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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
23,2 (1982)

PRERADICALS AND GEN.ERALIZATIONS OF QF-3' MODULES Il
Josef JIRASKO

Abstract: The concept of dQF-3"’ modules is dual to that

of QF—3” which was introduced in [18] and generalizes the con-
cept of pseudoprojective module,in the literature (see [1],[4],
{14]) also denoted as the dQF-3  module. In the following

d9F-3"" modules are characterized in terms of preradicals. So-

me results on dQF-3 " modules and preradicals connected with
dQF-3"" modules are obtained.

Ke rds: , G-cohereditary preradicals, G-hereditary pre-
radicals, gQF—3 modules. ’

Classification: 16463, 16A50

All the rings considered below will be asgsociative with
unit and R-mod will denote the category of all unitary left
R-modules.

A preradical r for R-mod is any subfunctor of the identi-
ty functor. For the basic notions from the theory of preradi-
cals we refer to the first part of this article (see L18]).

The class of all r-torsion (r-torsionfree) modules will
be denoted by 9, (?r).

We say that a preradical r

is superhereditary if it is hereditary and Tr is closed
under direct products,

has FCgSP if r(M) is a direct summand in M for every fini-
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tely cogenerated module M.

The identity functor will be denoted by id. For a module
Q let us define an idempotent preradical p{Q} by p{Q}(M) =
= X Im £, where f runs over all fg Homp(Q,M), MaR-mod. The
idempotent core (radical closure) of a preradical r will be
denoted by T, (¥). if?lri (= ry) denotes the intersection
(sum) of a family of preradicals {ry;ie<I}.

For a submodule A of a module B and a preradical r let
us define C,(A:B) by C,(A:B)/A = r(B/A). If r, s are preradi-
cals then (ras) is a preradical defined by (ras)(M) =
= Cs(r(M):M), Me R-mod; r<38 means r(M)< s(M) for every M e
¢ R-mod.

The socle will be denoted by Soc, the injective hull
(projective cover) of a module Q by E(Q) (c(Q)).

& module M is called
- finitely coembedded if there is g finitely cogenerated mo-
dule N and an epimorphism f:N—> M,
cocyclic if it is an essential extension of a simple modu-
le,

- cofaithful if every injective module is p{M}-torsion.

A ring R is called
left perfect if every left R-module has a projective cover,

- left V-ring if every simple left R-module is injective.
A preradicgl r is said to be

- an l-radical if M/r(M) e %, for every finitely cogenerated

module M,
a 2-radical if M/r(M) e 7} for every finitely coembedded

module M,
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- G-cohereditary if r(B/A) = (r(B) + A)/A, whenever AGB, B
finitely cogenerated,
= Gy-cohereditary if for every Q ¢ ¥, there is a projective
presentation 0 — K< P—5Q—» O of Q such that for e-
very XSP with P/X finitely cogenerated K + Cr(X:P) =P,
- G-hereditary if r(M) = N C,(X:M), where X runs over all
submodules X of M with M/X finitely cogenerated, M €R-mod.
For a preradical r let us define preradicals (Gceh)(r)
and (Gh)(r) as follows:
(Geh)(r)(Q) = r(QIN( N glc,(X:P))), where 0—> K > P -F>
=2 Q—0
is a projective presentation of Q, X runs over all submodules
of P with P/X finitely cogenerated, Q € R-mod, (Gh)(r)(Q) =
= N Cr(X:Q), where X runs over all submodules of Q with /X
finitely cogenerated, Q& R-mod.
Propositi
(1) Every G-cohereditary preradical is G;-cohereditary.
(ii) Every Gy-cohereditary idempotent preradicsl is G-
cohereditary.
(ii1) (Geh)(r) is a preradical and (Geh)(r)&r. Moreo-
ver if R is left perfect then (Gech)(r) is G,-cohereditary.
(iv) If s£r, s G-cohereditary then s £(Geh)(r).
(v) (Geh) (r) (Q) does not depend on particular choice of
a projective presentation of Q.
(vi) (Geh)(r) is the largest G-cohereditary idempotent
preradical contained in r provided that R is left perfect.
(vii) (Gh)tr) is a G-hereditary preradical snd r <
< (Gh)(r).,
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(viii) If r<s, s G-hereditary then (Gh)(r)<s.
(ix) (Gh)(r) is the least G-hereditary preradical con-

taining r.
(x) (@Gn)(r)(Q) = r(Q) for every finitely cogenerated

module Q.
(xi) (Geh)(r)(Q) = r(Q) for every projective module Q.
(xii) Every cohereditary and every superhereditary pre-

radical is G-hereditary.
(xiii) 1Ir {r;;16I% is a family of G-cohereditary pre-

radicals then L%I ry 1s G-cohereditary.

(xiv) If r is a preradical then S {s;s<r, s G-cohe-
reditary (idempotent) preradical}y is the largest G-coheredi-
tary (idempotent) preradical contained in r.

(xv) If{ry;1eI}% is a family of G-hereditary preradi-
cals then »{,QI ry is G-hereditary.

(xvi) If r is a preradical then f{ s;jr<s, s G-here-
ditary (pre)-radical} is the least G-hereditary (pre)-radical

containing r.

(xvii) If r is G-cohereditary then T is so provided that
R is left perfect.

(xviii) If r is G-cohereditary then ¥ is so.

Proof. (i) Let 0—> K< P—>Q—> 0 be a projective
presentation of an r-torsion module Q. If » is G-coheredita-
ry, XS P such that P/X is finitely cogenerated then
r((P/X)/C(K+X)/X)) = (r(P/X) + ((K+X)/X))/CK+X)/X) and hence
K + C,(X:P) = P since Q e T

(ii) Let r be a Gy-cohereditary idempotent preradical,
B be a finitely cogenerated module and O—» K e—> P, r(B/4)»

—> 0 be a projective nresentation of r(B/A) with the desired
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property. Consider the following commutative diagram

0—s» Ke—>P-¥, r(B/R)—> 0

Kl
£

Cn(a:B),
where o is the natural epimorphism. Then P/Ker f is finite-
1y cogenerated and hence K + Cr(Ker £:P) = P since r is idem-
potent. Thus r(B/A) = g(P) = g(K+C,(Ker £:P)) < (r(£(P))) <
€ w(r(B)) = (r(B)+A)/A.

The remaining assertions are clear.

Propogition 2. Let r be an idempotent preradicsl. Then
the following are equivalent:

(i) r is an l-radical (2-radicsl),

(ii) if 0—>» A—> B—> C—> 0 is exact, B finitely coge-
nerated (coembedded), A,C € J, then B e J.

Proof. (i) dimplies (ii). It follows from the fact that
for an idempotent l-radical (2-radical) and finitely cogene-
rated (coembedded) module T T & f; if and cnly if HomR(T,F)=
= 0 for every F € %,.

(ii) implies (i). Consider the exact sequence
0 — r(B) > (rar)(B)—> (rar)(B)/r(B)—> 0, where B is fi-
nitely cogenerated (coembedded). Then (rar)(B) € 77, and con-
sequently B/r(B) & ’o”r.

Propogition 3. ~#for a preradical r the frllowing sre e~
quivalent:

(1) r is G-cohereditary,

(i1) r(B/A) = (r(B) + A)/A, whenever ASB, B finitely

coembedded,
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(iii) 4if B/r(B)—> & is an epimorphism / A cocyclic /,
and B finitely cogenerated (coembedded) then A e F,
(iv) a) r is a l-radical (2-radical) and
b) whenever ASB, B & %, / B/A cocyclic /, B fini-
tely coembedded then B/A e .

Proof. Easy.

Propogition 4. The following are equivalent for a pre-
radical r

(i) r is Gy-cohereditary,

(ii) for every Q e ?; there is a projective presentation
0—>K<—>P—>Q—> 0 of Q such that for every X&P with P/X
finitely coembedded K + Cr(X:P) = P,

Proof. Obvious.

Proposition 5. Let r be a preradical. Then

(i) r is G-cohereditary if and only if (Gh)(r) is G-co-
hereditary,

(ii) T is G-cohereditary if and only if (Gh)(r) is G-co-
hereditary,

(i1i) 4if (Gh)(r) is cohereditary then r is G-coheredi-
tary,

(iv) 4if r is idempotent and (Gn) (r) 1is cohereditary then
r is G-cohereditary,

(v) if R is a left perfect ring and r is G-cohereditary
then (EEYT;Y is cohereditary.

Proof. (i)=-(iv) are obvious.

(v) Let R be a left perfect ring and r be a G-coheredi-
tary preradical. If QeR-mod, Q € fr(Gh)(r)’ 0—>K<—>P—>
—>»Q—>0 is a mojective cover of Q and XEP with P/X fini-

- 274 -



tely cogenerated then P = C(gp)(p) (X*K):P) = C(gn) (r) (X:P) +
+ K = C.(X:P) + K since (Gh) (r) is G-cohereditary. Hence

Cr(X:P) = P and consequently (Gh){(r)(P) = P which ylelds
(Gh)(r) is cohereditary.

Corpllary 6. An idempotent G-hereditary preradical in
a left perfect ring is G-cohereditary if and only if it is co-
hereditary.

Proposition 7. Let r be an idempotent G-cohereditary
preradical for a left perfect ring R. Then there is a projec-
tive (Gh)(r)-torsion module P such that r(N) = p{P}(N) for e-
very finitely coembedded module N.

Proof. From Proposition 5 and {31, Theorem 4.7 it fol-
lows that there is a projective (Gh)(r)-torsion module P such
that (Gn)(r) = P{p}. Hence r(N) = p{P}(N) for every finitely

coembedded module N,

A left R-module Q is called
- dqQF-3"7 if the idempotent preradical Piq3 is G-coheredita-
TY,
- r dQF-3"" if the idempotent radical 6;5; is G=-cohereditary,

Proposition 8. Let Q€R-mod. Then the following are e-
quivalent:

(1) Q is doe-3"7,

(ii) there is a projective presentation 0—» K ¢ P—>
—> Q—> 0 of Q such that X + CPm;(X:P) = P for every XcP
with P/X finitely cogenerated (coembedded) ,

(i1i) a) HomR(Q,X/p{Q}(X)) = 0 for every finitely coge-

nerated (coembedded) module X and
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b) if AeB, HomR(Q,B) = 0/ B/A cocyclic / and B fi-~
nitely coembedded then Homp(Q,B/A) = O,

(iv) a) if 0—> A—» B—> C—> O is exact, B finitely

cogenerated (coembedded), A ¢ T and C e T then B e
Piq3 P{q3
< Tp and

{Q%

b) 1if AcB, Homp(Q,B) = 0 / B/A cocylic / and B
finitely coembedded then Homp(Q,B/A) = 0,

(v) for every epimorphism h:B—> A, where B is finitely
cogenerated (coembedded), for every non-zero homomorphism f:
:Q—> A there are homomorphisms k:Q —> QU/Ker f and g:Q—> B
with Ohoeog = Fok / ¥ is induced by £ /,

(vi) for every epimorphism h:B —> C, where C is cocylic,
B is finitely cogenerated (coembedded), for every nonzero ho-
momorphism £:Q — C there are homomorphisms k:Q —>Q/Ker f and
g:Q—>B with O%heg = Fok / ¥ is induced by f /,

(vii) if £:B—> A is an epimorphism / A is cocylic /, B
is finitely cogenerated (coembedded) and HomR(Q,A)4=O then
there is a homomorphism g:Q—> B with Im g$Ker f.

Moreover, if Q has a projective cover then the conditions (1)-
(vii) are equivalent to

(viii) p{Q§(C(Q)/X) = C(Q)/X for every X=C(Q) with
C(Q)/X finitely cogenerated (coembedded),

(ix) if Xe c(Q) such that C(Q)/X is finitely cogenera-
ted (coembedded) then C(Q)/X is isomorphic to a factormodule
of a direct sum of copies of Q,

(x) (en) (P = Pyc(a)t s

(x1) (Gh)(P(Qg is cohereditary,

(xii) p{Q!(X) = p{C(Q)}(X) for every finitely cogenera-
ted (coembedded) module X,
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(xiii) (Gh)(p{Qa)(C(Q)) = ¢(Q),

(xiv) for every finitely cogenerated (coembedded) modu-
le X p{C(Q)}(X) = X implies peo(X) =X,

(xv) a) if O—» A—>» B—> C —> O is exact, B finitely
cogenerated (coembedded), A € T and C 6 T then B €

’ P{Q} P{a}

[+ de and

{Q%

b) for every finitely coembedded module X

HomR(Q,x) =0 if and only if Homp(€(Q),X) = O.

Proof. (ii) implies (i). Let Qv denote the class of all
N ¢ R-mod for which there is a projective presentation

00— L3> M—>N—>0 with L + C (X:M) = M for every XcM

P{q
with M/X finitely cogenerated (coembedded). Then Q € QA and
Q. is a cohereditary class closed under direct sums and con-

sequently 7§~ Q . Now it suffices to use Proposition 1

(ii).
(11) implies (v). Consider the following commutative dia-

<
P{Qy

gram
P
P l q
Q
h l £
B — 5 A—> 0 with exact row,
where B is finitely cogenerated, £$0 and 0—> K <> Pﬁ—'; Q—>
—> 0 is a projective presentation of Q such that
K + cp{ }(X:P) = P for every XE€P with P/X finitely cogenera-
Q
ted.
Then P/ker p is finitely cogenerated and hence

K + Cp{Qi(Ker p:P) = P. If for every homomorphism t:Q —>
—> P/Ker p q(ﬂr—l(Im t))<Ker £, where sv:P—» P/Ker p is
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the natural epimorphism then q(Gp{Q}(Ker p:P)) = QeKer £ -
a,contradiction since f£+0. Hence there is a homomorphism
u:.Q-—’ P/Ker p with q( ™ (1In u)) ¢ Ker f. Put k = Tou, whe-
re G 1s induced by q and g = P eu, where T is induced by p.
Then Ofheg= FTok.

(vii) implies (ii). If there is a projective presentati-
on 0—> K<> P—>Q—> 0 of Q and a submodule XcP with P/X
finitely cogenerated such that K + Cp{Q}(X:P) #*P and £:P/X—>
—> P/(X + CP{Q"(X:P)) is the natural epimorphism then there
is a homomorphism g:Q@ —> P/X with Im g$Ker f, a contradicti-
on. Hence for every projective presentation 0 —» K < P—>
—>» Q—>0 of Q and every submodule X€P with P/X finitely co-
generated K + CP{Q
The rest is either clear or follows from Propositions 1(i), 2,
3(iv) and 4.

(X:P) = P.
3

Propogitjon 9. Let Q& R-mod. Then the following are equi-
valent:

(1) Q is r dQF-3"7,

(ii) there is a projective presentation 0 —> K <> P—>
—> 3 —> 0 of Q such that X + cp«V(X:P) = P for every XcP
with P/X finitely cogenerated (coembedded),

(iii) whenever A<B, (B/A cocyclie) B finitely coembed-
ded and Homp(Q,B) = O then Homp(Q,B/A) = O.
Moreover, if Q has a projective cover then (i)-(iii) are equi-
valent to

(iv) HomR(Q,Y)4=O for every finitely coembedded nonzero
factormodule Y of C(Q),

(v)  (@R(65,) = Pya(qyy s
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(vi) (Gh)(%) is cohereditary,

(vii) p@‘g()() = Peo(Q) (X) for every finitely cogenerat-
ed (coembedded) module X,

(viii) (Gh)(ﬁ“{a})(c(Q)) = ¢(Q),

(ix) for every finitely cogenerated (coembedded) module
X p{C(Q),s(X) = X implies HomR(Q,Y):}-O whenever Y is a nonzero
factormodule of X,

(x) for every finitely coembedded module X HomR(Q,X) =
= 0 if and only if Homp(C(Q),X) = O,

Proof. It can be led similarly as in Proposition 8.

Proposition 10. Let QeR-mod. If Piq} has FCgSP then Q
is dQF-3"" if and only if it is r dQF-3"".

Proof. It suffices to prove only the "only if" part. If
Q is r dQF-3"" and there is a projective presentation
0—> K< P—>Q—> 0 of Q, a submodule X of P with P/X fini-
tely cogenerated and K + CP{QQ(X:P)*P then
Homp (Q,P/ (K + cpim(x:P)))*o and hence HomR(Q,P/Cp{QE(X:P))-‘kO
by Proposition 9(iii). Thus there is a nonzero homomorphism
g:Q—?P/Cp{ 7x(X:P) which can be factorized through a homomor-
phism h:Q—> P/X, a contradiction. Thus Q is dQF-3 " by Propo-

sition 8.

Proposition 11. Let § be a simple R-module possessing &
projective cover. Then S is dQF—B" if and only if it is pro-
Jjective,

Proof. Let O#S be a simple R-module with a projective
cover 0 —>» Kc—>» P —>S—> 0., If XgP with P/X finitely coge-
nerated then XcK since K is a maximal submodule of P and K

is small in P. Further p{S&(P/X) = P/X by Proposition 8. Hen-
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ce there is a homomorphism £:S—> P/X such that Im f$K/X.
Thus Im £ = P/X and hence f is an isomorphism. Therefore X =
= K. Hence K = 0 and consequently S is projective. The con-
verse 1s clear.

& module Q is called strongly dQ/~3 " (strongly
r dQF-3"") if there is a projective module P such that
(Gh)(p{Qi) = Pypy ((Gh)(ﬁ:Eﬁ) = p{Pi)’

Proposgition 12.

(1) Every strongly dQf-3"° (strongly r dQ#-3"") module
1s dQF-3°" (r aQr-377).

(11) If a module Q has a projective cover then Q is
strongly dQF=-3"" (strongly r da#-3"") if and only if it is
dQr-3""(r dar-3"").

(iii) A module Q is strongly d3w¥-3 " (strongly r dar-3"")
if and only if there is a projective representation 0 —» Kec—>
<> P—>» Q—> 0 of Q such that (Gh)(p{Qg) = P(py ((Gh)(ﬁ?a?):
= p{P§)'

Proof. Obvious.

A module Q is said to be a G-generator if p{Qg(N) =N for

every finitely cogenerated (coembedded) module N.

Remark 13. Let Qe R-mod. Then Q is a G-generator if and
only if (Gh)(p{u) = id.

Proposition 14. Let Qe R-mod. Then the following are e-
quivalent:

(i) Q is a G-generator,

(141) 2 is strongly da/3" " and every simple R-module is

isomorphic to a factormodule of Q,
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(1i1) Q is dQF-3°~ and every simple R-module is isomor-
phic to a factormodule of Q.
Moreover, if Q has a projective cover (C(Q), yb) then (i)-(4iii)
are equivalent to

(iv) Q is dQ#-3"" and C(Q) is a generator.

Proof. (1ii) implies (i). Suppose there is a finitely co-

generated module X with p{Q‘(X)=kX.- Then there is a cocyclic
modute C such that 0%C € §b{Q} since Pqi is G-cohereditary,
a contradiction.

The rest is clear.

Remgrk 15. A projective module Q is a G-generator if and

only if it is a generator.

Proposition 16. Let 2 = S%G;, S, where ¥ 1is the repre-
sentative set of simple left R-modules. Then the following are
equivalent:

(1) Q is aQF-3"",

(1i) Soc is G-cohereditary.

(111) Q is a G-generator,

(iv) R is a left V-ring.

Proof. It follows immediately from Proposition 14 and the

+ =
fact that Soc p{Qg.

Let us Y denote a preradical defined by Y(M) = NN, where
N runs through all submodules of M with M/N cocyeclic and small
in E(M/N).

Proposition 17. Y is a G-hereditary radical.
Proof. Obvious.

Propogition 18. Let Q be a cofaithful dQF-B" with Y(Q) =

= Q. Then (Gh)(p 1) =Y.
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Proof. Y(Q) = Q implies Pyqy< ¥ and hence (Gh)(p{Q;)éY
by Proposition 17.
On the other hand if r(N) = O, where r = Piqy N finitely co-
embedded and Y(N)# O then there is a cocyclic factormodule C
of N with ¥(C)#4 0. Thus C is not small in E(C) and hence the-
re is a proper submodule K of E(C) with C + X = E(C). Now r
is G-cohereditary, r(N) = O, N finitely coembedded. Hence
r(E(C)/K) = O by Proposition 3(iv) since E(C)/K is isomorph-
ic to a factormodule of N. Further Q is cofaithful and hence
E(C) e T, and consequently r(E(C)/K) = E(C)/K, a contradicti-
on. Thus Y(N) = 0. Therefore Y(N)Z r(N) for every finitely co-
embedded module N and hence Ylé(Gh)(p{Q§).

Proposition 19. Let R be a left perfect ring and Q be a
cofaithful module. Then the following are equivalent:

(1) (Gh)(p{Q&) =Y,

(11) Q 4s dQF-3"7 and Y(Q) = q,

(111) T(Gh) (p{Qk) = Ty.

Proof. (iii) implies (ii). Y(Q) = Q by (iii). If X =0(Q)
such that C(Q)/X is finitely cogenerated then Y(C(Q)/X) =
= C(Q)/X since Y is cohereditary for a left perfect ring and
hence p{q‘(C(Q)/X) = ¢(Q)/X.

(ii) implies (i). By Proposition 18.

The rest is clear.

Propogition 20. Every direct sum of (strongly) dQF-3""
modules is (strongly) dQF-377.

Proof. Obvious.

opogsition 2]}. Let A,Be R-mod. If p{M(B) = B then the
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following are equivalent:
(1) A® B is dQr-3"",
(11) A 1s aeF-3"".

Proof. Obvious.

Proposition 22. Let Qe R-mod. If every cocyclic factor-
module of Q is dQF-3"" then Q 1s dQF-3"".
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