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TWO-VALUED MEASURE NEED NOT BE PURELY & -COMPACT
Bohdan ANISZCZYK

Abgtract: The conjecture of Z. Ffrolfk and J. Pachl ([2])
stated in the title is true (purely % o-conp ct measures were
introduced in [217).
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This note is closely related to the paper "Pure measures™

by Z. Frolfk and J. Pachl ([2]). We answer in the affirmative
the conjecture stated there [ 2, 4,2(c)] and in the title of
this note. For the definition of a purely xo-compact measure
see the above mentioned paper. Our measure will be defined on
a special & -algebra, we call it J3(I), and we will describe
it now.

Let I be any index set. For Jc=1I, Py denotes a canonical
projection of {0,1§I onto {O,I}J. A denotes the 6&-algebra
generated by the family of sets -fp:i,}(l):ie I%. Let X(J) &
EA£0,1§J be the set of points all but finitely many coordina-
tes of which are zero. Put $B(I) = JANX(I):Ae RX.

The following properties of R(I) are easily established.
For any set B e 3(I) there are a countable set J(B)<=1I and a
set BEX(J(B)) such that B = py(p)(B)N X(I). If two points
x,¥c X(I) are different only on coordinates not in J(B) then
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either {x,y}c B, or ix,y}nB = £.

Two further properties of R(I) are a little less obvi-

ous.

(1) Any & -algebra generated by a countable subfamily of
33(1) has countable many atoms.

(11)

J3(1) satisfies the continuum chain condition (i.e. any
family F# = B (I) of nonempty pairwise disjoint sets

has cardinality at most continuum - the cardinality -of
the real line).

Proof. (i) Let €< J3(I) be the smallest & -algebra
containing a family 1C;;Cp,...3 = B(I). Let &, = p;:lu(l),
and ) be a S-subalgebra of A generated by a family
{AizieJ}, where J = J(clqu&c2)u... . J is countable.
Any atom of =) is of the form

A{AiteKin N1 0,137 - agr1ed - k4,

for some K&J. Only countably many of these are not disjoint
with X(I) (those with K finite), so the &-algebra &) m X(I)=
= {DNX(I):D ¢ P} on X(I) has only countably many atoms. ¢
is a &-subalgebra of &) n X(I), then it has only countably

many atoms, too.

(11) Let F < B (I) be a family of nonempty pairwise
disjoint sets. For any B €3 take the set A(B) =

= p}%B)(pJ(B)(B))' A(B) belongs to A s=nd ¢ ={A(B):B e F¢
is a family of nonempty pairwise disjoint sets (if Bl,Bze
e?® , B)nB, =@, then pJ(Bl)n Pj(Bz) =@, where J =

= J(B))n J(B,), and py (py(B;))2 A(B,), 1=1,2), But for 7 it

is known that it satisfies: the continuum chain condition
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[1, Theorem 3.13]. This ends the proof.
We say that a measure w defined on J(I) is given by
a point if there is xe€ X(I) such that @(B) =1 in case xeB
and w(B) = O otherwise.
Let Xq denote a point each coordinate of which is zero.
The answer to the above mentioned Frolik-Pachl conjec-

ture is given in the following

Proposition. If card(I)> 2%, where ¢ stands for the
continuum, then the measure «w defined on J3(I) by the point

X is not purely ﬁo-compact.

Proof. Assume, a contrario, that w is purely % o—com—
pact. There is an ¥ -compact algebra R € R (1) satisfying
(1) «(B) = inf {;:ﬁ‘,,‘ ((—L(Ri):igjq Ry;2B, Bye R} for
BeR (D).

Put
Ry ={ReR -4P}:(Rjc R, Rye R imply R =R} or R; = #).

R
is of cardinality at most c.

o contains pairwise disjoint nonempty sets, hence by (i1)

Claim. For any R e R - <{@% there is R € R R S R.

0?
Suppose not. There is a set Re R such that R and all its
nonempty subsets belonging to R, can be divided into two non-
empty sets contained in R . Let R(0), R(1) e R -<{@% be two
disjoint sets such that R = R(0)u R(1), If we have a family
{R(el,...,ei):el....,eie{o,l}, i=1,...,N3 € R satisfying

(Z)fﬂel""'ei,mﬂ Rlej,e.eseq,1) =8

[}

Rlejye--yeq,0JU E(el,...,ei,l) R(el,...,ei)/
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for i< N, then in each set RCel,...,eNl we can find two its
subsets R(ej,...,en,0), Rlej,...,ey,1) € R -0} disjoint
and with sum equal to R(el,...,eN).

Let ¢ be the &-algebra generated by a family
{R(e},..00)2e5,000e,€40,1), 1 = 1,2,... 3SR - {0} satisfy-
ing (2). <€ is obviously countably generated. Any sequence e,
eyy+.s Where ejeq 0,13 , defines an atom of < = namely
;f54 R(el,...,ei) - nonempty because of compactness of R .
So € has uncountably many atoms which contradicts (i). This
contradiction proves the claim.

With each set ReR we can associate a family {Rj€ R o}
:ROE.R3. By the claim different sets have different families,
then there are at most 2°¢ many sets in & . While for any set
B in R(I) the set J(B) is countable, the set J = U+ J(R):
tR € R} has cardinality at most 2°% For any 1e I .« (B()) =
= 0, where B(i) is the set of points whose i-th coordinate is
equal to 1. By (1) there is a countable family ®4 = R which
covers B{i1) and does not cover the point x,+ There is a set
Ri & 331 containing a point Xy the point which differs from
X, only on the i-th coordinate. Hence i must belong to J(Ri),
and then I = J. This implies card(I)<2° This contradiction

with assumption of proposition ends the proof.

Remgrks. A& little modification is needed to show that
the proposition is true for any measure on B (I)J defined by
a point. It may be shown that any O-1 measure on R(I) is de-
fined by a point. Property (i) implies that any measure on

B (I) is at most countable sum of two-valued measures, so

everyone is pure ([2, Lemma 2.2)) and hence # ,-compact
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(13, Corollary 4)) but none is purely i o-compact.
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