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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

23,1 (1982) 

TWO-VALUED MEASURE NEED NOT BE PURELY $C -COMPACT 
Bohdan ANISZCZYK ° 

Abstrac t : The conjecture of Z. Fro lfk and J . Pachl ( [2 ] ) 
s t a t e d in the t i t l e i s t rue (purely -£ -compa ct measures were 
introduced in 12"]). ° 

Key words: Purely ^: -compact measure. 

C l a s s i f i c a t i o n : 28A12 

This note i s c lose ly r e l a t e d to the paper "Pure measures'* 

by Z. Fro1Ik and J . Pachl (L23). We answer in the a f f i rmat ive 

the conjecture s t a t ed there L2, 4*2(cM and in the t i t l e of 

t h i s no t e . For the d e f i n i t i o n of a purely y; - compact measure 

see the above mentioned paper. Our measure wi l l be defined on 

a spec i a l &-algebra, we c a l l i t 33(1) , and we w i l l descr ibe 

i t now. 

Let I be any index s e t . For J S I , Pj deno tes a canonical 

p ro j ec t ion of 40,1} onto 40,11 • A deno tes the 6^-algebra 

generated by the family of s e t s -f p ~ ^ CD l i e I7$. Let XCJ) 9 

£ - t O , l v be the s e t of po in t s a l l but f i n i t e l y many coordina

t e s of which are ze ro . Put d3(I) = 4 AoXCl): A e A \ . 

The fo l lowing p rope r t i e s of CB(l) are e a s i l y e s t a b l i s h e d . 

For any se t B e (P?(I) there are a countable se t J ( B ) s I and a 

s e t B^XCJCB)) such that B « Pj(B \ , (B)n X( I ) . I f two po in ts 

xry<sXCl) are d i f f e r en t only on coordinates not in J(B) then 
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either-tx,y}cB, or 4x,yJnB » 6. 

Two further properties of ̂ B(I) are a little less obvi

ous* 

(i) Any &-algebra generated by a countable subfamily of 

3&(l) has countable many atoms. 

(ii) Si(l) satisfies the continuum chain condition (i.e. any 

family f s JB(I) of nonempty pairwise disjoint sets 

has cardinality at most continuum - the cardinality -of 

the real line). 

Proof. (i) Let <€ G Ji ii) be the smallest e'-algebra 

containing a family {CpCg,...! =• ^>(l). Let R± = Pii^^t 

and 2) be a ^T-subalgebra of J\ generated by a family 

{AjtieJ^., where J = J(C, )} *o JCC-^ U .. • . J is countable. 

Any atom of 5) is of the form 

n J A ^ U K ^ n U O . H 1 - A^ie J - K$, 

for some K£J. Only countably many of these are not disjoint 

with X(I) (those with K finite), so the G-algebra &) n X(l) = 

* 4DnX(l):D e ££} on X(l) has only countably many atoms, if 

is a e'-subalgebra of k6 n X(I), then it has only countably 

many atoms, too. 

(ii) Let V^£$(I) be a family of nonempty pairwds© 

disjoint sets. For any B 6 9T take the set A(B) = 

~ PJ(B)/PJ(B)(B))# A ( B ) belongs t0 A 9nd ^ - i A ( B ) : B e ^ 

is a family of nonempty pairwise disjoint sets (if B-^B^G 

e ^ , B^nB^ a 0, then pJ(B]L)n p S ^ = 0, where J = 

~ j(B1)n JCB?>, and pj
1(pJ(Bi) ) ^ ACBĵ }, 1=1,2). But for A it 

is known that it satisfies the continuum chain condition 
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L I , Theorem 3 .131 . This ends the proof. 

We say tha t a measure (U, defined on 3Ml) i s given by 

a point i f there i s x € X ( I ) such tha t ta(B) =- 1 in case x e B 

and (UXB) - 0 o therwise . 

Let x denote a point each coordinate of which i s zero . 

The answer to the above mentioned Fro l Ik-Pachl conjec

tu re i s given in the fo l lowing 

P r o p o s i t i o n . I f card(l)-> 2c
t where c s tands fo r the 

continuum, then the measure (ju defined on foil) by the po int 

x i s not purely & -compact. 

Proof. Assume, a c o n t r a r i o , tha t (U, i s purely i-r •com

pac t . There i s an .^ -compact algebra (R, £ 3J ( I ) s a t i s f y i n g 
oo co 

(1) ^ ( B ) * in f i ^ ^ ( R i ) : ^ ^ R ^ B, R±<£ <&} fo r 

B € .B CD. 

Put 

SlQ s -fRetf t - - t t f j .CR-^R, R j - e A imply R » Ex or- Rx = fb). 

%0 contains pairwise d i s j o i n t nonempty s e t s , hence by ( i i J 

i s of c a r d i n a l i t y at most c. 

Claim. For any R e J t -iti\ the re i s RQ € 3 t Q , RQ£ R. 

Suppose no t . There i s a se t R e 3k such that R and a l l i t s 

nonempty subse t s belonging to CJt can be divided i n t o two non

empty s e t s contained in /#, . Let R(O), R(l) e 3 t "4 0} be two 

d i s j o i n t s e t s such that R » R ( 0 ) u R ( l ) , I f we have a family 

i.R(e-|, , . . . ,e.|) :e- i»-- .* fe i€ '{0, l^ , i = l , . - . ,Ni £ % s a t i s f y i n g 

fRCe- , . . . , e . , 0 ) n R ( e - , . . . , e 4 , 1 ) = 0 
( / ) < x a x x 

' RGe^,» • - ,e .pO)u £ ( e ^ » * . . , e i 9 l ) = RCe-^,... ,e^l 
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for i< N, then in each set RCe^,... ,ejJ, we can find two its 

subsets R(elt... ,6-̂ ,0)), R(elf... ,eN,l) e. (Fb -ilb'} disjoint 

and with sum equal to RCe-,,... ,e„). 

Let *t be the ^-algebra generated by a family 

•lR(e1,...ei):e1,...eieiO,l}, i » 1,2,... } s% - \t)\ satisfy

ing (2). ̂  is obviously countably generated. Any sequence e-p 

e 2f-» where 6^^4 0,1$ , defines an atom of ^ - namely 

-O/i RCe1>...»ei) - nonempty because of compactness of 3t • 

So *6 haa uncountably many atoms which contradicts (!)• This 

contradiction proves the claim. 

With each set RcCft/ we can associate a family {B.^e. St i 

:R0ERJ. By the claim different sets have different families, 

then there are at most 2>c many sets in % • While for any set 

& in $»(I) the set J(B) is countable, the set J * LJi J(R>; 

:R e CR-5 has cardinality at most 2°. For any i€ I ^ ( B ( )) = 

» 0, where B(i) is the set of points whose i-th coordinate is 

equal to 1. By (l) there is a countable family (R,^ & 31 which 

covers B(i) and does not cover the point x . There is a set 

R i 6 (k>^ containing a point x.,, the point which differs from 

x only on the i-th coordinate. Hence i must belong to J(Ri), 

and then I =- J. This implies card(l) --- £ c. This contradiction 

with assumption of proposition ends the proof. 

Remarks. A little modification is needed to show that 

the proposition is true for any measure on .$(1) defined by 

a point. It may be shown that any 0-1 measure on 33(1), is de

fined by a point. Property (i) implies that any measure on 

35 (I) is at most countable sum of two-valued measures, so 

everyone is pure ([2, Lemma 2.23) and hence ^ -compact 
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( [ 3 , Coro l lary 43) but none i s purely ^ -compact. 
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