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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

22.4 (1981) 

SOME RESULTS O N INVERSE SPECTRA II 
M . G. TKAČENKO 

£: In this paper| we consider the following 
question: when a homeomorphism of limit spacea of two in
verse spectra i s induced by an iaomorphism of coflnal sub-
speetra? We prove two spectral theorems which,generalize a 
number,of A.V. Arhangel ski i a, B.A. Pasynkov a and E.V. 
SSepin 8 results..Some related questions are considered, too* 

Key worda and phraaea: Isomorphism of spectra, open 
mappingt continuous spectra, d-open mapping, almost conti
nuous spectra, semlopen mapping, de--metrizable apace. 

Classification: Primary 54B25, 54A25 
Secondary 54CIO, 54B10 

In the second part of the paper we introduce the new 

notion of a d-open mapping (Definition 5) and prove the spec

tral theorem for spectra with d-open projections (Theorem 3) 

which generalizes a similar §Sepln'a result for spectra with 

open projections* He consider also the question: when a spa-* 

ce of a regular weight X >* .K0 la re presentable as a limit 

of a apectrum fX^ tp£ k * < r with d-open projections such 

that wCX^}-* ^ for every cc <r t ? Theorem 4 is a partial 

answer to this question* The spectra with semiopen projecti

ons are considered, too* We prove that a limit of an almost 

continuoua spectrum J x ^ f P ^ \c,n<z ***** 8 e o i 0 P e l 1 Projections 

has Souslin property i f f a apace X^ has Souslin property for 
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each oo *c x (Theorem 6 ) . Our last result (Theorem 7) i s a 

generalization of Theorem 1 from £5). With the aid of Theo~ 

rem 7 we prove that a first-countable regular image of a den

se subset of ae-metrizable compact has a countable network 

(Corollary 4 ) . 

§ 2* <--ppen mappings and tffte Rgw spectral theorem^ The

re exists the following spectral theorem belonging to E.V. 

Scepin. Let t be a regular cardinal >• -K0 and S, T be re

gular spectra of the same length f with open projections. 

If their limits are homeomorphlc to a space X then there ex-

is %& a closed coflnal subset A o f t such that the spectra S^ 

and T^ are isomorphic. 

To prove i t , Sdepin shows f irst that v c(X) .£. f , i . e . 

the cardinality of each disjoint system consisting of open sub

sets of X is less than t -

Here we show that i t is possible to replace the require

ment on projections to be open by the weaker condition of d-o-

penness (see definition 4 below), however, we need to retain 

the property v c(X) £ x which does not follow from the d-open-

ness of projections (see example 2) . 

The following definition i s new. 

.Definition 4. We say that a continuous mapping f:X—* X 

Is d-open if a set tiff) is dense in some open subset of X for 

each open subset ff of X* 

It is obvious that every continuous open mapping is d-open. 

In lemmas 5-9 below we establish some properties of d-open map

pings. 
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Lejuaa^. .uet f:X—.> X be a continuous mapping. Then the 

following conditions are equivalent: 

(a) f is a d-open mapping; 

Cb> t"ll(yi * [ f " V 3 for each open subset ff £ Y. 

Proof. Primarily we show that (a) implies (b). .Let C 

be an open subset of X. Since [ f ~ V j G. f""1CCJ for each ffo. 

£ X, i t is sufficient to show the inverse inclusion. Let xeX 

and f(x) eCCJ . Let us assume that x<£Cf~ u-J • Then V » 

* X\[f~ C3 is an open neighbourhood of x in X. Consequent

ly f(V) is a dense subset of some open subset W£Y so [W] » 

-* Cf(V)] . However, f (V) A & « A , hence Cf(V)3 r\ V • A . 

Thus CWJo CT * A . It contradicts the fact that f ( x ) e f n [ / 7 . L 

So the inclusion f" l[(TJS Lf^CXJ is proved. 

Now we show that (b) implies (a). Let V be an open subset of 

X. Put F -*[f (V)] . Then f(V) is contained in the interior of 

F. Indeed, tf - Y\F is an open sublet of X hence f^ZffJ -

* [ f " 1 0 ' l . However, Vf>f"1C' -*A so Vn[f"*IC3 - A , i . e . 

V(\t~H(n » A . Consequently f(V)nCCJ * A therefore f(V) 

is contained in Int[f(V)3. Thus lemma is proved. 

When a d-open mapping is open? The following lemma is a 

partial answer to this question. 

Lejiffla--£. Let f be a d-open closed mapping of a regular 

space X to a space X. Then f i s open. 

Proof. We prove thattf""1^* f"^A]for each subset AC X 

which implies that f i s open. Indeed, let AJS Y, xeX and 

f ( x ) c [ A ] . Let us assume that x ^ [ f A3. Choose an open sub

set d £ X such that x c C and [ff 3 n f^A * A . Since f i s 

d-open, a set f(CO is a dense subset of some open set W£Y, 
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hence lf(<T).3 «twl • But f i s closed, hence t(tUl) » 

• trCCT )1 and ftfOM) « twj. Since 10} n t"Xk * A 9 we con

clude that [WinA * A . It contradicts the fact that f (x)€ 

CWACAI. Thus xfctf"1.*] ao tt^kl » f^UII. This completes 

the proof. 

The following lemma shows a way the d-open mappings a-

rise on. 

LejftaJ. L e t --*:X—> Y be a continuous open mapping and 

S be a dense subset of X. Then a mapping g -* f )S la d-open. 

Proof. Let V be an open subset of S. Then there exists 

an open subset U of X such that Ur*S * V. A set V is dense 

in U hence the set g(V) a f(V) i s dense in the open subset 

W * f (u) of Y. 

Corollary 2# Let S be a dense subset of a product X -* 

* J\te^ X^ . Then a mapping sf« I S is d-open for each subset 

B£A ( ^ is a natural projection of X onto Xg * ^Jc&
x*e )• 

Corollary 3. Let S be a dense subs pace of X. Then a na

tural embedding i:SQ> X la d-open. 

Lemma 8. Let f:X —> Y and g:Y—>Z be d-open mappings. 

Then a mapping h * g ° f ia d-open, too* 

R?oof. Let (/ be an open subset of Z. Then g C Cf.J * 
9 tg (/I because g i s d-open. As f i s d-open and g (f i s 

an open subset of Y, so f t g ffl * It g (fl • Thus 

f~ lg [GO * If" g" (TJ . The lemma's conclusion follows 

from Lemma 5. 

Lemma 9. Let f :X -2SS-^Yf g:Y—p Z be continuous mappings 

and h a g o f , If f and h are d-open then g is d-open, too. 

Proof. Let V be an open subset of Y. Then U » /"Hf la 
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an open subset of X. Since h i s d-open, h(U) i s a dense sub

set in some open set W of Z. However g(V) » h(U) which comp

letes the proof* 

Now let us begin to consider the spectra with d-open 

projections. We recall once more that al l projections of 

spectra under consideration are assumed to be onto ( i t should 

be noted that i f a space X is a limit of some spectrum then 

X can be represented as a limit of a spectrum with projecti

ons onto). 

L?mp»a }<}- Let a space X be a limit of a spectrum S * 

**£*<*, tP^c^<3€A
# Tn©n *ne following conditions are equiva

lent: 

(a) p£ is a d-open mapping for each a> f (3 e A with 
oc <: ft ; 

(b) a limit projection p^ is a d-open mapping for e-

very 06 6. A. 

Proof, (a) —*(b). Let oc €. A and U be an open subset 

of X̂ c • Let us assume that there exists a point xeX such 

that p^ (x)€ttfj but x<£tp~ U3. Then there exist an element 

pe A and an open subset V£X,$ such that xe?p~ V and 

p~ Vn DT U * A • Let 3r be an element of A such that oc * y 

and /3 ^ r . Put y « p r (x). Then p£(y> « P^ (x)ellUJ. How

ever y^t(p0^)" Uj which contradicts the fact that p£ i s a 

d-open mapping. Thus Cj£ U] = p^ tUj hence p^ is d-open. 

The fact that (b) implies (a) follows immediately from 

lemma 9* Thus our lemma is proved. 

Combining lemmas 8 and 10 we get 

Lemma 11. Let a space X be a limit of a spectrum 
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s *^Xac >po?ic/3-<£ w n e r e ^ i s a d ~ ° P e n mapping for every 

oC < £ . Then a l l project ions of a spectrum S ( includ ing 

l imit ones) are d-open. 

Recall that a continuous mapping f:X—> Y i s sa id to be 

s k e l e t a l i f f f" (K) i s nowhere dense subset of X for each 

nowhere dense subset K£Y# I t i s e a s i l y seen that every d-

open mapping i s ske le ta l It i s known (see tl23) that the e~ 

qual i ty vc (.U.m S) « aupAvciX^): ot -*-:f\ holds for every 

continuous inverse spectrum S -"tX^ iV^l^ n<v with ske le ta l 

projections onto. This resu l t w i l l be used in Lemma 12 below. 

The following example shows that there e x i s t s a continu

ous well-ordered spectrum of the length CJ^ consist ing of 

separable metrizable spaces with ske le ta l projections which 

has no fac tor izat ion property. 

Example 2 . Let I be the unit interval with the usual 

topology and Y be any nowhere dense subset of I such that 

|Yi « 4^^. Then there e x i s t countable d i screte d i s jo in t sub

s e t s A fB£i\r;Y.J such that £AloCBJ *[X}. Put X * YuAuB 

and l e t jf0 be a subspace topology on X. Then A and B are o-

pen d i screte subsets of the space X » (X, £7"0)» We can enu

merate the se t T so that Y * -Cx^ : oc •< O^l. Now a chain 

-[ £T̂  : a:-< co^i of strongly increasing topologies on X w i l l 

be defined such that 

1) each space X^ * (X, 3^ ) i s regular second-count ab

l e ; 

2) the set A i s dense in AuY in the space X^ for 

each o o < G>^; 

3) for every oc <? 4>^ the set A^ * Au-Cx^ : ft <QC\ i s 
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open and locally compact in the space X^; 

4) (Q I Â  » d l l Ag whenever £•*-• oG -* 6>x. 

The topology f0 on X has been defined. Let cc-rf -ax 

and a topology (& on X be defined for each ft < oc . we be

gin with the case when oc « /3 • 1 for some ordinal /3 • Sin

ce the space X̂  i s second-countable, the condition (2) imp

l i e s that there exists a converging sequence -{s^snc IfTisk 

with a limit point x^ . Obviously A^ i s a countable open lo

cally compact subspace of a regular space X^ . Hence there: 

exists a sequence §-*|Vm:n£ N*J of pairwise disjoint open 

compact subsets of the space A^ such that aR€ V^ fbr each 

neff* and £ converges to x ^ . 

For every nc N* put 0*n * ^ x^f u ^ * Ym:m€ ff a n d n~ m*# 

Put also y » -tCn-n€!r*i. Now we can take the family (Jfc u-y 

as a base for a topology T • It i s easily seen that the con

ditions (l)-(4> are satisfied . 

In the case of a limit ordinal oo we define a topology 

(£ on X by taking the family ^ ^ ^ as a base for ^ • 

Then the conditions ( l ) - (4) are satisfied , too. 

Thus the chain -f^ : oc <*> &jl of regular second-count

able topologies on X has been defined. Let X^ s (X, Og. ) and 

3tl£ be an identity mapping of X^ onto X~ f fi << oc •< o\ + 

Then x* is a continuous one-to-one mapping for each o£f 

p< o>x with fl < oc . Put S * -CX̂  , x£ \cfi<€S> . Obviously, 

the spectrum S i s continuous and the space lim S is naturally 

homeomorphic to the space (Xf<T)f where {T'» ^^-^ 3*, • H^nce 

we identify the space Urn S and (Xf CD. Let f be a function 

on X such that f(AuY) * 0 and f(B)--» 1. It i s clear that Au X 
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and B are open subsets of the space (XfdT) hence f i s con

tinuous. It is also clear that x~ belongs to the closure 

of the set B in the space X^, whenever oc-= /I -< 6> .̂ So the 

closures of the sets AuY and B in the space X^ are not dis

joint for each 06 -< GJ^. Thus the function f does not admit 

» continuous factorization in the spectrum S. It remains to 

show that all projections of the spectrum S are skeletal. 

But this follows easily from the fact that a limit pro

jection ar^ il^m S «-» X .̂ is skeletal for each oc *z o^. 

Indeed, the condition (2) implies that AuB ia an open denae 

discrete subset of the space (X, ££> ) , i . e . Y » XN(AuB) is 

a maximal nowhere dense subset of X^ for each cc < o^m Thus 

gf£ is a skeletal mapping for each oc, fi << G>^ with fi «ecc. 

Let us continue our considerations of apectra with d-o— 

pen projections. 

Lemma p . Let X be an uncountable regular cardinal and 

s space X be a limit of a spectrum S ---CX^ f p^ J^*^^ with d-

open projections. Let f be a continuous function on X. Then 

there exist an ordinal oCM*< x and a continuous function g 

defined on X' such that f » g^P^* ( j ) ^ is a limit pro

jection of X onto X^* ) . 

Proof. Let 35 be a countable base of the usual topolo

gy on R . Put $ * i R \U:U c tbi . Fix an element F c SJ . Let 

T be a countable family consisting of open subsets of R 

such that F * M £0'j:0' € ri • 3 1 n c * f~l(3r l a °Pen i n x «-* 

5?e(X) £ x , there exist an ordinal <*0 < x and an open 

8Ubset IT̂ fi X^ such that n^ V\ is dense in f~T>» A8 

&0< ctix ) * X so there exists an ordinal oCp < x such that 
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aC0<:oCF for each tf € T • **or every tf * ^ put KQ * 

* t Cp̂ F r ^ ] . Put also K̂  =* fK V 0 6 ar > . Then f - 1 F » 

« p^ Kf. Indeed, the d-openness of projections of a spec

trum S implies that the limit projections P^ :X—.> JĴ  are 

d-open, too. Hence t£~htJ » £ p^ Vtf3 » p^ t Vtf] for every 

& B T . Moreover the equality F • fKrtfJsO'e T? implies 

that f^F «n-tf"1fCTj:0'€ri» M t f ' V j ^ c ^ l * 
* n-tp^1 E V - C e r ? • 

However, p " 4 V » p ^ ( p ^ rHv^l » p^1 t C p ^ r 1 ^ ] 

which implies that f"XF * n -C DT1 t V^itO* C f} » 

-n^p"1 t(p^)-1v0,j:(f6 r? - p^ < n -t t cp^r1?^:^}).* 
"I rr 

s p«oF V 
Since 19*1 » i £ I * -tf0> there exiats an ordinal « ,*< 

<: t auch that oc^ < ©c* for each f c & . Then f""1!? » 

=* p^i Ky, where KF » (p** )*"1KF for every F e ST . 

We claim now that 

( * ) for each closed subset $ of (R there exists a 

closed subset K* S X ^ such that f $ » p̂ J K*, * 

Indeed, Si i s a base for R hence a family $ i s such 

that for each closed subset $ & 9t there exists a family 

^ 9 y with § » n-fg . I t is obvious that then f - 1 $ » 
* *£* ^> whe re *$ * n«( Kp-F « r $ i • 

For every point r « I\ let Kp be a closed subset of X 

such that £ M » p"1 Xy. A mapping g^^* —> IR we defi

ne by the condition g(x) -* r for each xeKp, r m R • This 

definition implies f = g <» p # . We claim that g is continu-
oc 

ous# 
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Indeed, let $ be a cloaed sub3et of R . Then f r § » 
58 l£* (g" $ ) • However, the property (*) implies that 

f~ $ * P^# % where K* ia closed in X ^ . Hence g $ = K^ 

is closed in X ^ . Thus g is continuous and the lemma is pro

ved. 

Lemmas 12 and 4 imply the main result of this paragraph. 

Theorem 3 . Let a space X of regular weight < > -it be 

a l imit of each of two almost regular spectra S » -fX^ >p^:L n<t, 

and T « ix^ , q ^ l^ - with d-open project ions . Then there e-

x i s t s a closed cofinal subset A of x such that the spectra 

$* and TA are isomorphic. 

Lemmas 7 and 12 imply the following 

Corollary 3 . Let S be a dense subset of some open subset 

of a product ^ f j ^ X^ of separable spaces and f be a continu

ous function on S. Then there ex i s t a countable subset B s A 

and a continuous mapping g: 3TQ(S>—-> E such that f * 

* & • (JT B IS) . 

Corollary 3 is an improvement of a similar Gleason a re-

sult (sea £91). 

In connection with the fact that we have introduced the 

new c lass of d-open mappinga, i t naturally ar ises the fo l low

ing quest ion . What are the spaces which can be represented as 

l imit8 of spectra with d-open projections consist ing of spa-

ces of smaller weights? We w i l l give su f f i c i en t conditions 

for such represen tab i l i ty (Theorem 4)* To do this we need a 

few notions and lemmas. 

Def ini t ion 5. Let X be a apace and A be an i n f i n i t e 

cardinal. We w i l l aay that a cloaed subset FSX i s ^.-pointed 
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in X i f f t he re e x i s t a continuous mapping f of X onto a spa 

ce X of weight &X and a closed sub9et $ £• I such tha t 

P = f"1^ . 

I t i s obvious tha t ip" (i*,X) & X for each closed X -

pointed subset P £ X . I n v e i s e l y , i f X i s a normal space and 

P i s a closed subset of X with if(FfX) £ X then P i s X -

pointed i n X. 

Lemma 13 . Let f be an i n f i n i t e ca rd ina l and P be a 

closed subset of a space X where f(FfX) & X and ^ C X ) ^ ^ . 

Then F i s t-pointed i n X. 

Proof. Since •y(FfX) & tr t h e r e e x i s t s a system (ti con

s i s t i n g of closed subse t s of X such tha t X\ P « U(JL and 

I <u> i as r . Fix an element $ € ^ . As P 0 $ = A for each* 

point x e $ the re e x i s t s a continuous funct ion f on X such 

t h a t f x (x ) = 0 and f x (P) =* 1. Put <?x iye X:fx(y>< | j . Then 

•[O^x e $ I i s a cover of $> by open subse t s of X hence the 

i n e q u a l i t y Jl(Xi 4 <t implies t h a t there e x i s t s a subset 

P £ $ such tha t $ C (j -t Cfx:x € PJ and I P | ^ -c . Put f^ = 

« 6 -t f x : x s P $ and Yj, s f^ (X). Obviously, the image of P un

der a mapping f̂  cons i s t s of one point y $ and y^<fc f* ( $ ) . 

Put f « A i f $ : $ e (Q.3 and r = f (X) . Then Y ^ Z « 

a TL T^ • Por each <$ e <tt l e t -Tx be a na tu r a l p r o j e c t i 

on of Z onto Xg . Let z be a point of Z such t h a t irk (z) « 

« y^ fo r each $ e <a . Then z e l and P £ f ( z ) . However 

y* f f^ ( $ ) fo r each $ e <o, hence z^ fC U ^ ) =- t(X\F)* 

Thus P » f~ (z) which completes the proof. 
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Defin i t ion 6 (E.V. Sfcepin). A -ae^pseudocharacter of a 

space X or s h o r t l y Y ^ x ^ i s a minimal card ina l % such t h a t 

a pseudocharacter of every canonical ly closed subset of X 

does not exceed r • 

I t i s known t h a t a ae-pseudocharacter of any product of 

metr ic spaces i s countable (see 113 , Theorem 15) . The fol low

ing a e l f - i n t e r e e t i n g lemma shows when the re are a " la rge* num

ber of d-open mappings of a given space onto spaces of smal

l e r weights . 

L?mwfi ),4- --*t t be an uncountable ca rd ina l and X be a 
OL 

space such t h a t >£(X>- y^iX)^ t and K » •£ fo r each c a r 

d ina l X <. v c(X). Let h be a continuous mapping of X onto a 

space Z with w(Z) ^ T . Then t h e r e e x i s t a space X with 

w(Y) £. if a continuous mapping g:X —> Z and a d-open mapping 

f:X-—VY such tha t h = g « f . 
Proof. Put Y^ =- Z and f as h. Let 3^ be a base for Yrt o o o o 

with \&e\ £ V . Put (U= vc(X) and 3$Q =lUy : r £ ^ 0 

and | . ^ | - < pul . Then \3*>0\ £> V • We should note t h a t (tc i s 

a r egu l a r ca rd ina l (cf . £ 6 1 , Theorem 3.1) and the lemmas s con

d i t i o n s imply tha t (A, &. v . 

Now l e t oC be an o rd ina l with 0 *-* CXJ-C^K. and fo r each 

pn*cc we have a l ready defined a space Y^ a system &* of 

open sub9et* of X^ , a continuous mapping t# ;X ^ H ^ and 

a family {srljl2 f -* /3 --= oo J , where j r^ i s a continuous map

ping of Y^ onto Xy a u c h t n a t | £ A | * « , f r » .*£ o f̂  for 

3T-*: /3-c: 06 and w(X^ ) ^ ^ for every /3 --. 06 . I t i s e a s i l y 

seen that ^ j r £ =* #£ f0T a l l d"^ r < ^ ^ oc . 

I . 06 s Ŝ +• 1 
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The condition £(X) • y^iX) **T with lemma 13 together 

Imply that a se t l&l i s t -pointed in X for each open subset 

GQX. Therefore for every U e 3$n there e x i s t a continuous 

mapping <f^ of X onto a space X^ of weight &*& and a closed 

subset F u £ X u such that tfl1U2 » SP-J1-^ . Put 9 ^ -Aiq>u : 
j U s ^ f » ^ s f ^ 9 / 3 a n d Y ^ r f^ (X). Then 

* Sfi, T/3 X n U * 3 * U W h e r e w ( Y /3 > A r , \%p\*T>*HL W<YU ) * 

-̂ T for every II 6 CBA • Hence wiT^ ) <£ r . It i s easy to 

see that there e x i s t s the unique continuous mapping jr?:!^—> 
t3 oc 

~-> X^ such that f# - -tf̂  « f^ . For each W •< fi put j r ^ « 
s T̂y. o 3t' . Now we claim that for every U e J5^ the equa

l i t y [ f ^ U l « f~X ( ^ f >"*1UJ holds . Let us prove i t . 

Let U be an arb itrary element of a system 5i>n and p^ 

be s natural projection of a product ! « x VL jg Xy onto a 

factor X^ • Put F a i ^ H p ^ ^ (a set F^ was defined above). 

The equal i ty [ f " 1 ! ! ] » ^ u ^ a i m P l i e a t h a t i ^ U J - * f ^ F . 

Put W « (ifp I'1!! . Then f̂ XW a f^XU £ t^F hence WQF. So 

[ W]fi F and f^Hl =- f^W S f^LWj c f ^ F = [ f"1^ ] . Thus [ f^UH » 

= f^tWj a f^CCajf ) " 1 U J . Let 3 ^ be a base for X^ such 

that I B ^ U r . P u t J3^= J ^ U - K ^ ) " X U : U G ^ J and 

^ o c s * i U y : jr £ . B ^ and l ^ U ^ L 

I I . oO i s a l imit ord inal . 

Put f^ - A < f^ : /3 «* oc? and X^ * f^ (X). Then 
T«6 9 l T T i < « * Tfl h e n c e * ( * < * ) - 6 1 : . Obviously that for each 

t3 < o c there e x i s t s the unique continuous mapping JT^ *•%£—> 

—*>X^ such that f^ -- JT^ o f^. Let .B^ be a base for X^ 

such that I .JB^li-.r . For every ft *c oC put &%*#*% >"Xtt s 

•• U e S f l ? and .B^,* % u U ^ . Final ly put 
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#U 9 "tUy: y S 31'^ and I 3" I «*r ^ f . Then I .B^ | ^ r , 

So we have completed our recursive construction. Put 

f » A-Cf^ : O 0 < ( K . ^ and X a f (X) . Then Y ^ H ^ ^ T ^ so 

w(Y).*r ^*tr - 'C • For every 06-*-*^ l e t JT« be the unique 

continuous mapping of Y onto Y such that f^ =- j ^ * f. Put 

g » {jr*0. Then h = f 0 - g o f hence i t remains to show only 

that f i s d-open. 

Let C be an open non-empty subset of Y. A continuity of 

f imp l ies that v c ( Y ) ^ v c ( X ) -* (LL . From our recursive con

struct ion we obtain that -C< tirf6 )~X U : U £ %^} Q ^ for each 

pair oC » ft such that 3̂ •< <£> -< (U>. Hence there ex i s t an or 

d inal ft <= (uu and an element U * e .B^ such that arl" l l*g t/s 

Qtffl U * J • Indeed, for each f«e: <to put A^^- f i fZ U : U £ 

€ 35L,} • put a l so 3 l s ^ / < < u , ^ * Tben ^ i s a base for Y. 

For each point y e 0* there e x i s t an ordinal oc(y) -< fju and an 

element U ( y ) € Si auch that y e ^ 4 U(y)sC/. Then C = 

= U"£^rJ^)ll(y)-y € C/}. As vc(Y) ^ (U> SO there e x i s t s a set 

P e t f s u c h that |P|<-£<c<, and U*( Jr^^i) tt(y) :y 6 Pj i s dense in 

0*. The regular i ty of a cardinal <u, imp l ies that there e x i s t s 

an ord inal fl << pu such that oc(y) •«-: (U. for every y c P . Put 

U * * U t C * ^ " 1 U ( y ) : y ^ P ? . 

Then U * s 3-L e n d ^/i" ^ * i a dense in 0? 

Now we w i l l show that t f ^ C J * fHcf]. Notice that 

[ f ^ U j » C I [ ( < r / f ^ l u 3 *°* each /3 < ^ aid U « ^ whe-

re oC * /3 • 1 ( i t had been proved after the construction of 

a space Y was f i n i s h e d ) . Put V « (ar^ ) " 1 u * # Then ar^V i s 

a dense subset of Cf and Tf^hrj a f ^ f V J . con f l e c-uent^y t W s 
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= i^hl <= JT^CV] and t~h&lsf^yghvi = £ X W ^f^vJ , 
i . e . 

(i) f"ho>i&t£lcn. 
Moreover, s ^ V i . - tf hence f^J&^Vc. f ' V . So f 4 V s f"1^ 

<X» c t ' o~* 

i . e . 

(2) t f^VlsCf-Vj . 
Inclusions ( l ) and (2) imply the equal i ty lfrlCfl^ t~~tC/J 

which holds for every open subset Cf£ Y. Thus d-openness of f 

fol lows from lemma 5. 

Def init ion 7 (A.V. Arhangel 'ski i ) . Let X be any space. 

Then w CX) i s a minimal cardinal X such that there e x i s t s a 

perfect mapping of X onto a space of weight *c. 

The following lemma w i l l be useful in the sequel (see 

DO] , Proposit ion 3 . 7 . 1 0 ) . 

Lemj]fl 15- Let f :X—> X and g:X—> Z be continuous map

pings onto and Y, Z be Hausdorff spaces . I f a mapping h =-

- got i s perfect , then f and g are the same. 

Ltamflft 16., Let x be an uncountable cardinal and X be s 

space such that w:c(X) • Y-^X) * x and X » X for each 

X -c V c(X). Let h be a continuous mapping of X onto a space 

Z of weight &x • Then there e x i s t an open perfect mapping 

f of X onto a space Y of weight 4 B X and a continuous mapp

ing g:X—>Z such that h .« g o f . 

Proof. As w (X) ^ x so there e x i s t s a perfect mapping 

9 of X onto a space T of weight <tf ( in particular 2 (X) &*?)* 

Put h ' * 9 A h and z ' » h ' (X) . Then z ' ^ T x Z hence w ( Z ) ^ t r . 

Moreover h ' i s perfect as a diagonal product of perfect and 
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continuous mappings. Applying lemma 14 to a space X and con

tinuous mapping h ' we conclude that there ex i s t a d-open map

ping f of X onto a space Y of weight <&t and a continuous 

mapping g':Y—*-Z' such that h' » g'o f. Then f i s a perfect 

mapping (lemma 15) . Lemma 6 implies that f i s open. Let v 

bs the unique continuous mapping of z ' onto Z such that 

r * h ' « h. Put g » r o g ' . Evidently, h = - g o f , Thus the lem

ma i s proved. 

Theorem 4 . Let ^ be an uncountable regular cardinal 

and X be a space of weight <u. such that Zkt\ - T ^ X ) -< (U, 
c(x) and t -< <w for each c -< (u . Then a space X i s a l imit 

of some well-ordered spectrum of length (u, with d-open pro

ject ions consis t ing of spaces of weights «< ^ -

The above theorem follows from Theorem 1 and Lemma 14. 

In the same manner we formulate the following resu l t which 

i s an easy corollary of Theorem 1 and Lemma 16. 

Theorem 5. Let ^ be an uncountable regular cardinal 

and X be a space of weight p*. such that w (X> • Y^*) *< (^ 

and r c < <u, for each T -< <tt • Then X i s a l imi t of s o 

me well-ordered spectrum S of length ^ with perfect open 

projections cons is t ing of spaces of weights? </*. 

Question 2 . Can one make a spectrum S in Theorem 5 con

tinuous? 

Now we proceed to the d i scuss ion of the fol lowing ques

t i o n . Let S be a well-ordered spectrum consis t ing of spaces 

with Sous1in property. What kind of projections should a 

spectrum S have to insure us that a l imit of S has Sousl in 

property, too? 
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To give some sufficient conditions we need the follow

ing definition by I.A. Vainatein (see El l ] ) . 

Definition 9. A mapping f:X —> X is called semiopen 

i f an interior of f(d) is non-empty for each non-empty open 

subset OfeX. 

Ptfin.ltton lp (E.V. Scepin). Let S ** X̂  , p ^ ^ v be 

a spectrum, ot* < r and A g X s y ^ S. We wil l say that A 

does not depend on oc* i f D ^ (A) =- (p^5*)"" P^ A for some 

oc <• oc* where p^ is a limit projection of X to X^ for e-

very y <? f • Let k(A) be a set of al l ordinals oc*«<<r a 

set A depends on. from the definition it follows that Oek(A) 

for each non-empty A£X. We will say that A is a set of a 

f inite type i f f ik(A)l<^c0< and there exists oc < if such 

that A » P^Po-* <-*>• 

Lemma 17. Let S *iX^ *p£^*c a<cz ^ a n almost continu

ous spectrum with semiopen projections and X = ljm S. Then 

the family of open subsets of f inite type in X forms a jr -

base for X. 

Proof. Let : P ( y ) be the following statement; i f T « 
s^Y«c »(-I<foifl<.y ** a n a l m o 8 t continuous spectrum of length 

Y with semiopen projections then a limit of T has a or-ba

se consisting of sets of finite type (with respect to T), It 

i s obvious that CP(-y) holds for each y < a • Let 2T ^ *& 

and ^(QT') holds for each y ' < y • 

I . y is a limit ordinal. Let T s - t i^ f*!L\cM<rhe m 

almost continuous spectrum with semiopen projections and X * 

* J£» T. For each r ' < y put T ^ " ^ t Q ^ i ^ r ' J t h e n 

T 2£ lim T^+<f. Further, 3&C*-'* 1) implies that the open 
1T *"- * 
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s e t s of f i n i t e type in Y ^ (with respect to T ^ - j ) form 

a tf-base 3 ^ for X^ . P u t CRr « -fq^1 V: r'** ^ and V£ 

e S y / - where q : Y —> X i s a l imit project ion for every 

y'*c X • It i s obvious that C&y, i s a jr-base for Y con

s i s t i n g of open se t s of f i n i t e type with respect to a spec

trum T. 

I I . *$ =- of* 1 where / i s a l imit ord inal . Let T = 

85 ^d q*^oC p*y ** a n a l m o a t continuous spectrum with semi-

open projec t ions . 

Put Y * lj.m T where f --CY^ qf i^^j . An almost con

t i n u i t y of a spectrum T imp l ies that Y^ i s dense in Y. Ac

cording to our inductive assumption 3*(oO holds hence the o-

pen s e t s of f i n i t e type in Y form a or'-base 3 ^ for Y. Put 

- 3 ^ s \MO Xj* : U& Obj-l • As p i s a mapping onto for eve

ry {U, *:cf so 3 ^ i s a or -base for Y consist ing of s e t s of 

f i n i t e type. 

I I I . 2T -soT-t- 1 where cf i s a non-limit ord inal . Let 

T ="{Y^t q£ i be a spectrum as above. Let cf- <<t • 1 and ^ = 

" ^ J 9^Kc,p<dl * T h e n V* i^LV a n d 3 * ( o r ) Implies that 

the open se t s of f i n i t e type in X (with respect to T^ ) form 

a jr-base tB/M/ for Y_ . Let 0*4= A be some open subset of 

T ^ . Then there e x i s t s a non-empty open subset U & X^ such 

that U S q*£(cO. But .33^ i s a jr*-base for Y^ hence we can 

choose an element V e .B^, such that A 4 » V s U . Then a non

empty open subset <Y -* C f U q ^ ) " * of Y^ i s contained in (f 

and q £ (O*') » V. Therefore Ô  i s an open se t of f i n i t e type 
C" 

in Y^ with respect to T. Thus ^ ( y ) holds for every 2f . 
This completes the proof* 

Lemma 18. Let S -••(X^ ,pj^}U ) a ^ ^ be a spectrum and X a 
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= .yim S. Let a l s o A and B be d i s j o i n t s u b s e t s of f i n i t e type 

i n X (with r e spec t to S ) . Then the re e x i s t s an o rd ina l *>c e 

e. k(A)f) k('B) such t h a t p ^ U) f i p«*(B) = A • 

Proof. We w i l l put n = | k(A)J • I k(B)| and prove our 

lemma by i nduc t ion . The case A -= A or B == A i s t r i v i a l hen

ce we assume tha t A and B are non-empty s e t a . Then Cck(A) f) 

f) k(B) so n T 2 . I f n » 2 then A - P ^ P ^ A ) and B =- P ^ P ^ B ) 

which impl ies tha t p 0 (A)f .pQ (B) = A (we r e c a l l t ha t p i s a 

mapping o n t o ) . 

Now l e t us assume tha t the lemma s conclusion i s proved 

for a l l n.£m where mZ 2 and prove i t for n = m + 1 . Put P =-

= k (A)Ok(B) . Then O e P hence ? 4* A . Put oC*= max P. We 

claim tha t p ^ i A l f l p ,^(B) -*vl . Indeed, assume the con t ra ry . 

Put Q =foC€ kU):oc*<£o6} , R s-f£ e k(B):oo*-£^f and 3* = max 

(RUQ). Then oO*<r T otherwise A « p" i p „. (A) and B = 
vC o C * 

= p"*^ p + (B) which implies tha t p^CA) fi p ,^(B) = A , i . e . a 

c o n t r a d i c t i o n . Without loss of g e n e r a l i t y we may assume tha t 

# € Q. Then k(A) = k ( A ) \ 4 y ? hence Ik(A) I • I k(B)l » m. I t 

i s obvious t h a t k(A)H k(B) = P and p ^ ( A)fl P^CB) =- p ^ (A) 0 

n p / * , ( B ) 4 - A for e a c n f4 e p (because p ^ * (A) /I p ^ (B) 4- .A). 

So the induc t ive assumption implies tha t £f>B 4= A . Moreover 

A=^ P - x ^ f l P o o ^ * P o c ^ A ^ P o c ^ B ^ W e cn°os® a point x e 

€ p ^ (A)/! p ^ ( B ) . Let us consider two cases . 

I . fi & 06 . There e x i s t s a point z c A such tha t P ^ - - ) * 

«* x . Then the e q u a l i t y B * P^ P# <B) implies t ha t z e AflB4=A 

which con t r ad i c t s the lemma s condi t ion . 

I I . 06-*-r I3 . There e x i s t s a point ye p^ (B) such tha t 

p # ( y ) « x . Then the equa l i t y p A (A) = (pj? ) " 1 p ^ (A) implies 

t h a t y c p ^ ( A ) H p ^ (B) . Now we may choose a point zek such 
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that p^ (z) » y. Since B a p^1 p (B) we conclude that ss€ All 

f ) B # A which is a contradiction. 

Thus p^* (A)ripotJit(B) « A which completes the proof. 

Lemma 19. Let S * 4X^ ,p£l^ «eA be a spectrum with 

semiopen projections and X * J^a S. Then the limit projecti

ons p^ :X —^X^ are semiopen, too. 

Proof. Let U be an open non-empty subset of X and » £ A, 

Let x € 12 • Then there exist an element (h e. k and an open 

subset ? S X A such that x 6 p" Y 5 U . Further, there exists 

an element y c A such that cc & y and ft t£ y • Put W -* 

» ( p j ) " 1 ? . Then W £ p T ( U ) and p j (w)c p j p ^ (li ) » p^ ( U ) . 

Since W is an open non-empty subset of X.̂  and p£ i s semiopen, 

there exists an open non-empty subset G£ X^ such that Q £ 

SP^(W). Thus G S p ^ ( U ) . Lemma is proved. 

Theorem 6. Let S m -f Xrf tP^J^ »<>c, be an almost continu

ous spectrum with semiopen projections, X = ljm S, and c(XoC M 

4& A for each ©6 •< f where A is an infinite cardinal. Then 

c(X) 4s X • Analogously, i f (<u.yX) i s a pre caliber (caliber) 

for every ^u then (fif&) i s a precaliber (caliber) for X. 

Proof. We will prove only the f irst part of the theorem 

using the standard method of quasi-disjoint families. Assume 

that cCX) .> A. . Then there exists a disjoint family 3* con

sisting of non-empty open subsets of X with l^rl s A . Since 

x) A pair C 4*f & ) of cardinals is said to be a precaliber of 
a space X i f f for every family & consisting of non-empty 
open subsets of X with lylS'A. there exists a subfamily 
f'&Y with finite intersection property such that 
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the family of all open subsets of f inite type in X (with res 

pect to S) forms a af-base for X (lemma 17) without loss of 

generality one can assume that al l elements of -y are of f i 

nite type. For every U « qf put p^ * k ( l i ) . Since X* i s a 

regular cardinal and lP u l < # 0 for eaeh U e f there exirt 

a finite set P c ? and a subfamily / S y with l^'l * X* 

such that P^O ¥y =* T whenever U ,V e. f' and P,, 4- Py. Put 

©£*"- max P. 

Then Lemma 18 implies that p ^ ^ l D / l p # (V) for each 

different U, V s y1 . This contradicts the inequality 

ciX^*.) & X because Int ( U ) 4 * A for each U e^' (Lem-

ma 19)* Therefore c(X) & X • The theorem i s proved* 

Theorem 6 generalizes a similar S&epin's result concer

ning the case when S is a continuous spectrum with open pro

jections. 

Definition 10. Let -Cf :X —> X^?f€£ be a family of con

tinuous mappings of X and <9£ be a home omor phis m. We will 

say that £ is a €f-system i f f ®#- e £ for each countable 

subfamily y s £ and every f c £ is a mapping onto (here 

0 7 is a diagonal product of a family y considered as a 

mapping of a space X onto i t s image). 

Our last result generalizes Arhangel skii theorem con

cerning the mappings of dense subepaces of products (see 15J, 

Theorem 1) . 

Theorem 7. Let & be a C-system consisting of open 

mappings of X and f(X) has a countable network for each f c 

6 £ • Let S be a dense subset of X, <p be a continuous map

ping of S onto a regular space X and M s^ycY* ^(yfX) ^-/* 01* 
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Then there e x i s t a mapping f € £> and a continuous mapping 

y : f ( N ) — > M such that $>l N =- y° ( f l N ) where ff =- g> "^M. In 

part icu l ar , n w(M) £j*0* 

Theorem 7 can be proved analogously to the same in C5.1. 

However, to do t h i s , one should reformulate lemmas 17 and 18 

for 6f-systems. This reformulations do not present any d i f f i 

c u l t i e s . 

Corollary 4 . Let S be a dense subspace of & ae-me triz-

able compact space X and a f irs t -countab l e regu lar space X 

be a continuous image of S. Then n w (Y) <fr -H . 

Proof. As X i s a ae-metrizable compact space, there ex

i s t s a &-system & of open mappings of X onto compact metric 

spaces (see £13, Theorem). Therefore Theorem 7 imp l ies that 

n w (Y)^-K 0 . 
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