
Commentationes Mathematicae Universitatis Carolinae

Josef Jirásko
Preradicals and generalizations of QF -3′ modules. II.

Commentationes Mathematicae Universitatis Carolinae, Vol. 23 (1982), No. 2, 269--284

Persistent URL: http://dml.cz/dmlcz/106150

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/106150
http://project.dml.cz


COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROUNAE 

23,2 (1982) 

PRERAD1CALS AND GENERALIZATIONS OF QF-3* MODULES II. 

Josef JIRASKO 

Abstract: The concept of dQF-3' modules is dual to that 
of QF-3 which was introduced in Cl8l and generalizes the con
cept of pseudoprojective module,in the l i t e ra tu re (see t i l ,[43 , 
L14l) also denoted as the dQF-3 module. In the following 
dQF-3 modules are characterized in terms of preradicals . So
me resul ts on dQF-3 modules and preradicals connected with 
dQF-3 modules are obtained. 

Ke.v words: . G-cohereditar.v preradicals, G-hereditary pre-
radicals , dQF-3 modules. 

Classification: 16A63, 16A50 

All the rings considered below will be as9ociative with 

unit and R-mod will denote the category of a l l unitary lef t 

R-modules. 

A preradical r for R-mod i s any subfunctor of the ident i 

ty functor. For the baaic notions from the theory of preradi

cals we refer to the f i r s t part of this a r t i c le (see 1181). 

The class of a l l r - tors ion (r-torsionfree) modules will 

be denoted by f ( 3 ^ ) . 

We say that a preradical r 

- is superhereditary if i t is hereditary and TT i9 clo3ed 

under direct products, 

- has FCgSP if r(M) i9 a direct aummand in M for every f i n i -
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tely cogenerated module M. 

The identity functor will be denoted by id. For a module 

Q let us define an idempotent preradical P/QI by Pjrni^) -

- X Im f, where f runs over all feHomR(Q,M), M&R-mod. The 

idempotent core (radical closure) of a preradical r will be 

denoted by r, (r0. .O.r4 (,Xr
 r-i) denotes the intersection 

*V « 1 1 -V fit J X 

(sum) of a family of preradicals tr^itl}. 

For a submodule A of a module B and a preradical r let 

us define Cr(A:B) by Cr(A:B)/A =- r(E/A). If r, s are preradi

cals then (r^s) is a preradical defined by (rAs)(M) = 

= C (r(M):M), MeR-mod; r^s means r(M)«£s(M) for every M « 

€. R-mod. 

The socle will be denoted by Soc, the infective hull 

(projective cover) of a module Q by E(Q) (c(Q)). 

A module M is called 

- finitely coembedded if there is a finitely cogenerated mo

dule N and an epimorphism f :N---> M, 

- cocyclic if it is an essential extension of a simple modu

le, 

- cofaithful if every infective module is p-f^-torsion. 

A ring R is called 

- left perfect if every left R-module has a projective cover, 

- left V-ring if every simple left R-module is injective. 

A preradical r is said to be 

- an 1-radical if M/r(M) e &T for every finitely cogenerated 

module M, 

- a 2-radical if M/r(M) e /fv for every finitely coembedded 

module M, 
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- G-coheredi tary i f r(B/A) =• (r(B) + A)/A, whenever AS.B, B 

f i n i t e l y cogenerated, 

- G - c o h e r e d i t a r y i f for every Q c TT t he re i s a p ro jec t ive 

p re sen ta t ion 0 —* K<-~> P—*Q—f> 0 of Q such that for e -

very XSP with P/X f i n i t e l y cogenerated K • Cr<X:P) a P , 

- G~hereditary i f r(M) » H Cp(X:M), where X runs over a l l 

submodules X of M with M/X f i n i t e l y cogenerated, MeR-mod. 

For a p re r ad i ca l r l e t us def ine p re rad i ca l s (Gch)(r) 

and (Gh)(r) as fol lows: 

(Gch)(r)(Q) =- r(Q) OC A g(C r (X:P)>) , where 0—¥ K <~~> P -2-V 

- 2 - > Q ~ ^ 0 

i s a p ro jec t ive p r e sen t a t i on of Q, X runs over a l l submodules 

of P with P/X f i n i t e l y cogenerated, QcR-mod, (Gh)(r)(Q) = 

« C\ C r(X:Q), where X runs over a l l submodules of Q with Q/X 

f i n i t e l y cogenerated, QfcR-mod. 

Propos i t ion 1 

( i ) Every G-coheredi tary p r e r ad i ca l i s G - c o h e r e d i t a r y . 

( i i ) Every G-^-cohereditary idempotent p r e r a d i c a l i s G-

cohered i ta ry . 

( i i i ) (GchMr) i s a p r e r a d i c a l and ( G c h ) ( r ) ^ - r . Moreo

ver i f R i s l e f t perfec t then (Gch)(r) i s G-^-cohereditary. 

( iv) I f s ^ r , s G-coheredi tary then s __i(Gch) ( r ) . 

(v) (Gch)(r)(Q) does not depend on p a r t i c u l a r choice of 

a p ro jec t ive p re sen ta t i on of Q. 

i v i ) (Gch)(r) i s the l a r g e s t G-coheredi tary idempotent 

p r e r ad i ca l contained i n r provided tha t R i s l e f t p e r f e c t . 

( v i i ) (Gh)(r) i s a G-heredi ta ry p r e r a d i c a l and r *k 

^ (Gh) ( r ) . 
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Cviii) If r£a, s G-hereditary then ( G h ) ( r ) . 6 s . 

(ix) (Gh)(r) is the least G-hereditary preradical con

taining r. 

(x) (Gh)(r)(Q) a r(Q) for every finitely cogenerated 

module Q. 

(xi) (Gch)(r)(Q) = r(Q) for every projective module Q. 

(xii) Every cohereditary and every superhereditary pre

radical is G-hereditary. 

(xiii) If ir^ial} is a family of G-cohereditary pre-

radicals then . X r r4 is G-cohereditary. 

(xiv) If r is a preradical then 21-Cs;s^r, s G-cohe

reditary (idempotent) preradical? is the largest G-coheredi

tary (idempotent) preradical contained in r. 

(xv) If -fr^iGll is a family of G-hereditary preradi-

cals then .H-r^ is G-hereditary. 

(xvi) If r is a preradical then fl{s;r-6s, s G-here

ditary (pre)-radicalj is the least G-hereditary (pre)-radical 

containing r. 

(xvii) If r is G-cohereditary then "r is so provided that 

R is left perfect. 

(xviii) If r is G-cohereditary then r' is so. 

Proof, (i) Let 0 — > K <-—*> P— > Q—*• 0 be a projective 

presentation of an r-torsion module Q. If * is G-coheredita

ry, XsT such that P/X is finitely cogenerated then 

r((P/X)/((K>X)/X)) * (r(P/X) • ((K+X)/X))/((K+X)/X) and hence 

K • Cr(X:P) = P since Q € <T̂ . 

(ii) Let r be a G,-cohered!tary idempotent preradical, 

B be a finitely cogenerated module and 0-—>• K <-—*• P-3-->. r(B/A)~» 

— > 0 be a projective nresentation of r(B/A) with the desired 
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property. Consider the following commutative diagram 

0—> K<-—*P~-£-> r(B/&)—> 0 

Cp(A:B), 

where <Jf is the natural epimorphism. Then P/Ker f is finite

ly eogenerated and hence K • Cr(Ker f:P) = P since r is idem-

potent. Thus r(B/A) = g(P) = g(K+Cr(Ker f:P))&# (r(f(P))) c 

£ JT(r(B)) = (r(B)+A)/A. 

The remaining assertions are clear. 

Proposition 2. Let r be an idempotent preradical. Then 

the following are equivalent: 

(i) r is an 1-radical (2-radical), 

(ii) if 0—> A—y B — * C — > 0 is exact, B finitely eoge

nerated (coembedded), A,C e <TT then B € _T^. 

Proof, (i) implies (ii). It follows from the fact that 

for an idempotent 1-radical (2-radical) and finitely eogene

rated (coembedded) module T T 6 CT̂  if and only if Hom^TjF^ 

= 0 for every F e 0^. 

(ii) implies (i). Consider the exact sequence 

0 —>r(B) <-—* ( r , ^ r ) ( B )—* (r A r) (B)/r(B)—>0, where B is fi

nitely eogenerated (coembedded). Then (r&r)(B) € $T and con

sequently B/r(B) * &v* 

Proposition 3. For a preradical r the fallowing are e-

quivalent: 

(i) r is G-cohereditary, 

(ii) r(B/A) = (r(B) + A)/A, whenever A&B, B finitely 

coembedded-, 
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(iii) if B/r(B)—> A is an epimorphism / A cocyclic /, 

and B finitely cogenerated (coembedded) then A e. -K,, 

(iv) a) r is a 1-radical (2-radical) and 

b) whenever A£B, B c & / B/A cocyclic /, B fini

tely coembedded then B/A e tf̂ . 

Proof. Easy. 

Proposition 4. The following are equivalent for a pre-

radical r 

(i) r is G-j-cohereditary, 

(ii) for every Q e T there is a projective presentation 

0 —• K <-—> P ~ * Q — > 0 of Q such that for every X£P with P/X 

finitely coembedded K + Cr(X:P) = P. 

Proof. Obvious. 

Proposition 5. Let r be a preradical. Then 

(i) r is G-cohereditary if and only if (Gh)(r) is G-co

hereditary, 

(ii) r* is G-cohereditary if and only if (Gh) (r) is G-co

hereditary, 

(iii) if (Gh)(r) is cohereditary then r is G-coheredi

tary, 

(iv) if r is idempotent and (Gh)(r) is cohereditary then 

r is G-cohereditary, 

(v; if R is a left perfect ring and r is G-cohereditary 

then (Gh)(r) is cohereditary. 

Proof. (i)-(iv) are obvious. 

(v) Let R be a left perfect ring and r be a G-coheredi

tary preradical. If QeR-mod, Qe^(Gn)(r)t °—>K^— y P ^ 

—>Q—1*0 is a projective cover of Q and XSP with P/X fini-
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t e l y cogenerated then P = C(Gh) ( r ) < ( * * ) :P) » C(Gn) ( r ) (X:P) • 

+ K = Cr(X:P) * K s ince (Gh)(r) i s G-coheredi tary . Hence 

Cr(X:P) = P and consequently (Gh) ( r ) (P) = P which y i e l d s 

(Gh)(r) i s cohered i t a ry . 

Corol lary 6. An idempotent G-heredi tary p re rad ica l i n 

a l e f t perfect r i n g i s G-coheredi tary i f and only i f i t i s co-

h e r e d i t a r y . 

P ropos i t ion 7 . Let r be an idempotent G-coheredi tary 

p r e r ad i ca l for a l e f t perfect r i n g R. Then there i s a p ro jec 

t i v e (Gh) ( r ) - t o r s i on module P such tha t r(N) = P/pi(N) for e -

very f i n i t e l y coembedded module N. 

Proof. From Propos i t ion 5 and C31, Theorem 4 .7 i t f o l 

lows tha t there i s a p ro jec t ive ( G h ) ( r ) - t o r s i o n module P such 

t h a t (Gh)(r) = P/p i • Hence r(N) = p^pj(N) for every f i n i t e l y 

coembedded module N# 

A l e f t R-module Q i s ca l led 

- d Q F - 3 " i f the idempotent p r e r ad i ca l P^Q* i s G-coheredi ta

r y , 

- r dQF-3'" i f the idempotent r a d i c a l P^Q^ i s G-coheredi tary , 

Propos i t ion 8. Let QeR-mod. Then the following are e -

qu iva len t : 

( i ) Q i s d Q F - 3 " , 

(ii) there is a projective presentation 0—»• K «-—> P—> 

—> Q— .>0 of Q such that K + C (X:P) = P for every X£P 
p«u 

with P/X finitely cogenerated (coembedded), 

(iii) a) HomR(&,X/p,Qo(X)) = 0 for every finitely coge

nerated (coembedded) module X and 
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b) if A.2.B, Hom-^QjB) = 0 / B/A cocyclic / and B fi

nitely coembedded then HomgCQjB/A) = 0, 

(iv) a) if 0 — > A—•> B — y C— .> 0 is exact, B finitely 

cogenerated (coembedded), A c TL and C & (TL „ then B e 
P*Q* P<Q* 

€ JT and 
P<Q* 

b) if A SB, HomR(Q,B) = 0 / B/A cocylic / and B 

finitely coembedded then HomR(Q,B/A) = 0, 

(v) for every epimorphism h:B—> A, where B is finitely 

cogenerated (coembedded), for every non-zero homomorphism f: 

:Q—> A there are homomorphisms k:Q— > Q/Ker f and g:Q—>- B 

with 0 + h -g = F-k / F i s induced by f /, 

(vi) for every epimorphism h:B—*- C, where C is cocylic, 

B is finitely cogenerated (coembedded), for every nonzero ho

momorphism f:Q—** C there are homomorphisms k:Q—*Q/Ker f and 

g : Q — ^ B with 0-4-ti o g = f° k / F is induced by f /, 

(vii) if f:B—••A is an epimorphism / A is cocylic /, B 

is finitely cogenerated (coembedded) and HomgCQjA)^- 0 then 

there is a homomorphism g:Q—> B with Im g^Ker f. 

Moreover, if Q has a projective cover then the conditions (i)-

Cvii) are equivalent to 

(viii) P{Q,(C(Q)/X) = C(Q)/X for every XSC(Q) with 

C(Q)/X finitely cogenerated (coembedded), 

(ix) if X£C(Q) such that C(Q)/X is finitely cogenera

ted (coembedded) then C(Q)/X is isomorphic to a factormodule 

of a direct sum of copies of Q, 

(x) (Gh)(p<ca) = P 4 c ( Q ) | , 

(xi) (Gh)(p^ is cohereditary, 

(xii) P(Q}(X) s P-tc(Q)l^X^ f o r e v e ry finitely cogenera

ted (coembedded) module X, 
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(xiii) (Gh)(p{ca)(c(Q)) = CCQ), 

(xiv) for every finitely cogenerated (coembedded) modu

le X P{c(Q)l^X^ = X i mP l i e s P < Q ^ X ^ = x> 

Cxv) a) if 0-—> A — > B —* C —.> 0 is exact, B finitely 

cogenerated (coembedded), A e T_ and C 6 T_ then B e 
p4Qf P{Q* 

c <T and 
P*Qt 

b) for every f i n i t e l y coembedded module X 

Hon^Q-X) a 0 i f and only i f Hom^CCCQjjX) = 0. 

Proof* ( i i ) implies ( i ) . Let 0/ denote the c l a s s of a l l 

N€R-mod for which there i s a p ro jec t ive p r e s e n t a t i o n 
0—y L <=--> M—* N—> 0 with L • C_ (X:M) = M for every XcM 

piQl 
with M/X f i n i t e l y cogenerated (coembedded). Then Q € & and 

(X i s a coheredi ta ry c lass closed under d i r e c t sums and con~ 

sequer 

Cii). 

sequently (TD S 0/ • Now it suffices to use Proposition 1 

(ii) implies Cv). Consider the following commutative dia

gram 
P 

i . 
Q 

i < 
r-» A >. o with exact row, 

where B is finitely cogenerated, f+0 and 0 — > K <--—> P— . • Q — 

— > 0 is a projective presentation of Q such that 

K + C_ (X:P) = P for every X £ P with P/X finitely cogenera-
P*Q} 

ted. 

Then P/ker p is finitely cogenerated and hence 

K * C (Ker p:P) = P. if for every homomorphism t:Q — > 

— > P/Ker p qC^r x(Im t))SKer f, where -rr:P~>P/Ker p is 
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the n a t u r a l epimorphism then q(C_ (Ker p :P)) = QcKer f -
P<Qi 

a ^ c o n t r a d i c t i o n s ince f«t-»0# Hence the re i s a homomorphism 

u:Q —+ P/Ker p with q( sr~ ( l m u) ) !$.Ker f. Put k = q* * u, whe

r e q" i s induced by q and g == "|5*©u, where ]J i s induced by p* 

Then 04 s h • g -= 7*« k. 

( v i i ) impl ies ( i i ) . I f there i s a p ro j ec t i ve p r e s e n t a t i 

on 0 —>- K <—* P —> Q —* 0 of Q and a submodule X £ P with P/X 

f i n i t e l y cogenerated such tha t K * C (X:P)-4-P and f:P/X—> 
P*Q* 

—.>P/(K + C_ (X:P)) i s the n a t u r a l epimorphism then the re 
P*Q* 

i s a homomorphism g:Q—yT/X with lm g ^ K e r ff a c o n t r a d i c t i 

on. Hence for every p ro jec t ive p resen ta t ion 0—* K<—• P—> 

—> Q—• 0 of Q and every submodule X £ P with P/X f i n i t e l y co-

generated K + CL (X:P) a-P. 
P<Q! 

The r e s t i s e i t h e r c lear or follows from Propos i t ions l ( i ) , 2 , 
3( iv) and 4 . 

Proposition 9« Let QcR-mod. Then the following are equi

valent: 

(i) Q is r dQF-3", 

( i i ) the re i s a p ro jec t ive p re sen ta t ion 0—>K<—i»P—y 

—y Q - t O o f Q such tha t K + C^—-(X:P) = P for every X s P 

with P/X f i n i t e l y cogenerated (coembedded), 

( i i i ) whenever A&B, (B/A cocycl ic) B f i n i t e l y coembed

ded and HomgCQjB) = 0 then Hom^CQ^/A) = 0. 

Moreover, i f Q has a p ro jec t ive cover then ( l ) - ( i i i ) are e q u i 

va lent to 

( iv) Homj-,(Q,Y)-$-0 for every f i n i t e l y coembedded nonzero 

factormodule Y of C(Q), 

(v) ( G h H ^ J = P ^ c C Q » . 
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(vi) (GhHpTo?) *s conereditaryt 

( v i i ) P x Q i ^ = PfC(QH ^ f o r e v e r v f i n i t e l y cogenerat-

ed (coembedded) module X, 

( v i i i ) C G h ) C ^ ) ( C ( Q ) ) = C ( Q ) , 

Cix) for every f i n i t e l y cogenerated (coembedded) module 

X Psn(Q)\W = x implies Horn^CQ, Y)4=-0 whenever Y i s a nonzero 

fact ormodule of X, 

(x) for every f i n i t e l y coembedded module X HomR(Q,X) ~ 

= 0 i f and only i f HomR(C(Q),X) = 0 . 

Proof. I t can be led s i m i l a r l y as in P ropos i t ion 8. 

P ropos i t i on 10. Let QeR-mod. I f p . Q , has FCgSP then Q 

i s d Q F - 3 " i f and only i f i t i s r d Q F - 3 " . 

Proof. I t su f f i ces to prove only the "only ifw p a r t . I f 

Q i s r d Q F - 3 " and there i s a p ro jec t ive p re sen ta t ion 

0—> K<--> P—y Q—> 0 of Q, a submodule X of P with P/X f i n i 

t e l y cogenerated and K + C^ (X:P)=#P then 
PIQ\ 

HomRCQ,P/(K + C ( X : P ) ) ) + 0 and hence Hon^CQ^P/C CX:P))#0 

by Propoai t ion 9 ( i i i ) « Thus the re i s a nonzero homomorphism 

g:Q—•> P/C (X:P) which can be fac tor ized through a homomor-
piQ$ 

phism h:Q—>P/X, a c o n t r a d i c t i o n . Thus Q i s d Q F - 3 " by Propo
s i t i o n 8 . 

Propos i t ion 1 1 . Let S be a simple R-module possess ing a 

p ro jec t ive cover. Then S i s d Q F - 3 " i f and only i f i t i s p r o 

j e c t i v e . 

Proof. Let 0 + S be a simple R-module with a p ro jec t ive 

cover 0-^K<-—> P —> S —> 0 . I f X j P with P/X f i n i t e l y coge

nerated then X C K since K i s a maximal submodule of P and K 

i s small i n P. Fur ther PcS»(P/X) = P/X by Propos i t ion 8. Hen-
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ce there is a homomorphism f:S—y P/X such that Im f !̂ K/X. 

Thus Im f = P/X and hence f is an isomorphism. Therefore X = 

= K. Hence K = 0 and consequently S is projective. The con

verse is clear. 

A module Q is called strongly dQ.F-3 (strongly 

r dQF-3 ) if there is a projective module P such that 

(Gh)(p^Qj) - PiPi ((GhMp*^) =p {p^). 

Proposition 12. 

(i) Every strongly dQF-3" (strongly r dQF-3") module 

is dQF-3" (r dQF-3"). 

(ii) If a module Q has a projective cover then Q is 

strongly dQF-3" (strongly r dQF-3") if and only if it is 

dQF-3 "(r dQF-3"). 

(iii) A module Q is strongly dQF-3" (strongly r dQF-3") 

if and only if there is a projective representation 0—»-K <=—> 

<-—* F —-*Q —> 0 of Q such that (Gh)(p^) = p<p, ((Gh)(p7^<) = 

= P < P , > . 

Proof. Obvious. 

A module Q i s said to be a G-generator i f PiQ?(N) - N for 

every f i n i t e l y cogenerated (coembedded) module N. 

Remark 13 . Let QeR-mod. Then Q i s a G-generator i f and 

only i f (GhKp^Q,) = i d . 

P ropos i t ion 14. Let QcR-mod. Then the following are e -

qu iva l en t : 

( i ) Q i s a G-generator , 

( i i ) Q i s s t rong ly dQF-3 and every simple R-module i s 

isomorphic to a factormodule of Q, 
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(iii) Q is dQF-3" and every simple R-module is isomor

phic to a factormodule of Q. 

Moreover, if Q has a projective cover (C(Q), ̂ Q) then (i)-(iii) 

are equivalent to 

Civ) Q is dQF-3" and C(Q) is a generator. 

Proof, (iii) implies (i). Suppose there is a finitely co-

generated module X with p*Qi ( .X)4-X» Then there is a cocyclic 

module C such that 0 + C e £1 since p S Q l is G-cohereditary, 
p{Qi iSt* 

a contradiction. 

The rest is clear. 

Remark 15. A projective module Q is a G-generator if and 

only if it is a generator. 

. _ € > n 

Propos i t ion 16. Let Q = ^ ̂  c* s , where If i s the r e p r e 

s e n t a t i v e se t of simple l e f t R-modules. Then the fol lowing are 

equ iva len t : 

( i ) Q i s d Q F - 3 " , 

(ii) Soc is G-cohereditary. 

(iii) Q is a G-generator, 

(iv) R is a left V-ring. 

Proof. I t follows immediately from Propos i t ion 14 and the 

fac t tha t Soc = Pjrru* 

Let us Y denote a p r e r ad i ca l defined by Y(M) = f]N, where 

N runs through a l l submodules of M with M/N cocycl ic and small 

in E(M/N). 

Propos i t ion 17. Y i s a G-heredi tary r a d i c a l . 

Prooff. Obvious. 

P ropos i t ion 18. Let Q be a cofa i th fu l dQF-3' with Y(Q) * 
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Proof. Y(Q) = Q implies p^Q,^Y and hence (Gh) (p.Q,) £ Y 

by Proposition 17. 

On the other hand if r(N) = 0, where r = P^Q,, N finitely co-

embedded and Y(N)4 0 then there is a cocyclic factormodule C 

of N with Y(c) + 0. Thus C is not small in E( C) and hence the

re is a proper submodule K of E(C) with C + K = E(C). Now r 

is G-cohereditary, r(N) = 0, N finitely coembedded. Hence 

r(E(c)/K) = 0 by Proposition 3(iv) since E(C)/K is isomorph

ic to a factormodule of N. Further Q is cofaithful and hence 

E(C> e iTp and consequently r(E(C)/K) =E(C)/K, a contradicti

on. Thus Y(N) = 0. Therefore Y(N)Sr(N) for every finitely co-

embedded module N and hence Yi (Gh) (p JQO • 

Proposition 19. Let R be a left perfect ring and Q be a 

cofaithful module. Then the following are equivalent: 

(i) (GhMp^,) = Y, 

(ii) Q is dQF-3" and Y(Q) = Q, 

(iii) r(Gh)(p{Ql) « ^Y-

Proof, (iii) implies (ii). Y(Q) = Q by (iii). If XgC(Q) 

such that C(Q)/X is finitely cogenerated then Y(C(Q)/X) = 

= C(Q)/X since Y is cohereditary for a left perfect ring and 

hence p<Q?j (C(Q)/X) = C(Q)/X. 

(ii) implies (i). By Proposition 18. 

The rest is clear. 

Proposition 20. Every direct sum of (strongly) dQF-3" 

modules is (strongly) dQF-3' . 

Proof. Obvious. 

Proposition 21. Let A,BcR-mod. If p^A^(B) = B then the 
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following are equivalent: 

( i ) A® B i s dQ.P-3", 

( i i ) A i s dQF-3". 

Proof. Obvious. 

Proposition 22. Let QfcB-mod. I f every cocycl ic factor-

module of Q i s dQF-3" then Q i s dQf^-3". 
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