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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

22.4 (1961) 

ULTRAFILTERS OF SETS 
A. SOCHOR, P. VOPÉNKA 

Abstract; la tke Alternative Set (Theory we shall stu
dy ultrarilters of sets defiaiag tke following two ckaracte-
ristics of aa ultrafiltar IK: <-U Wl) - ioo i ( Vp)((pl£ <*< & 
& UP Ae TIL )—» p <\ *m±0% and s>l7Ti) - -Too* ( V x e $t) -i 
nx z&cc} # Por aay two cuts we discuss tke existence of aa 
ultrafliter suck that its characteristics equal to givea 
cuts. 

Key words; Alternative Set Tkeoryf ultraf ilter, set-
theoretically definable class, co -complete ultrafilter. 

Glassifieatioa: 03E70, 03H99 

In AST, we are going to deal with ultraf liters on tke 

system of all set-tkeoretically definable classes (cf. ck. 

II [V]j tkis system is denoted by tke symbol Sdy). In tke 

paper we restrict ourselves to ultrafilters containing a 

set* Tke tkeory of suck ultrafilters essentially differs 

from tke corresponding tkeory in ZF$ in particular in AST 

we are able to construct on arbitrary infinite set ultra-

filters wkick are "measures" (and moreover we can deal witk 

additional properties wkick on one kand distinguisk ultra-

filters in AST and wkick on tke otker kand are equivalent 

in ZF). 

For every set x there is exactly one natural number 

oo such that there is a one-one mapping of x onto oO which 
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is a set (in symbols x w oc ). We shall investigate the fol

lowing two cuts which naturally characterise an ultrafilter 

m: 
<u,liat,) -* {OGJ ( Vp)((p ^ oO&Up e m ) — > P n W^O)i 

v ( W ) - {*>i ( V x e m ) - i x ^ o c i 

and we are going to show necessary and sufficient conditions 

for cuts R and S such that there i s an ultrafilter m with 

(UslTft) - R &v( M) * S. (Let us remind that in ZP i f M i s 

an ultrafilter which i s a measure on a measurable cardinal #e 

then both correspoding characteristics equal to #e •) 

If ffll i s a nontrivial ultrafi lter on Sdy containing a 

set then the routine calculation gives us the equalities 

<uA W) * «fco j (V'p)((p ^ oo &(fp e 03t &"p i s pairwise dis

joint")---^ p A m*Q)l «{o6j (Vf)((dom(f) £oo& rng(f) s. 

£ W ) - > n r n g ( f ) e M )? =-{oG} (V /f)((do»(f) £oc^< 

fcrag(f) &-9tt)-> n .rag( f )40 ) | . 

In fact, defining for every p with Up € W, and every 

g which i s a one-one mapping of p into oC/ the function f 0y )« 

- U p - g""1(x) w e S6* aom(f) c o o l ( p A ^ S 0 = rng(f) £. 

£ W ) & f) rng(f) « 0 and defining furthermore for every f 

with dom(f) o oc 8, rng(f) s 9ft the partition p • { f) rng(f)}u 

uif) itift ) j ( S e / } - t(r)i 0 c r ^ o c } we get Up « f (0)c 

e m & p ^ o 6 & « p i 8 pairwise disjoint" & (p n ^ 4= 0 == 

= nrng(f) 6 W ) . 

Let us recall that a nontrivial ultrafi l ter W, contain

ing a set i s called o-complete i f f for every sequence iun; 

n£-?N i s Wl there i a u c f with u £ rKu^jneFNr* Further

more X i s a sr -c lass ( e'-class respectively) i f f there i s a 
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sequence ^ j a e E I j £ S d v with X » f K X ^ i a e l l i (X » tHX^i 

ae?B\ respectively) . We are going to write x^. X i f f the

re i s a set-function of x into X and the symbol x V X deno

tes i x i L Evidently, i f X i s a out taea x 5 X i f f 

( 3 o C € X ) x ^ o c . 

Theorem. If Tit i s a aoatrivial u l t ra f i l t er oa Sdv 

containing a set then 

(a) oc , ft e ^ ^ t ) - — » o 6 . ft e {*> ('&(,) 

(h) {oce<cu(ddl) &/3e v ( ^ t ) ) - > o o / 3 e v ( ^ ) 

(o) !B*c ( t 6 ( ^ ) s : v ( ^ ) c M 

(d) i f V ( 0 # ) i s a or-class thea ^t i s not <D -complete 

(e) i f Ififc, i s not <&-complete then fdWdt) » M 

.Proof, (a) If oc 9 (ie foi'ffi ) and i f U£ u ^f y e oC & 

&r/e fole'ffl then there i s of̂  e ft such that U *£ u . j ^ e 
a > O 

€ oc } e ®it and thus there i s %*Q e cc with u e sffit * 
9/o'^o 

(D) If u -J oc - /3 & oc € <t<,0#) & /3 e v (3010 then there 

i s a sequence { u j <% e <=c J such that u ^ /3 for every ft e 00 

and such that Ui u $ y e cc? * u. Supposing u e #?t we can 

choose 3* € oc with u e VVl which contradicts u 3 ft € 
To <̂ o 

B V(WI)* 

(e) Since '©t i s an u l traf i l t er , we have 2 6(U-(3?Z) and 

thence using (a) we get 1 9 ^ ( ^ 1 . If u e M j u ^ oc £ 

e (ceX^) then -Wxj;x€U } % cc &> Vii x l j x e u } e 1&C and the

refore ^ would he t r i v i a l . Since 3# contains a se t , we 

have v ( ^ ) c H , 

(d) Assuming that v (7?t) i s a .rr-class we can const

ruct a sequence 4ooniaeFIf? so that fl -C oonjn€-FN? » v ( ^ f c ) . 

Thus there i s a sequence -{u^neFN? & ffit such that u^ ?y cc 
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for every ne Bf. Moreover if u£ H -f u^ineral *-*«--

u ̂  v (1?t) and therefore u 45 ffltl * we have proved that 

H3h is not <-> -complete. 

(e) Let us assume that ^(^)+3?N and that a sequen

ce 4u nineWj £ - W l i given. Put ?s-(fl { u^a^n? -u^^i 

neFHj. By the prolongation axiom there is a paixwise dis

joint set p so that Pc p &Up * uQ e M& p $ <a(fl&). fhus 

there is uc p n W and evidently u £ f) •{ u^jn e FN j, thus ## 

is cd -complete. 

Using the inequality 00+ fi £ 2 aax(o£f t3 ) we get the 

following result. 

Consequenoe. If 93l is a nontrivial ttltrafilter on 

Sdv containing a set then the cuts (^(M) and v(^t) are 

closed w.r.t. +. 

We are going to show that for every cuts R9ScN there 

are ultrafilters M 9M' such that <yt(Wt) « ^(a.ft') • 

• B & y ( 3 W ) « v ( a ^ / ) - S a a d a a t is ̂ -complete and #J/ 

is not co -complete under the assumption that the existence 

of such ttltrafliters is not excluded by the first theorem 

of the article. In particular let us note that if S is a 

fff -class then for every ultrafliter on Sdy containing a set 

we have <oX 3?t) » FH and &t cannot he co -complete and the

refore the following theorem solves this case fully. 

Theorem. If a proper semiset S is a out whioh is 

closed w.r.t. + then there is a nontrivial ultraf liter Wt 

on Sdy which is not co-complete and such that i> (Oft ) « S. 

Proof. Put Hi m ioo - x$ 06 4 S& x ̂  S^. Supposing /S ̂  

2: 06 4 S&x.yrS S we get (06- x)n((3- y) » oo- (xuy) 
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and x u y d S, Therefore we are able to choose an ultrafil-

ter ffltl on Sdy such that 31 s. 'Vli . If x 5 S then for every 

cc ^ S we have oc- x e W and thence x £ ffll , from which 

the inclusion S 9v('7H) follows* The converse inclusion i s 

a trivial consequence of the formula o&4 S —> oce ^ l . 

If S i s a ^r-class then there i s no ^-complete ultra-

f i l t er M on Sdy with v ( M ) * S and hence we can assume 

up to the end of the proof that S i s no ar-class. Let Wl^ 

be a nontrivial ultrafilter on Sdy with y( ##0) » S and 

let itfl^ he an ultrafi lter on Sdy such that M-^2 i oc - x* 

cc$$V 9t x5.FNJ,moreover,we can assume 1^4 S-->n?»c /Wfc0.We put 

^ = - t U £ S d y | ( a u e M1)(Vne(PHou))(U l t-L'nl e W0)J 

(cf. the definition of product of ultrafl iters in £.?)# For 

every 0fWeSdy we have injttJn W)w -En} & mQ\ *4 n;TJ" 4 n j e 

e 3# 0 $ n-tn* W«-£n) e #tQ* and hence UfW e m as (UnW)€ 

e W # According to the prolongation axiom for every U e 

e, Sdy there are u f̂ u2 such that (u-,u Ug) e ^ l ^ 1 1 ! 0 ^ s 

« 0&tn;U"-£&? e ^ { f i ti1&-fii»(-U),'<f &i e ®t 0l£u2* 

Since U s ^5U-_ e 3?^ we get U € ^~=(-XJ) 4 $& • 2nua 

we have proved that tftl i s an ultrafi lter on Sdy. 

Let cc£ 1FN 9t -#£ S* For every n ePH we put u^ * 

« i?».x(oC- n), thus un i s an element of *33t for every ae.Wtft 

of course, and i f u s 0 i v^neW} then there i s (̂  4 OT s o 

that un(a^x # ) ) » 0, from which u a) 3% follows. We have 

shown that tfo i s not o>-complete* 

If u ^ S then for every a e H i e have u* -inV^ s **-& 

hence u n ( n ] 4 ' ^ 0 A-3--- &s & consequence we ohtaia u (| 3?i. 

Thus we have got the inclusion S c v ( 30t) * If <f*^ S then 
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f«r every meFI there Is T n ^ S *& ***** TnM< ^ (*ecau~ 

se S i s olesed w . r . t . +) and moreover since we assume that 

S i s no jr -c lass we are able to choose ^ 4 s a n d ft 4= W 

so that #- • /3 <: cf' . Evidently <f x ft e ®fl a n d ^ x / 3 A c T 

from which cf^ ^ (39^) follows. Thus we have shown v(39fc)c 

£ S which completes the proof. 

The class H of ordinal numbers was defined in § 3 ch. 

I I LTD* An ordinal number o c e H i s called a limit ordinal 

number iff there i s no fi> e SI with oc« /3 + 1- To prove the 

main theorem of the paper we need the following two lemmas* 

Lemma. Let-Cu^j oc e i l j cp (w) - 40 J be a descending 

sequence such that the formula (Vq)( (Uq » w&q^ FN) —> 

—i»(3oc e H ) ( 3 v£q)(uo CS v)) holds. Then ^ t=- tUeSd Y ; 

(3oC£ I l K u ^ s U) J i s an <a-complete ul t raf l i t e r on Sdy 

(such that w G ^ t ) . 

Proof. If 4Unjn 6 FN \ £ Wl then for every a e FN we 

can choose oc„ e i l so that u_ 9. U„. According to proper-
n ° n n 

t i e s of i l there i s oc e SI with (Vn eFNMoe^ oc) and 

for th i s oO i t i s u ^ £ fKu^neFN J & u ^ e 001 . 

If Ue SdY then -?Unwfw - U? i s a par t i t ion of w and 

thence there i s oc e I I such that e i ther u^SUnw-EU or 

u^C w - U9V - U holds. Thus we have proved that Ue'3ft^ 

= (V - U) £ an . 
Lemma. Let p h ci-f i &q ^ c c ^ U p c U q and l e t the 

formula ( V v e p ) ( v S T f 0 0 ) hold. Then there i s ue q with 

- tvep jvnu Si T ^ - ft . 

Proof. If ( Vu£q)Hv&p$vnu >: ^ } ^ /3 ) then a « 

- * I v e p i ( B u g q ) ( v n u £ 3-)"x 3 /3 . oc and therefore we can 

694 -



choose vep - a. For this v we have ( V u e q K v n u -< -#-) and 

this contradicts the assumption U q 2 v since we would have 

v 3 -3̂ * oc . 

Theorem. If M c R c s c H are two cuts such that S is no 

irr-class and such that the formula ( V°£ e R)(Vfi c S)(oc-/3 e 

e S) & ( V/oC f/3eR)(oc^eR) holds then there is an a) -comp

lete ultrafilter Wl on Sdy with ^( m) « R & »( ̂ t) » S. 

Proof, Since S is no or-class, there is a descending 

sequence ^ct" ; oc e A ^ so that f) ^o^ i oc e A } « S. Let w be 

a set such that there is -6* 4 s with w .$* 7S f let -Cq^ j oc e il 3 

be the class of all partitions q of w with q i R and at the 

end let x^ ^ Q^ • We a**6 gcing to construct by induction a 

descending sequence -Cu^; cc e il} such that for every oc e il 

the formula u ^ y S ̂ (^veq^JCu ^ v ) holds. We put uQ » w. 

If we shall have such a sequence we shall put ffiL ~ {U e Sdyj 

( 3oc e il)(ur<# 9 V)i and such a class will be an o -complete 

ultrafilter according to a previous lemma. 

Case 1. Let us suppose that R -=-toc ;( Vft e S)(oc-/3 <£ S)? , 

(a) Let for oc e H the set u ^ have been constructed, 

we want to construct the set VL ^ Evidently u ^ 9 U q and 

thus it is sufficient to choose u ^ so that (3 Teq^Mu-.-,-* 
a u«c n v5c^ ^ v # e S o c M ^ l ^ uoc n v'))» In fact, we have tri

vially ^+1 - ̂  ^ raorecver, assuming that u ^ & ft e S we 

get a. x ^ S S (because X^ 6 R) and hence we would obtain 
u„c^ ft * Xc € s which contradicts the induction hypothesis 
uoc ̂  S» therefore we have proved the statement u.+i ^

 s-

(fc) Let 0 +oc 6 H be a limit ordinal and let us as

sume t ^ t the sequence -iu* t f̂  e (oc A fL)J satisfying the pro-
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parties in question has been constructed* Since S is no 5/ -

class, there is cf 4 s ****& *&** ( VP c
 (OCAX1))(U^ £ (T& 

&. 6" <. oT^) and according to the prolongation axiom we are 

abl« to choose u ^ so that u^^-s cf and u ^ ^ fl{u«j (I e 

c (ccc\ £1)1. (la detail: oc n Jl is countable and thence the

re is an increasing sequence -tccnjnePHJ such that U-Coc.^ 

ncPH? • U(oonil) and we can choose f with (VneF8)(f(n)*s 
88 % > & < * / * '£'<= dom(f))(/J</3/~^(f(/2,)^f(l^)&f(/3)b 

fc cO*) Moreover, choosing /3 «s dom(f) - ¥S we have f(t3 ) £. 

£ H i u i <yc(oc oil)§ &f((2 ) £. cT and therefore there is 

a one-one mapping of cT into f(f£ ); the range of such a 

mapping can serve as a set we look for). 

We have y ( 1&l )£S since for every limit ordinal oc e. il 

we have constructed u^ in such a way that u ^ y c^ &. u € 

€ 3# and, on the other hand, the inclusion S c v ( E ) fol-

lows from the fact that ( Voc eSl )(u, J~ S). Further from 

the construction we get R £ ^ ( M ) and the converse inclusi

on is a consequence of the first theorem. 

In the following two cases let g> (p,u, f , £ ) denote the 

foMtwla Up2u&ivep$unv £ £ } £ p .We can suppose that 

{oc j(Vfi e S)(oc-f3e S)? - R + 0 and therefore we are able 

to fix ̂  ** *»** class. According to (Vf'e S)(g. £'<•#), 

we can choose moreover £ 4 s with Q • £ < *& and f urthenaore 

using the last property, we can fix pairwise disjoint p such 

that Up « w&g>(p,w, f ,£ ). 

Case 2. We shall assume that R is no 7f -class. In this 

case there is a descending sequence -i e^j oo <=: II? so that R« 

* 0 t e ^ ; oc e il? • 

Case 3. We shall suppose that R is no e'-class. 
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These two cases exhaust all possibilities since every 

semiset which is simultaneously or and €f is a set (of* the 

last theorem of § 5 ch. II CVJ), and R cannot be a set sin

ce it is closed w.r.t. +. We shall treat these two cases si

multaneously and we are going to construct except a descen

ding sequence of sets iu^ } oc e il J even two descending se

quences -f £ ̂  ; oc c XL 5 and -f p ̂  i oc e jQ. ] of natural numbers 

so that ( Voc s H )( jKp.u^ f f^,foe ) & £** S ft ̂ <£ R) and if 

R is no C-class we shall require moreover that for every 

oc eil there is ^ € R with r. - Gf > £ • We put uQ » w, 

(a) Let for oc € H the sets u^, J^ and ^ with the 

required properties have been constructed. Let us define 

foc+1 ̂  ?oC+l ̂  s u c n a w a y ***** *he forfflula ̂ c* ?oc+l^ 

-« f cc < r * - ( f«...+! + ->« . 2Ct- F rf+i * f* ^ - ( P o c + i + -> 

holds. We have ^ e R and hence according to the induction 

hypothesis £<* i S fc p^ £ R we get f ^ ^ S k p ^ + x ^ H and 

moreover i f there i s 6* e R such that e'- JU^F then 

6T. (To, + 1)6 Read ** lr« + 1) - f ^ i ^ *•£*=* ? * 

Putting p • -fu^o V}V€ p i u ^ n v £ f ^.+1* ?Sc? we ob

tain p a t u n vjvep&u^n v t f ^ i from which 

P t: ?oc ^^oc'FftC+i f o l l o w s * -furthermore according to 
q o c ^ ^oc a n d *° * a e l a s * leaan& there i s ue q^ so that 

•We pjvnu t f oc+1^ ^ ^oo+l an ( i tk®1^6 defining u ^ - u n 

rxu^ we get <p ( P . u ^ , f oo+i* P<*+1>' 

(b) Let 0 + oc e XI be a limit ordinal and let us sup

pose that we have constructed the sequences i u * $ fie (oc o 

n i l ) } , { f pi fie (acnSl){ and t£ $ /$ e ( x n l l ) satisfy-
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ing the conditions in quest ion. If R is no it -class then 

we can fix p ^ e ((f) { % ft } (3 e (oc r\£l)i n s ^ ) - R. If R 

is no 61 -class then according to the induction hypothesis 

for every fZ e (oc nSL) we can choose 6^ e R with £g • ̂ 3 > 

> £ # The class oe n il is countable and therefore there 

is <o e R such that ( Vft e ( o c n l L K ^ «-: 6 ) and hence 

( V/5 e (cc nJL))( p^- e'^p ) # Let us fix p ^ so that 

f̂ c • € > > £ > ( ^ - 1) - e' , thus even in this case ^ is 

no element of R. The definition of ^ is in both cases the 

same as fo l lows . . Since Jv̂ -c £ and since cf^ 4 s there is 

£' ̂  S with f^ • £'< o^ and thus we can fix ^ as an e-

lement of ( A i f ^ t (3e (ocr\IL)i r. f * ) - S because S is no 

JT-class and because oc r» il is countable # 

By the prolongation axiom there is u £ f) i u^ ; /3 e 

€(ocnil)} so that tf (p»u, Jp^, J?^) and according to the 

definition of 9 , we are able to choose u s u in such a 

way that the formula cp(P»V » ?x» foc>^ u ^ f o c # i U ^ ^ * 

&{ve pjvn uc4= OJ 4 p ^ holds. 

The statements ->> ( M) » S and R c (t«, (<#t ) can be pro

ved exactly in the same way as in the first case* 

The proof of the formula ^ ( ' M ) c R is different in 

the cases we deal withj according to the definition of 

.^(JH.) , for every e | R we have to construct a parti

tion g 5 e with q n ^ l = 0 . 

Case 2. If we put p , -* 4ve p-u n v4=0j then u < v p c 

c -til ( oc being an element of il ). Let us suppose that there 

are ve p and ot e 11 such that u n v is an element of 'J)l -

then there would be (Z e XI with u« *k u^n v but according 
/\ ., _ 

to the construction we have 2 r> 1 ue pjurs u-. 4̂  0J, which is 
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a contradiction* Thus we have proved that for every oc a JL 

the classes p^ and tt are disjoint* Moreover, for every 

limit ordinal <?C we have p^ ^ &#*< e^ and hence e^ <£ 

$ ultyl) from which R = ̂ (301) follows. 

Case 3* To prove the inclusion (tc(^)s R let £, <£ R 

be given* without loss of generality we can suppose that 

2 £, < £ „ Let x be "k*16 i&ittimal /3 so that /3 - e a: £ • 

At first we shall prove that for every oc e il the formula 

C >̂ 3" holds • If it would not be true then there would be 

<Te R with e • x -̂  6f, L ^ £ . .Furthermore, 2<Te R and hen

ce 2& <• e from which £ -£ 6T« y = 2^* \~t->\ would fol

low, but this contradicts the choice of ̂ " since either 9" 

or # + 1 is even and both ̂  and -*g -* are smaller than ^ 

(because tf £• 2). 

Since y • e s £ , there is a partition p of w shich is 

coarser than p and such that |T ̂  e & ( \/u€5*)({ve pjvnu <=)= 

+ 0i :5 -y )„ To prove e ^ ^ ( ^ t ) it is sufficient to show 

that "p A ̂ t a 0. If the inclusion u ~ £ u would hold for some 

limit (3 & il and ue p* then 3- «£ £« would contradict the 

formula -Cvepjvou^O ? .k' 3* <M vepju^n v+Oj & £ and 

this finishes the proof. 
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