)(\psi(y) \&(\forall z<y) \neg x(z))$
$(A \prec B)^{*}=(\exists y)(\psi(y) \&(\forall z \leq y) \neg x(z))$
In words, the former formula says that there is a witness y for Φ such that no $z<y$ is a witness for \dot{Y}; similarly the latter.

The definition of $(A \triangleq B)^{*}$ (for S-formulas A, B) is a bit more complicated.

Note that A^{*} can have one of the following three forma:
$\operatorname{Pr}_{\alpha}(\overline{\mathscr{P}}), \operatorname{Intp}_{\beta}(\overline{\mathscr{P}}),\left(\operatorname{Pr}_{\alpha} \vee \operatorname{Intp}_{\beta}\right)(\overline{\mathscr{P}})$
for some φ. Let $(\alpha+u)(x)$ be the formula $\alpha(x) \vee x=u$; similarly $(\beta+u)(x)$. Let Tr be the $\sum_{1}^{0}-t r u t h$ predicste for Σ_{i}^{0}-sentences. Then ($\left.A \leq B\right)^{*}$ says:

There is a witness y for $\operatorname{Pr}_{\alpha+u}(\bar{\zeta})\left(\operatorname{Intp}_{\beta+u}(\bar{\varphi})\right.$, $\operatorname{Pr}_{\alpha+u}(\bar{\varphi}) \vee \operatorname{Intp}_{\beta+u}(\bar{\varphi})$ respectively), where u is a true \sum_{1}^{0}-sentence, such that for no $z<y, z$ is a witness for Ψ. (Recall that $\Psi=B^{*}$.)

For example，if $A^{*}=\operatorname{Intp}_{\beta}(\overline{\mathscr{P}})$ then $(A \leq B)^{*}$ says＂There is a true \sum_{i}^{0}－sentence u such that there is a witnessed in－ terpretation y of（ $\mathrm{ACA}_{0}+\overline{\mathscr{P}}$ ）in（ACA ${ }_{0}+u$ ）such that for no $\mathrm{z}<\mathrm{y}, \mathrm{z}$ is a witness for Ψ ．＂

For provability，we may say that $\bar{\rho}$ is proved on level y in $(P A)_{c}+u$ iff each satisfactory sequence on y such that $s(u)=1$ gives $s(\mathscr{P})=1$（i．e．．$u \longrightarrow \overline{\mathscr{P}}$ is proved＇on level y in（ PA$)_{c}$ ）．

In particular，if p^{*} is φ then（ロフp々口p）＊is （ $\exists \mathrm{y})(\neg \bar{\varphi}$ proved on level $y \&(\forall z<y)(\bar{\rho}$ not proved on le－ vel z ）and（ $\square \neg p \Delta \neg p$ ）is（ $\exists y$ ）（for some true Σ_{i}^{0}－senten－ ce $u, u \rightarrow \neg \bar{\rho}$ proved on level $y \&(\forall z<y)(\bar{\varphi}$ not proved on level z）．

This completes the definition of an aritnmatical inter－ pretation $*$ of modal formulas．

Remark．The reader acquainted with［3］and／or［12］will now see why \triangleq is called Guaspari witness comparison：simp－ If because witness comparison is combined with truth defini－ tion for Σ_{j}^{0}－formulas．（But apparentíy not all of our fixed points using \boldsymbol{L} are particular cases of Smoryniski＇s＂Guas－ pari sentences of the first kind＂．）

3．5．Axioms for modal formulas．\backslash varies over \square, Δ ， $\nabla ; \subseteq$ varies over $\downarrow, \prec, ~ 仓$.
（Al）Propositional tautologies
（A2）Necessitations of tautologies
$(A 3) A \rightarrow \square A, A \subseteq B \rightarrow \square(A \subseteq B)$ for all S－formulas A, B
（A4）$\quad \square(A \rightarrow B) \rightarrow(\square A \rightarrow \square B)$ for all A, B
$(A 5) A \subseteq B \rightarrow A ; A \nsim B \rightarrow A \subseteq B: A \prec B \rightarrow A \prec B$

$$
\text { 国 }(A \vee B \rightarrow(A \not B \equiv \neg(B \prec A))) \text { for all S-formules } A \text {, } B
$$

（A6）$\quad(\square(A \subseteq B) \& B) \rightarrow A$ for all S－formulas A, B
（A7）圆（ $\square \mathrm{A} \rightarrow \square \mathrm{A})$ for any A
（A8）$\square(A \rightarrow B) \rightarrow(\square A \rightarrow \square B)$ for any A, B
（A9）（ $\square \mathrm{A} \rightarrow 7 \square 7 \mathrm{~A})$ for any A
（A10）$\square(A \rightarrow \neg 口 \neg A) \rightarrow \square \neg A$ for any A
The only deduction mule is modus ponens．This conclu－ des the definition of our（tentative）modal calculus．

Remark．（A1）－（A5）－（A7）－（A8）are like in Smoryi－ ski［11］．The axiom（A6）is important for \subseteq being \triangleq ； for \subseteq being $\}$ or \prec it is easily derived from the remain－ ing ones．（A9）is Smoryniski＇s superconsistency；（A10）is Gödel＇s second incompleteness theoren．

3．6．We shall show that each arithmetical interpreta－ tion of each axiom is provable in（ $P A+\mathrm{Con}_{\mathrm{PA}}$ ）（pedantical－ ly，in（PA $+\mathrm{Con}_{\alpha}$ ）；note that by our choice of α and β we have PA $\vdash \mathrm{Con}_{\alpha} \equiv \mathrm{Con}_{\beta}$ ）．

Everything is clear except（ 1 ）$A \triangleq B \rightarrow A$ and（2） $(\square(A \leqq B) \& B) \rightarrow A$ ．
（1）Firat let A^{*} be $\operatorname{Pr}_{\infty}(\bar{\varphi})$ ．Reason in PA．Evident－ ly，$(A \leqq B)^{*}$ implies $(\exists u)\left(u\right.$ true $\sum_{i}^{0}, \bar{\varphi}$ is $\left((P A)_{c}+u\right)$－ provable）．But since each true Σ_{1}^{0}－sentence is（PA）${ }_{c}$－pro－ vable，we have $\operatorname{Pr}_{\alpha}(\bar{\varphi})$ ．If A_{0}^{*} is $\operatorname{Intp}_{\beta}(\bar{\varphi})$ then we rea－ son in PA as follows：$(\exists u)\left(u\right.$ true $\Sigma_{1}^{0},\left(A C A A_{0}+\bar{\rho}\right)$ inter pretable in（ACA $\left.A_{0}+u\right)$ ）．But since each true \sum_{i}^{0}－sentence is $A C A_{0}$－provable，there is an interpretation of（ $A C A_{0}+\bar{\varphi}$ ） in $A C A_{0}$ ．For $\mathrm{Pr}_{x} \vee \operatorname{Intp}_{\beta}$ argue similarly．
（2）Let B^{*} be $(\exists z) x^{(z)}$ ；first，let A^{*} be $P_{x_{\alpha}}(\overline{\mathscr{G}})$ ， Let b be a witness for（ $\exists z) x(z)$ ．Then $x(b)$ and $\operatorname{Pr}_{\alpha}\left((\exists y \leqslant b)\left(\exists u\right.\right.$ true $\left.\Sigma_{1}^{0}\right)\left(\overline{9}\right.$ is（ $\left.P_{c}+u\right)$－proved on level y））．Let $\sigma_{1}, \ldots, \sigma_{n}$ be all Σ_{1}^{0}－sentences such that $u \longrightarrow \overline{\mathscr{P}}$ is（PA）${ }_{c}$－proved on a level $\leq b$ ；we have $\operatorname{Pr}_{\alpha}\left({ }_{i} \stackrel{n}{=} \operatorname{True}\left(\sigma_{i}\right)\right.$ ）， thus $\operatorname{Pr}_{\infty}\left(V \sigma_{i}\right), \operatorname{Pr}_{\infty}\left(V \sigma_{i} \rightarrow \overline{\mathscr{\varphi}}\right)$ and hence $\operatorname{Pr}_{\infty}(\bar{\varphi})$ ．

For $A^{*}=\operatorname{Intp}_{\beta}(\overline{\mathscr{P}})$ the proof is similar．（Note that if i_{1}, \ldots, i_{n} are interpretations of（ $\mathrm{ACA}_{0}+\bar{\rho}$ ）in（ $\mathrm{ACA}_{0}+\sigma_{i}$ ） then they can be combined into a single interpretation i of $\left(A C A_{0}+\varphi\right)$ in（ACA $\left.+i \underset{i}{\underline{n}} \sigma_{i}\right)$ ．）

Lemma 3．7（［11］）．$\square(A \equiv B) \rightarrow(\square A \equiv \square B)$
3．8．Main theorem．Let \subseteq be \prec or $\leq \underline{a}$ and assume

$$
[S(p \equiv(\Delta \neg p \subseteq \nabla p))
$$

（1）From this assumption，the followins is provable in our logic：

$$
\neg p, \quad \neg \square p, \neg \square \neg p, \quad \Delta \neg p \rightarrow \nabla p
$$

（？）If，moreover，\subseteq is \prec then the following is provable： $\neg \nabla \mathrm{p}, \neg \Delta \neg \mathrm{p}, \square(\mathrm{p} \longrightarrow \neg(\nabla \mathrm{p} \prec \Delta \neg \mathrm{p}))$ ，$\neg \square(\neg \nabla \mathrm{p} \prec \Delta \neg \mathrm{p})$

Proof．（1）Let A be $(\Delta \neg p \subseteq \nabla p)$ ．
（a）$p \vdash A \vdash \square A(b y(A 3) \vdash \square p(1 e m m a) \vdash \neg \Delta \neg p(A 9)$ $\mathrm{p} \vdash \mathrm{A} \vdash \triangle \neg \mathrm{p}$（by A5）

Thus $p \vdash$ contradiction，hence $\vdash \neg \mathrm{p}$ ．
（b）$\square \mathrm{p} \vdash \square A \& \nabla \mathrm{p}$（Lemma and A 7 ）$\vdash \Delta \neg \mathrm{p}(\mathrm{A} 6)$
$\square \mathrm{p} \vdash \neg \Delta \neg \mathrm{p}$（A9）
（c）$\square \neg p \vdash \Delta \neg p \vdash(\Delta \neg p \subseteq \nabla p) \vee(\nabla p \subseteq \Delta \neg p) \vdash$
$\vdash \nabla \mathrm{p} \subseteq \Delta \neg \mathrm{p} \vdash \nabla \mathrm{p} ;$
ロᄀpトフロᄀᄀpトᄀจp
（d）$\Delta \neg p \vdash \nabla p$ as in（c）．
（2）
（a）$\quad \nabla p \vdash(\Delta \neg p \preceq \nabla p) \vee(\nabla p \prec \Delta \neg p) \vdash(\nabla p \prec \Delta \neg p) \vdash$ $\vdash \square(\nabla p \prec \Delta \neg p) \vdash \square(\neg(\Delta \neg p \preceq \nabla p)) \vdash \square \neg p$ ，but $ト ワ ロ フ p$.
（b）$\vdash \square(p \rightarrow(\Delta \neg p \prec \nabla p))$ ，and $\vdash \square((\Delta \neg p \preceq \nabla p) \rightarrow$ $\rightarrow \neg(\nabla p \prec \Delta \neg p))$ ，thus $\vdash \square(p \rightarrow \neg(\nabla p \prec \Delta \neg p)$ ．
（c）$\square(\neg(\nabla p \nmid \Delta \neg p)) \vdash \square(\nabla p \rightarrow(\Delta \neg p \nsim \nabla p))$

$$
\begin{aligned}
& \vdash \square(\nabla p \rightarrow p) \\
& \vdash \square(\neg p \rightarrow \neg \nabla p) \\
& \vdash \square(\neg p \rightarrow \neg \square p) \\
& \vdash \square(\neg \neg p) \\
& \vdash \square p, \text { a contradiction. }
\end{aligned}
$$

3．9．Corollary．Fix one of possible meanings of Δ, ∇ and \subseteq ．Let φ be a fixed point such that the arithmetical interpretation of p by \mathscr{P} makes $(p \equiv(\Delta \neg p \subseteq \nabla p)$ PA－ provable．Then
（1）ρ is false，φ is unprovable，$\neg \varphi$ is unprovable； if $\neg \varphi$ is Δ then φ is ∇ ．
（2）If \subseteq is \preccurlyeq then φ is not $\nabla, \neg \varphi$ is not Δ and φ is Π_{i}^{0}－nonconservative：the sentence interpreting $\neg(\nabla p \prec \Delta \neg p)$ shows it．

3．10．Remark．If \subseteq is \leq and we succeed to show that \mathscr{P} is not ∇（so that，consequently，$\neg \varphi$ is not Δ ）then φ is Π_{1}^{0}－conservative：Let σ be a \sum_{i}^{0}－sentence such that PA $\vdash \varphi \rightarrow \neg \sigma$ ，i．e．PA $\vdash \sigma \rightarrow \neg \varphi$ ；then let d be a witness for $\operatorname{Pr}_{\alpha+\bar{\sigma}}(\neg \bar{\varphi}), \operatorname{Intp}_{\beta+\bar{\sigma}}(\neg \bar{\varphi}),\left(\operatorname{Pr}_{\alpha+\bar{\sigma}} \vee \operatorname{Intp}_{\beta+\bar{\sigma}}\right)(\neg \bar{\varphi})$ res－ pectively（choose according to the meaning of Δ ）．Argue in
$(P A+7 \varphi):$ If σ were true then beneath d there would be a witness for ∇p; since there is no such witness, σ must be false. We have proved 7σ in ($P A+7 \wp$).
§ 4. Interpretability in PA versus in ACA ${ }_{0}$. Investigetions of § 2 and § 3 yield almost imadiately examples of seven types of independent formulas. Let us begin with π_{1}^{0} nonconservative φ, i.e. $\varphi \notin I_{P A}$:
4.1. $\varphi \equiv$ ($\square \neg \varphi \leqslant \square \varphi$) (Solovay). Obviously, φ is independent. We show that ($A C A_{0}+7 \varphi$) is interpretable in A_{0}. It suffices to find an interpretation in ($\left.A_{0}+5\right)$. Argue in the last theory. There is a witness for $\square \neg \varphi$; call least such witness n_{0}. Clearly, n_{0} is not occupable (see 2.5 and 2.6). Consider $n_{0}-1$: it is not a witness for $\square \mathscr{C}$, thus there exists a satisfactory sequence s on $n_{0}-1$ such that $s(\varphi)=0$. Now 2.9 applies.

This is how Solovay constructed his example (except that he did not formulate explicitly 2.9). Observe, furthermore, that $\left(A C A_{0}+\varphi\right)$ is interpretable in $A C A_{0}$. Since (ACA ${ }_{0}+$ + Con $_{A_{C A}}$) is interpretable in ACA ${ }_{0}$ (of. e.g. [16]) it auffices to Iind an interpretation in $\left(\mathrm{ACA}_{0}+7 \mathrm{Con}_{\mathrm{ACA}_{0}}+\right.$ $+\neg \varphi$); but the last theory proves $\square \varphi \prec \square \neg \varphi$. Let n_{0} be the least witness for $\square \boldsymbol{\square}$ and continue as above. Thus ρ is of type (1)(from 1.3).

In the sequel, let Δ denote the modality of interpretability and let $\hat{\square}$ denote disjunction of provability and interpretability.

4．2．$\varphi \equiv(\hat{\square} \neg \varphi$ 子 $\square \varphi$ ）．
clearly，$\neg \varphi \notin I_{A C A_{0}}$ ；we show that $\varphi \in I_{A C A_{0}}$ ．Again it suffices to interpret $\left(\mathrm{ACA}_{0}+\varphi\right)$ in（ $\mathrm{ACA}_{0}+\neg \mathrm{Con}_{\mathrm{ACA}_{0}}+$ $+\neg \varphi$ ）．The last theory proves（ $\square \varphi \prec \hat{\square} \neg \varphi$ ）；let n_{0} be the least witness for $\square \varphi$ ．Then n_{0} is not occupable and n_{0} is neither a witness for $\Delta \neg \varphi$ nor a witness for口 $\square \varphi$ ． Thus there is a satisfactory s on n_{0} such that $s(\varphi)=1$ ． Apply 2．9．Thus φ is of type（2）．

4．3．$\varphi \equiv(\square \neg \varphi$ 人合 φ ）。
Clearly，$\varphi \neq I_{A C A_{0}}$ ．To prove $(\neg \varphi) \in I_{A C A_{0}}$ argue in （ $\mathrm{ACA}_{0}+\varphi$ ）as in（1）．Thus φ is of type（3）．

4．4．$\varphi=(\Delta \neg \varphi \& \Delta \varphi)$（Hájek［6］）．
Clearly，$\varphi,(\neg \varphi) \notin I_{A_{A} A_{0}}$ ．Thus φ is of type（4）．
Now let us consider fixed points with $\underline{\Delta}$ ；recall 3.10 telling that if we prove that φ is not ∇ then φ is Π_{1}^{0}－con－ servative，i．e．$\varphi \in I_{P A}$ ．

4．5．$\varphi \equiv(\square \neg \varphi \leqq \square \varphi)$ ．
Clearly，φ is independent．This already shows that φ is $\Pi{ }_{i}$－conservative．We show that $\left(A C A_{0}+\neg \varphi\right)$ is inter－ pretable in（ $A C A_{0}+\varphi$ ）．Argue in the last theory．Let n_{0} be the least number such that for some true Σ_{i}^{0}－sentence u ， $u \rightarrow \neg \bar{\varphi}$ is proved on level n_{0} ．If n_{0} is occupable， $\operatorname{Tr}\left(z, n_{0}\right)$ ，then necessarily $Z(u, \phi)=1$（see 2．7）and $Z(\neg \varphi, \varnothing)=0$（see 2．6），thus for the true satisfactory se－ quence we have $s(u \rightarrow \neg \bar{\varphi})=0$ ，a contradiction．This shows that n_{0} is not occupable and n_{0} is not a witness for $\square \varphi$ ；thus there is an s on $n_{0}-1$ such that $s(\neg \varphi)=1$ ．Apply 2．9．

> To prove that（ $\mathrm{ACA}_{0}+\varphi$ ）is interpretable in ACA_{0} ， consider（ $\left.\mathrm{ACA}_{0}+\neg \mathrm{Con}_{\mathrm{ACA}_{0}}+\neg \varphi\right)_{\text {；}}$ the last theory proves $\square \varphi \leq \square \neg \varphi$（since \neg Con implies（ $\square \neg \varphi \preccurlyeq \square \varphi$ ）\vee $\vee(\square \varphi \prec \square \neg \varphi)$ which implies（ロᄀ甲Sロழ）\vee $\checkmark(\square \varphi \triangle \square \neg \varphi))$ ．Thus proceed analogously．We see that φ is of type（5）．

4．6．$\varphi \equiv \hat{\square} \neg \varphi \triangleq \square \varphi$ ．
Again，φ being not \square, φ is Π_{1}^{0}－con．Consequently， $\neg \varphi$ is not $\hat{\square}$ and hence not Δ ，i．e．$(\neg \mathscr{\varphi}) \notin I_{A C A_{0}}$ ．To prove $\varphi \in I_{A_{C A}}$ consider（ $A_{0}+\neg \operatorname{Con}_{A_{A C A}}+\neg \varphi$ ）as above． Thus φ is of type（6）．

4．7．$\varphi \equiv(\square \neg \varphi \leq \hat{\square} \varphi)$ ．
We prove $\varphi \neq I_{A C A_{0}}$ ．Assume the contrary and let i be the least witness for $\Delta \varphi$ ．Work in（ $\mathrm{ACA}_{0}+\varphi$ ）．Arguing as in the second half of 3.6 we show that 7φ is provable（in PA），which is a contrediction．Thus indeed $\varphi \neq I_{A G A_{0}}$ ．Con－ sequently，φ is not $\hat{\square}$ and therefore φ is $\Pi_{1}^{0}-$ con．To show that $(\neg \varphi) \in I_{A C A_{0}}$ ，argue in $\left(A C A_{0}+\varphi\right)$ ．Let n_{0} be the least number such that $u \longrightarrow \neg \rho$ is provable on level n_{0} ， where u is true Σ_{i}^{0}－sentence．As in 4．5，show that n_{0} is not occupable．Continue as usual；φ is of type（7）．

4．8．Unfortunately，the author was unable to show that the fixpoint $\varphi \equiv(\Delta \neg \varphi \Delta \Delta \varphi)$（or similar fixpoints with some Δ replaced by $\hat{\square}$ ）is of type（8）．This is definitely a fault of beauty；but this gives us an opportunity to pre－ sent an entirely different method due to Lindström［8］．Our
proof is a combination of his proofs of Theorem 2 and Theorem 5. (I was suggested by Svejdar to try to use Indstrine 's Theorem 2.)

We are going to construct a formula of type (8) as \neg Con α^{\prime} where α^{\prime} is an appropriate PR-binumeration of PA. Let \propto be the natural binumeration of PA and for each PAsentence φ, let $\alpha[\varphi](x) \equiv(\alpha(x)$ \& beneath x, there is no Q-proof of $\bar{\varphi}$). (Q is the usual finite subsystem of PA.) Put

$$
\begin{aligned}
f(\varphi)= & \left.\neg \operatorname{Con}_{\alpha[\varphi]}, Y_{1}=f \varphi ; f(\varphi) \in I_{A C A_{0}}\right\}, Y_{2}=\{\varphi ; \\
& \left.\neg f(\neg \varphi) \in I_{A C A_{0}}\right\} .
\end{aligned}
$$

Claim. If $Q \vdash \neg \varphi$ then $\varphi \notin Y_{1} \cup Y_{2}$, thus $Y_{1} \cup Y_{2}$ is mo-no-consistent with Q in Lindstrom's terminology.

Proof of the claim. If $Q \vdash \neg \varphi$ then PAトCon $\propto[\neg \varphi]$, thus $A C A_{0} \vdash \neg \mathrm{f}(\varphi)$ and $\mathrm{f}(\varphi) \notin I_{A C A_{0}}$. Frurthermore, $\mathrm{PA} \vdash \Gamma_{Q} \vdash \neg \varphi \overline{ }$ thus $P A \vdash r_{Q} \nvdash \varphi \bar{\rho}$ (since $P A \vdash \operatorname{Con}_{Q}$) and hence $A C A_{0} \vdash$ $\vdash \propto[\varphi] \equiv \propto$, thus $A C A_{0} \vdash \operatorname{Con}_{\alpha[\rho]} \equiv \operatorname{Con}_{\infty}$, which implies $\operatorname{Con}_{\alpha[\varphi]} \neq I_{A C A_{0}}$. The claim is proved.

By [8] Lemma 1 , there is a 9 such that neither 9 nor $\neg \varphi$ is in $T h(Q) \cup Y_{1} \cup Y_{2}$ (where $\operatorname{Th}(Q)$ is the set of all form mulas provable in Q). We show that $f(\neg \varphi)$ is our formula of type (8). First, we have $f(\neg \varphi)=\neg$ Con $_{\propto}[\varphi]$. Since $Q \nvdash \varphi$, $\propto[\varphi]$ binumerates $P A$ and hence $\left(\neg \operatorname{Con}_{\propto[\varphi]}\right) \in I_{P A}$ (see [1]). Second, $(\neg \varphi) \notin Y_{1}$, thus $f(\neg \varphi) \notin I_{A C A_{0}} ;$ third, $\varphi \notin Y_{2}$, thus $\neg f(\neg \varphi) \notin I_{A C A_{0}}$. This concludes the proof.
4.1-4.8 prove the following
4.9. Main theorem II. Bach type (from 1.3) is non-empty.
4.10. Remari. After having read a preprint of this paper, Lindström gave simple alternative proots of existence of sentences of types (2),(3),(4),(6),(7), assuming existence of sentences of type (1) and (5); his proofs use results of [8]. I present my original proofs since I believe that modal considerations of $\S 5$, which make explicit the modal nature of proofs of existence of sentences of type (1) and (5), are of independent interest as a contribution to arithmetic interpretations of modal logic, and having our main theorem 3.8, proofs of exiatence of sentences of types (1) - (7) are reasonably simple.

References

[1] S. FEFERMAN: Arithmetization of metamathematics in a general setting, Fund. Kath. 49(1960), 33-92.
[2] K. GÖDEL: The consistency of the axiom of choice etc., Princeton Univ. Press 1940.
[3] D. GUASPARI: Partially conservative extensions of arithmetic, Trans. Amer. Math. Soc. 254(1979), 47-68.
[4] D. GUASPARI, R. SOLOVAY: Rosser sentences, Annals of Math. Log. 16(1979), 81-99.
[5] P. H\&JEK: On interpretability in set theories, Comment. Math. Univ. Carolinae 12(1971), 73-79.
[6] P. HKJEK: On interpretability in set theories II, Comment. Math. Univ. Carolinae 13(1972), 445-455.
[7] M. HAJKOVA, P. HAJEK: On interpretability in theories containing arithmetic, Fund. Math. 76(1972), 131-137.
[8] P. LINDSTRÖM: Some results on interpretability, Proc. 5th Scand. Log. Symp. Aalborg Univ. Fress 1979.
[9] J.R. SHOENFIELD: Mathematical logic, Addison-Wesley
1967.
[10] C. SMORYISKI: Fifty years of self-reference in arithmetic, to appear.
[11] C. SMORYASKI: A ubiquitous fixed-point calculation, to appear.
[12] C. SMORXISKI: Calculating self-referential statements: Guaspari sentences of first kind, to appear.
[13] C. SMORYISKI: A short course in modal logic, handwritten notes.
[14] R. SOLOVAY: Interpretability in set theories, in preperation.
[15] R. SOLOVAY: Provability interpretations of modal logic, Israel J. of Math. 25(1976), 287-304.
[16] V. ŠVEJDAR: Degrees of intexpretability, Comment. Math. Univ. Carolinae 19(1978), 789-813.
[17] A. TARSKI, A. MOSTOWSKI, R.M. ROBINSON: Undecidable theories, North-Holland Publ. Co. 1953.
[18] P. VOPKKKKA; P. HKJEK: Existence of a generalized model of Gödel-Bernays set theory, Bull. Acad. Polon. Sci. 21(1973), 1079-1086.

Matematický ústav ČSAV, Žitní 25, 11000 Praha 1, Ceskoslovensko

