Commentationes Mathematicae Universitatis Carolinae

Antonín Sochor; Alena Vencovská
 Indiscernible in the alternative set theory

Commentationes Mathematicae Universitatis Carolinae, Vol. 22 (1981), No. 4, 785--798
Persistent URL: http://dml.cz/dmlcz/106120

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

INDISCERNIBLES IN THE ALTERNATIVE SET THEORY
 A. SOCHOR, A. VENCOVSKA

Abstract: In the paper we prove the existence of classes of indiscernibles in the alternative set theory. These results are used to constructions of endomorphic universes with special properties.

Key words: Alternative set theory, indiscernibles, semiset, real class, endomorphism, endomorphic universe.

Classification: Primary 03E70, 03H99
Secondary 03H15

A class of indiscernibles (of strong indiscernibles respectively) is a class of natural numbers such that there are no two finite increasing sequences of its elements; which can be distinguished using a set-formula without parameters (respectively with sets of small type as parameters only). We show that no two finite increasing sequences of elements of a cofinal class of strong indiscernibles can be distinguished using a normal formula with semisets of sets of small type as parameters only.

At the beginning of the first section we deal with the existence of cofinal classes of strong indiscernibles. No set-theoretically definable class can be a cofinal class of strong indiscernibles (neither a cofinal class of indis-
cernibles) and hence showing the existence of cofinal class of strong indiscernibles which is a $\boldsymbol{\pi}$-class, we construct such a class of the smallest possible complexity. furthermore we show that every real (in particular analytical) cofinal class of indiscernibles is a class of strong indiscernibles.

The second section contains two applications. In the alternative set theory an important role is played by endomorphic universes. There are natural characteristics of endomorphic universes e.g. the cut of all natural numbers α such that every subset of the endomorphic universe of the cardinality α is even an element of this endomorphic universe or the cut of all natural numbers α such that every element of the endomorphic universe of the cardinality α is even a subset of the endomorphic universe in question. The necessary and sufficient conditions for a cut to be the second characteristic of an endomorphic universe are known (cf. [S-V 4]). On the other hand, the first characteristic was not yet seriously studied. In the paper we show that the first characteristic cannot be naturally described from the second one.

If A is an endomorphic universe then every set-formula with parameters in A holds in the sense of A iff it holds in the sense of V. We construct an endomorphic universe such that the above mentioned equivalence holds even for seminormal formulas with subsemisets of A as parameters.

The authors thank to P. Hajek and P. Pudlak for discussions concerning indiscernibles in Peano arithmetic.
\S 1. We use the usual notions and results of the book [V]. In particular $\tau(x)$ denotes the rank of x and $\bar{P}(\propto)=$ $=\{x ; \tau(x) \leqslant \propto\}$ (cf. § 1 ch. II [V]). For every class C, the symbol ${S d_{C}}$ denotes the system of all classes of the form $\{x ; \varphi(x)\}$ where φ is a set-formula of the language FL_{C} (i.e. with parameters in C). Elements of $S d_{V}$ are called set-theoretically definable classes. Let $G \in S_{o}$ denote in the whole paper a one-one mapping of N onto V (such a mapping is constructed in § 1 ch. II [V]). The function G induces by the natural way an ordering of V such that every set-theoretically definable class has the G-smallest element. As usual, the symbol $P_{n}(X)$ denotes the class $\{x \subseteq X ; x \hat{\approx} n\}$.

Theorem. Let $T \in S d_{\{a\}}$ be a function with $\operatorname{dom}(T)=$ $=P_{n}(S) \& \operatorname{rng}(T) \subseteq\{0,1\}$. If S is a proper class then there is a proper class $R \subseteq S$ such that $R \in S d_{\{a\}}$ and such that ${ }^{N 4} P_{n}(R)$ is a singleton.

Proof. For $n>1$ we are going to define a function F by induction (cf. § 1 ch . II [V]). For $\propto<\mathrm{n}-1$ we define $F(\propto)$ as the G-smallest set of $S-F^{\prime \prime} \propto$.

Let $F P \alpha$ be defined $(\alpha \geq n-1)$ and let
$X^{\alpha}=\left\{x \in S ;\left(\forall \alpha_{1}, \ldots, \alpha_{n} \in \propto\right)\left(\alpha_{1}<\ldots<\alpha_{n} \rightarrow\right.\right.$
$\left.\left.\rightarrow T\left(\left\{F\left(\alpha_{1}\right), \ldots, F\left(\alpha_{n}\right)\right\}\right)=T\left\{\left\{F\left(\alpha_{1}\right), \ldots, F\left(x_{n-1}\right), x\right\}\right)\right)\right\}$
be a proper class. Then for some $y \in X^{\infty}$, the class $\left\{x \in X^{\alpha} ;\left(\forall \alpha_{1}, \ldots, \alpha_{n-1} \in \propto\right)\left(\alpha_{1}<\ldots<\alpha_{n-1} \rightarrow\right.\right.$ $\left.\left.\rightarrow T\left(\left\{F\left(\alpha_{1}\right), \ldots, F\left(\alpha_{n-1}\right), y\right\}\right)=T\left(\left\{F\left(\alpha_{1}\right), \ldots, F\left(\alpha_{n-1}\right), x\right\}\right)\right)\right\}$ is a proper class since otherwise for every f with $\operatorname{dom}(f)=$ $=P_{n-1}(\alpha) \& r n g(f) \subseteq\{0,1\}$ there woula te: β so that

$$
\begin{aligned}
\left(\forall z \in X^{\infty}\right)\left(T\left(\left\{F\left(\alpha_{1}\right), \ldots, F\left(\alpha_{n-1}\right), z\right\}\right)\right. & =f\left(\alpha_{1}, \ldots, \alpha_{n-1}\right) \rightarrow \\
& \rightarrow \tau(z)<\beta)
\end{aligned}
$$

and defining $H(f)$ as the smallest β with the above described property, H would be a function which is an element of $\operatorname{Sd}_{\{a, \alpha\}}$ and with $\operatorname{dom}(H) \subseteq\left\{f ; \operatorname{dom}(f)=P_{n-1}(\infty) \& \operatorname{rng}(f) \in\{0,1\}\right\}$. Hence rng(H) would be a set by the replacement schema (see $\delta 1 \mathrm{ch}$. I [V]; more precisely, we use the formal replacement schema which is a consequence of the formal axiom of induction - cf. the axiom A4 [SI]). This would contradict the assumption that X^{\propto} is a proper class. Therefore we are able to define $F(\alpha)$ as the G-smallest set y such that the class in question is a proper class and $y \neq F^{m} \propto$.

For the function F we have defined by induction, the class rig(F) is proper since $\operatorname{dom}(F)=N$ and F is a one-one mapping. Moreover, in the definition of F we have used only elements: of $\mathrm{Sd}_{\{a\}}$ and thence $F \in \mathrm{Sd}_{\{a\}}$.

Defining $\mathbb{T}\left(\left\{F\left(\alpha_{1}\right), \ldots, F\left(\alpha_{n-1}\right)\right\}\right)=$ $=T\left(\left\{F\left(\propto_{1}\right), \ldots, F\left(\propto_{n-1}\right), F\left(\propto_{n-1}+1\right)\right\}\right)$ for every $\alpha_{1}<$ $<\ldots<\alpha_{n-1}$ we get a mapping of $P_{n-1}(r n g(F))$ into $\{0,1\}$ which is an element of $S_{\left\{d_{i}\right\}}$. Moreover, if $R \subseteq r n g(F)$ is class such that $\mathbb{T}^{n \prime \prime} P_{n-1}(R)$ is a singleton then $T{ }^{\prime \prime} P_{n}(R)$ is a singleton, too. Therefore we can finish the proof using the obvious induction w.r.t. n (the case $n=1$ being trivial).

A class $I \subseteq K$ is called a class of indiscernibles iff for every set-formula $\varphi\left(z_{1}, \ldots, z_{n}\right)$ of the language fL and every two sequences $e_{1}<\ldots<e_{n}$ and $e_{1}^{\prime}<\ldots<\theta_{n}^{\prime}$ of elements of I we have $\varphi\left(e_{1}, \ldots, e_{n}\right) \equiv \varphi\left(e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right)$.

A class $I \subseteq T$ is called a class of strong indiscernibles
fff for every $\theta \in I$, every set-formula $\varphi\left(z_{1}, \ldots, z_{n}\right)$ of the language FL_{e} (i.e. elements of e are admitted as parametres) and every two sequencesi $e<e_{1}<\ldots<e_{n}$ and $e<e_{1}^{\prime}<\ldots<e_{n}^{\prime}$ of elements of I we have $\varphi\left(e_{1}, \ldots, e_{n}\right) \equiv \varphi\left(e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right)$.

Theorem. There is a class of indiscernibles which is a π-class and which is no semiset.

Proof. For every set-formula $\varphi\left(z_{1}, \ldots, z_{n}\right)$ of the language $F L$ and every sequence $x_{1}<\ldots<x_{n}$ of elements of N we define $T_{\varphi}\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)=1$ iff $\varphi\left(x_{1}, \ldots, x_{n}\right)$ and $T_{\varphi}\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)=0$ iff $\neg \varphi\left(x_{1}, \ldots, x_{n}\right)$. Evidently $T_{\varphi} \in S_{0}$ and $\operatorname{dom}\left(T_{\varphi}\right)=F_{n}(N)$ for every set-formula $\varphi \in F L$. Let \leq be a fixed well-ordering of FL of type ω. By the previous \left. theorem there is a sequence of classes ${f S_{\varphi}}_{\varphi}: \mathscr{G} \in \mathrm{FL}\right\}$ such that for every two set-formulas $\varphi, \psi \in \mathrm{FL}$ we have $S_{\varphi} \in \mathrm{Sd}_{0} \&$ $\& \neg S_{m a}\left(S_{\varphi}\right), T_{\varphi}{ }^{n} P_{n}\left(S_{\varphi}\right)$ is a singleton and $\varphi \leqslant \psi \rightarrow$ $\rightarrow S_{\psi} \subseteq S_{\varphi}$. The intersection of all classes S_{φ} where φ is a set-formula of the language FL is a π-class of indiscernibles. This class is no semiset according to the last part of 55 ch . II [V]).

The previous statement can obviously be a little strengthened, namely for every set-theoretically definable proper class $R \subseteq \mathbb{N}$ there is a class of indiscernibles $I \subset R$ which is a π-class and which is no semiset.

A class is real iff there is an indiscernibility equivalence (cf. ch. III [V]), such that the class in question is a figure in this equivalence. We shall use the following property of real classes.

Theorem. Let X be a real class, $\propto \in N$. Then there is either a set u with $u \subseteq X \& u \approx \propto$, or for each $\gamma \in N-F N$ there is a set $u \geqslant X$ with u 会 $\propto \cdot \gamma$.

Proof. By the last theorem of [V 11 we can suppose that X is a figure in a totally disconnected indiscernibility equivalence $\underset{*}{*}$. For the monad of the point x in this equivalence we use the notation Mon* (x). Let $\left\{S_{n} ; n \in F W\right\}$ be a generating sequence of ${ }^{*}$, such that S_{n} is an equivalence for each n (see ch. III [V]). If there is a set $x \in X$ and a set u such that $u \triangleq \propto$ and $u \subseteq \operatorname{Mon} *(x)$ then $u \subseteq X$ because X is a figure in ${ }^{\underline{k}}$ and therefore the first possibilit.y holds. Suppose that Mon* (x) does not contain a subset $u \approx \propto$ for any $x \in X$. We have $\operatorname{Mon} *(x)=\cap f o(x, n) ; n \in F N\}$, where $o(x, n)=\left\{y ;\langle x, y\rangle \in S_{n}\right\}$. For $x \in X$ there must be $n \in F N$ such that $v(x, n) \hat{\mathcal{Q}} \propto$; otherwise the classes $Y_{n}=\left\{v ; v \hat{\approx} \propto \& \sum_{o}(x, n)\right\}$ would form a countable descending sequence of nonempty settheoretically definable classes with empty intersection, which is impossible. Put $u_{n}=\{0 ; 0$ is an equivalence class in the equivalence S_{n} and $\left.0 \hat{3} \propto\right\}$. Each u_{n} is finite because 초 is compact and thus for every $n \in F N$ there is $k \in F N$ so that $\left.\cup u_{n}\right\} k \cdot \alpha \quad$ Furthermore, for each $x \in X$ there is $n \in F N$ and $o \in u_{n}$ such that $x \in o$, i.e. $X \subseteq U\left\{\cup u_{n} ; n \in F N\right\}$. By the axiom of prolongation, for each $\gamma \in N-F N$ there is a set

Consequence. If X is a real class which is no semiset then for every \propto there is a set u with $u \hat{\approx} \propto \& u \subseteq X$.

Theorem. If I is a real class of indiscernibles which
is no semiset then I is a class of strong indiscernibles.
Proof. Let $\varphi\left(y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{n}\right)$ be a set-formula of the language $F L$ and let $e \in I$ be given. By the last statement there is a set $x \subseteq I-e$ so that $\left(2^{e^{m}}+1\right)_{n} \hat{\approx} x$. Hence there is a set $y \subseteq\left\{\left\langle e_{1}, \ldots, e_{n}\right\rangle E x^{n} ; e_{1}<\ldots<e_{n}\right\}$ such that. $\left(\left\langle\left\langle e_{1}, \ldots, e_{n}\right\rangle \in y \&\left\langle e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right\rangle \in y \&\left\langle e_{1}, \ldots, e_{n}\right\rangle \neq\right.\right.$ $\left.\left.\neq\left\langle e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right\rangle\right) \rightarrow\left(e_{n}<e_{1}^{\prime} \vee e_{n}^{\prime}<e_{1}\right)\right) \& y \hat{\approx} 2^{e^{m}}+1$. Therefore there $\operatorname{are}\left\langle\varepsilon_{1}, \ldots, \varepsilon_{n}\right\rangle$ and $\left\langle\varepsilon_{1}^{\prime}, \ldots, \varepsilon_{n}^{\prime}\right\rangle$ elements of y such that $\varepsilon_{n}<\varepsilon_{i}^{\prime}$ and such that the formula $\left(\forall q_{1}, \ldots, q_{m} \in e\right)\left(\varphi\left(q_{1}, \ldots, q_{m}, \varepsilon_{1}, \ldots, \varepsilon_{n}\right) \equiv\right.$ $\left.\equiv q\left(q_{1}, \ldots, q_{m}, \varepsilon_{1}^{\prime}, \ldots, \varepsilon_{n}^{\prime}\right)\right)$ holds.

Let $e<e_{1}<\ldots<e_{n}$ and $e<e_{1}^{\prime}<\ldots<e_{n}^{\prime}$ be two sequences of elements of I. Then there is a sequence $e_{1}^{\prime \prime}<\ldots<e_{n}^{\prime \prime}$ of elements of I such that $e_{n}<e_{1}^{\prime \prime} \& e_{n}^{\prime}<e_{1}^{\prime \prime}$. Since I is a class of indiscernibles, we have $\left(\forall q_{1}, \ldots, q_{m} \in e\right)\left(\varphi\left(q_{1}, \ldots, q_{m}\right.\right.$, $\left.\left.e_{1}, \ldots, e_{n}\right) \equiv \varphi\left(q_{1}, \ldots, q_{m}, e_{1}^{\prime \prime}, \ldots, e_{n}^{\prime \prime}\right)\right)$ and also $\left(\forall q_{1}, \ldots, q_{m} \in e\right)\left(\varphi\left(q_{1}, \ldots, q_{m}, e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right) \equiv\right.$ $\left.\equiv \varphi\left(q_{1}, \ldots, q_{m}, e_{1}^{\prime \prime}, \ldots, e_{n}^{\prime \prime}\right)\right)$ from which the formula $\left(\forall q_{1}, \ldots, q_{m} \in e\right)\left(\varphi\left(q_{1}, \ldots, q_{m}, \epsilon_{1}, \ldots, e_{n}\right)=\right.$ $\left.\equiv \varphi\left(q_{1}, \ldots, q_{m}, e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right)\right)$ follows.

Let us note that every π-class is a real class and therefore there is a class of strong indiscernibles which is no semiset.

Lemma. Let I be a class of strong indiscernibles, which is no semiset and let $e<e_{0}$ be two elements of I. Then for every $n \in F N$ we have $\bar{P}(e+n) \subseteq \operatorname{Def}_{e_{0}}$.

Proof. We have $\operatorname{Def}_{\{e\}} \sim \mathbb{N} \subseteq e_{0}$, because otherwise there would be a set-formula $\varphi\left(z_{1}, z_{2}\right)$ of the language f such that
the formula $(\exists!\alpha) ; \varphi(\alpha, e)$ holds and such that the number β satisfying $\varphi(\beta, e)$ would be greater or equal to e_{0}. Let $e^{\prime}>\beta$ be an element of I. We would have $(\exists \alpha)(\varphi(\propto, e) \&$ $\left.\& \alpha>e_{0}\right)$ and consequently $(\exists \propto)\left(\varphi(\alpha, e) \& \alpha>e^{\prime}\right)$ which is a contradiction.

Consider the number $\alpha_{n}=\max \left\{G^{-1}(x) ; \tau(x) \leqslant e+n\right\}$, whe$r \notin G$ is the mapping mentioned at the beginning. Obviousiy $\propto_{n} \in \operatorname{Def}_{\{e\}}$, it means that $\propto_{n}<e_{0}$ and thus $\overline{\mathrm{P}}(\mathrm{e}+\mathrm{n}) \subseteq G^{\prime \prime} \mathrm{e}_{0} \subseteq \mathrm{Def}_{\mathrm{e}_{0}}{ }^{\circ}$

The lemma has important consequences, e.g. the following statement where Id denotes the identity mapping. (For notiona of automorphism and similarity see ch. V[V].)

Theorem. Let I be a class of strong indiscernibles, which is no semiset and let $e<e_{0}<e_{1}<\ldots<e_{n}$ and $c<e_{0}<e_{1}^{\prime}<\ldots<e_{n}^{\prime}$ be two sequences of elements of $I_{\text {. Then }}$ there is an automorphism F such that $F \Gamma \bar{P}(e)$ equals to Id $\Gamma \bar{P}(e)$ and $F\left(\left\langle e_{1}, \ldots, e_{n}\right\rangle\right)=\left\langle e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right\rangle$.

Proof. In [Ve 2] was proved a statement concerning prolongation of similarities to automorphisms, which says: for a set u with $P(u) \geq u$ and a pair $\left\langle x^{\prime}, x\right\rangle$ there exists an au-
 mapping (Id $\left.\cap \cup\left\{P^{n}(u) ; n \in E N\right\}\right) \cup\left\{\left\langle x^{\bullet}, x\right\rangle\right\}$ is a similarity (the symbol $p^{n}(u)$ denotes the set obtained by application of the operation of power-set n-times, starting from u). In our case we know that (Idr e_{0}) $\cup\left\{\left\langle e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right\rangle,\left\langle e_{1}, \ldots, e_{n}\right\rangle\right\}$ is a similarity according to the fact that I is a class of strong indiscernibles. Thus the lemma implies that (Id $\left.\wedge \cup\left\{P^{n}(\bar{P}(0)) ; n \in I T\right\}\right\rangle \cup\left\{\left\langle\theta_{1}^{\prime}, \ldots, \theta_{n}^{\prime}\right\rangle,\left\langle\theta_{1}, \ldots, \theta_{n}\right\rangle\right\}$ ie
a similarity, too (since $\left.\mathrm{P}^{\mathrm{n}}(\overline{\mathrm{P}}(\mathrm{e}))=\overline{\mathrm{P}}(\theta+\mathrm{n})\right)$.
Theorem. Let I be a class of strong indiscernibles which is no semiset. Then for every two sequences $e<\theta_{0}<e_{1}<\ldots<e_{n}$ and $e<e_{0}^{0}<e_{1}^{\prime}<\ldots<e_{n}^{\prime}$ of elements of I and every formule $\varphi\left(z_{1}, \ldots, z_{n}, z_{1}, \ldots, z_{m}\right)$ of the language $\left.\mathrm{FL}_{\mathrm{F}(e)}\right)$, the formula $\varphi\left(e_{1}, \ldots, e_{n}, X_{1}, \ldots, X_{n}\right)=$ $\equiv \varphi\left(e_{1}^{\prime}, \ldots, e_{n}^{\prime}, x_{1}, \ldots, x_{n}\right)$ holde whenever x_{1}, \ldots, x_{m} are aubclasses of $\overline{\mathrm{P}}(\mathrm{e})$.

Proof. By the previous theorem there is an automorph-
 $=X_{m} \& F\left(e_{1}\right)=e_{1}^{\prime} \& \ldots \& F\left(e_{n}\right)=e_{n}^{\prime}$. Purther according to the second theorem of $\& 1 \mathrm{ch} . \mathrm{V}[\mathrm{V}]$ we have
$\varphi\left(e_{1}^{\prime}, \ldots, e_{n}^{\prime}, x_{1}, \ldots, X_{m}\right)=\varphi\left(F\left(e_{1}\right), \ldots, F\left(e_{n}\right), F^{n N} X_{1}, \ldots, F^{\prime \prime} X_{m}\right) \equiv$ $=\varphi\left(e_{1}, \ldots, e_{n}, x_{1}, \ldots, x_{m}\right)$.

Theorem. a) If I is an infinite class of indiscernibles then for every $e \in I$ and every infinite $x \subseteq I$ we have $e \notin \operatorname{DeP}_{I-\{€\}}$ and $x \notin \operatorname{De} P_{I}$.
b) If I is a clase of strong indiscernibles and if e_{0} is an element of I such that $I-e_{0}$ is infinite then for every $e_{0}<\theta \in I$ and every infinite $x \in I-e_{0}$ we have

Proof. We are going to prove the statement b), the first statement can be proved quite analogically. Let $e_{0}<e$ and let $\varphi\left(z_{1}, z_{1}, \ldots, z_{n}\right)$ be a set-formula of the language $\mathrm{FL}_{e_{0}}$ such that there is a sequence $e_{0}<e_{1}<\ldots<e_{n}$ of elements of I so that $\varphi\left(e, \theta_{1}, \ldots, \theta_{n}\right) \&(\exists!x) \varphi\left(x, e_{1}, \ldots, \theta_{n}\right)$ $\& e \notin\left\{e_{1}, \ldots, e_{n}\right\} \& \theta>e_{0}$. Since $I-\theta_{n}$ is infinite, there is
a sequence $e_{0}<e_{1}^{\prime}<\cdots<e_{n}^{\prime}$ of elements of I and $e^{\prime} \epsilon I$ so that $\notin e^{\prime}>e_{o} \&\left(0<i \leq n \rightarrow\left(e_{i}<\oplus \equiv e_{i}<e \equiv e_{i}^{\prime}<e^{\prime}\right)\right)$. Since I is a class of strong indiscernibles, we get $\varphi\left(e, e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right) \& \varphi\left(e^{\prime}, e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right) \&(\exists!x) \varphi\left(x, e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right)$ which is a contradiction.

If an infinite $x \subset-I-e_{0}$ would be an element of Def $_{\text {Iue }_{0}}$ then there would be finite $y \subseteq I \cup e_{0}$ so that $x \in \operatorname{Def}_{y}$ and thus the G-smallest element of $x-y$ would be an element of Def y_{y} which is impossible as we have previously proved.

Consequence. If I is a real class of indiscernibles which is no semiset then $\mathrm{P}(\mathrm{I})-\mathrm{Def}_{\mathrm{I}} \neq 0$.

Proof. Since I is real, there is an infinite $x \subseteq I$; moreover, I is a class of strong indiscernibles and therefore it is sufficient to use the last statement.

The assumption that I is real is essential in the last theorem as follows. Let A be an endomorphic universe which is no semiset and such that A has only finite subsets (every endomorphic universe which has a standard extension fulfils these properties; see [S-V 1]). Further let I be a subclass of A such that in the sense of A, the class I is a class of strong indiscernibles which is no semiset. Then I is no semiset and $P(I)=\{x ; x \subseteq I \& F i n(x)\} \subseteq \operatorname{Def}_{I}$. Let us recall that the formula φ^{A} is obtained from the formula φ by restricting set-quantifiers to elements of A and class quantifiers to subclasses of A. Furthermore let us remind that if A is an endomorphic universe then the equivalence $\mathcal{G}^{A} \equiv \mathcal{G}$ holds for every set-formula of the language FL_{A}. Thus to prove that I is a class of strong indiscernibles
(in the sense of V) it is sufficient to realize that the equivalence $\left(\left(\forall q_{1}, \ldots, q_{m} \in \theta_{0}\right)\left(\varphi\left(q_{1}, \ldots, q_{m}, e_{1}, \ldots, e_{n}\right) \equiv\right.\right.$ $\left.\left.=\varphi\left(q_{1}, \ldots, q_{m}, e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right)\right)\right)^{A}=$
$\equiv\left(\forall q_{1}, \ldots, q_{m} \in e_{0}\right)\left(\varphi\left(q_{1}, \ldots, q_{m}, \theta_{1}, \ldots, \theta_{n}\right) \equiv\right.$ $\left.\equiv \varphi\left(q_{1}, \ldots, q_{m}, e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right)\right)$ holds for every $e_{0}, e_{1}, \ldots, e_{n}, e_{1}^{\prime}, \ldots, e_{n}^{\prime} \in I$.

6 2. Let us consider two characteristics of endomorphie universes $\operatorname{PE}(A)=\{\propto ;(\forall x \geqslant \propto)(x \leqslant A \rightarrow x \in A) \&$ \& ($\exists \mathrm{x} \stackrel{\approx}{\approx})(\mathrm{x} \subseteq A)\}$ and $\operatorname{EP}(A)=\{\propto ; \propto \subseteq A\}$. We are going to show that there is no normal formula $\psi(z, z)$ of the language FL so that $\operatorname{PE}(A)=\{x ; \psi(x, E P(A))\}$ (even if we suppose that there is a set d with $A[d]=V$; the class $A[d]$ was defined in [S-V 1]). For this purpose it is sufficient to construct two endomorphic universes A, B and sets d, d_{1} with $\operatorname{EP}(A)=$ $=\operatorname{EP}(B) \& \operatorname{PE}(A) \neq P E(B) \& A[d]=B\left[d_{1}\right]=V$.

Let $B \neq V$ be a fully revealed endomorphic universe such that there is a set d_{1} with $B\left[d_{1}\right]=V$ (by [S-V 1] there is an endomorphic universe $B^{\prime} \neq V$ so that $B^{\prime}\left[d_{1}\right]=V$, every revealment of B° fulfils our requirements and by [S-V2] a revealment of B^{\prime} exists). The class $\mathrm{PE}(\mathrm{B})$, is fully revealed and hence we can choose $\propto \in \operatorname{PE}(B)-F N$. According to the first section we are able to construct in the sense of B a π-class I of strong indiscernibles. Let $E P(B) \leqslant \beta \in B$ and let us choose $e, e_{0}, d \in B$ such that in the sense of B, we have $\left\{e, e_{0}\right\} \cup d \subseteq I-\beta \& d \approx \propto \&\left(\forall e^{\prime} \in d\right)\left(e<e^{\circ}<e_{0}\right)$; such a choice is possible since I is in the sense of B a real class which is no semiset. Thus the formula $d \subseteq B$ follows from the
assumption $\propto \in P E(B) \subseteq E P(B)$. Furthermore, by the first section we have $d \notin \operatorname{Def} f_{\text {Iue }}$ and hence $d \notin \operatorname{Def}_{\beta u d u\left\{e_{0}\right\}}$ since $\operatorname{Def}_{\beta \cup d u\left\{e_{0}\right\}} \subseteq \operatorname{Def}_{e u I}$. By [Ve 2.] the following theorem holds: If x, d^{\prime} are sets such that $d^{\prime} \in U \operatorname{Def}_{x}-\operatorname{Def}_{x} \& x \in \operatorname{Def}_{x \cup\left\{d^{\prime}\right\}}$ then there is an endomorphic universe A with $A\left[d^{\prime}\right]=V \&$ \& $d^{\prime} \notin A \& x \subseteq A$. Putting $d^{\prime}=d$ and $x=\beta \cup d u\left\{e_{0}\right\}$ we see that the assumptions hold since $x=\left(\beta \cup d \cup\left\{e_{0}\right\}\right) \in$ $\in \operatorname{Def}_{\left\{\beta-1, e_{0}, d\right\}} \subseteq \operatorname{Def}_{x \cup\{d\}}$. Hence there exists an endomorphic universe $A \subset B$ so that $A[d]=B \& \beta \cap B \subseteq A \& d \subseteq A$. The class A is an endomorphic universe (in the sense of V) and moreover $A\left[\left\{d, d_{1}\right\}\right]=(A[d])\left[d_{1}\right]=B\left[d_{1}\right]=V(c f .[s-V 1])$. It is $\operatorname{EP}(A)=\operatorname{EP}(B)$ because $\operatorname{EP}(B)=\{\gamma ; \gamma \subseteq B\} \subseteq\{\gamma ; \gamma \subseteq \beta \cap B\} \subseteq$ $\subseteq\{\gamma ; \gamma \subseteq \mathbb{A}\}=\operatorname{EP}(A) \subseteq\{\gamma ; \gamma \subseteq B\}=\operatorname{EP}(B)$. On the other hand, $d \subseteq A \& d \notin A \& d \approx \propto$ and thence $\propto \notin \operatorname{PE}(A)$ and therefore $P E(A) \neq P E(B)$ and we are done.

A formula is called seminormal iff it contains only quantifiers of the form ($\exists \mathrm{Z}$ Sms (Z)). Let us note that every normal formula is (equivalent to) a seminormal one since every set is a semiset.

Theorem. Let I be a class of strong indiscernibles which is no semiset and let J be a subclass of I such that $\cup J$ is no σ-class. Then the class $A=\{x ;(\exists \dot{e} \in J) \tau(x) \leqslant e\}$ is an endomorphic universe such that for any seminormal formula $\varphi\left(Z_{1}, \ldots, Z_{n}\right)$ of the language $F L_{A}$ and any $X_{1}, \ldots, X_{n} \subseteq A$ semisets in the sense of A we have $\varphi^{A}\left(x_{1}, \ldots, x_{n}\right) \equiv \varphi\left(x, \ldots, x_{n}\right)$.

Proof. A is a revealed class since $U J$ is no σ-class and moreover $\operatorname{Def}_{A}=A$ by the first section. Hence A is an en-
domorphic universe according to § $1[S-V 1]$.
Our statement concerning seminoringl formulas can be proved by induction on their length. The only nontrivial case is when φ has the form $(\exists Z S m s(Z)) \psi\left(Z, Z_{1}, \ldots, Z_{n}\right)$. Let us suppose that for any X, X_{1}, \ldots, X_{n} semisets in the sense of A we have $\psi^{A}\left(x, X_{1}, \ldots, X_{n}\right) \equiv \psi\left(X, X_{1}, \ldots, X_{n}\right)$. If X_{1}, \ldots, X_{n} semisets in the sense of A are given then $\varphi^{A}\left(X_{1}, \ldots, X_{n}\right) \rightarrow$ $\rightarrow \varphi\left(X_{1}, \ldots, X_{n}\right)$ because of $\operatorname{Sms}^{A}(Z) \rightarrow \operatorname{Sms}(Z)$. Let us choose $e \in J$ so that $X_{1}, \ldots, X_{n} \subseteq \bar{F}(e)$ and so that all parametersi occurring in ψ belong to $\overline{\mathrm{P}}(\mathrm{e})$, further let X be a class with $\operatorname{Sms}(X) \& \psi\left(X, X_{1}, \ldots, X_{n}\right)$. Since $U J$ is no set, we are able to $f^{\prime i x} e_{0}, e_{1}^{\prime} \in J$ such that $e<e_{0}<e_{1}^{\prime}$ and according to the facts that I is no semiset and that X is a semiset, we can fix even $e_{1} \in I$ such that $e_{0}<e_{I} \& X \subseteq \bar{P}\left(e_{1}\right)$. By the first section we can find an automorphism F such that F is identical on $\bar{P}(e)$ and such that $F\left(e_{1}\right)=e_{1}^{\prime}$. Thus we have $\psi\left(F^{\prime \prime X}, X_{1}, \ldots, X_{n}\right) \& F^{\prime \prime} X \subseteq \bar{P}\left(e_{1}^{\prime}\right)$, from which $\varphi^{A^{A}}\left(X_{1}, \ldots, X_{n}\right)$ follows.

Let us remind that if I is a $\pi-c l a s s$ of strong indiscernibles which is no semiset, then we are able to find a descending sequence $\left\{e_{n} ; n \in F N\right\}$ of elements of I and to define $J=I \cap \cap\left\{e_{n} ; n \in F T\right\}$. Then $U J$ is $a \pi-c l a s s$ and hence it is no $\sigma-c l a s s$ according to the last statement of $\S 5$ ch. II [V]. Thus we can fix in the alternative set theory classes having properties desired in the last theorem.

References
[P] J.B. PARIS: On models of arithmetic, in Conference in Mathematical Logic - London '70, LN 255 Springer-Verlag 1972.
[S 1] A. SOCHOR: Metamathematics of the alternative set theory, Comment, Math. Univ. Carolinae 20 (1979), 697-722.
[S-V 1] A. SOCHOR and P. VOPENKA: Endomorphic universes and their standard extensions, Comment. Math. Univ. Carolinae 20(1979), 605-629.
[S-V 2] A. SOCHOR and P. VOPẼNKA: Revealments, Comment. Math. Univ. Carolinae 21(1980), 97-118.
[S-V 4] A. SOCHOR and P. VOPĚNKA: Ultrafilters of sets, ibid., 22(1981), 689-699.
[Ve 2] A. VENCOVSKÁ: Constructions of endomorphic universes and endomorphisms, to appear in Comment. Math. Univ. Carolinae.
[V] P. VOPENKA: Mathematics in Alternative Set Theory, Teubner-Texte, Leipzig 1979.
[V 1] P. VOPĚNKA: The lattice of indiscernibility equivalence, Comment. Math. Univ. Carolinae 20 (1979), 631-638.

Matematický ústav ČSAV, Žitná 25, Praha 1, Československo

