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COMMEMTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

23,2 (1982) 

THE COMPLETION MONAD AND ITS ALGEBRA 

Sergio SALBANY 

Abstract: Let C represent the completion functor d i scus
sed by 0. Wyler and S. Salbany. There i s a monad associated 
with C and i t i s natural to ask for a characterization of the 
C-algebras. In t h i s paper we show that the C-algebras are the 
complete spaces . 

Kev words: Quasi Uniform spaces , completion t r i p l e C, 
C-algebras. 

C lass i f i ca t ion: Primary 54E15 
Secondary 18C15 

Introduction. As shown in [43 and l 5 j , the completion 

functor on the category of Quasi-Uniform spaces i s associated 

with a monad ( C , ^ ,<-<')• Keith Hardie asked us for a characte

r i z a t i o n of the C-algebras and persuaded us , over the years , 

that an answer should be given. 

We sha l l fol low the terminology of [33 and [11 concerning qua

si-uniform spaces and that of [23 for the category theory. 

A. gauchy filters, convergentarri CQiplfUness. Let gjj 
denote the category of quasi-uniform spaces (Xf %) and ojuasi-

uniformly continuous maps. 

Definit ion 1. A f i l t e r $ on (X,%) i s said to be a 
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Cauchv-filter if, for every U in the uniformity % v V,~ the

re is F in # such that Fx F c % . 

Definition 2. A filter $ on (X,^) is said to converge 

to x if it converges to x in the topology induced by the uni

formity U v 1L~l. 

Definition 3. (X,U) is said to be complete if % v % ~1 

is complete. 

Definition 4. If A is a subset of (X,U), denote by X 

the closure of A in the topology induced by the uniformity 

U v U~ . x is called an adherence point of a filter $ if 

X e F for every F in &'. 

Not$. As for uniform spaces, if ^ is a Cauchy filter on 

{Xf1l) and x is an adherence point of & , then <$ converges 

to x , and conversely. Thus, if x e F for all F e & , then 

^ converges to x . 

B« Description of ̂ he completion monad. Given (X,^), 

let CX denote the set of all Cauchy filters on X and let tL* 

denote the quasi-uniformity on CX with basis elements U*, whe

re U 6 U and (06,/i )e U* if and only if there are sets A in 

06 , B in (b such that Ax Be U . The sets U* do form a basis 

for U* since (UHV)* « U*f.V*. We now describe the multipli

cation ĉ and the unity ^ of the triple C: 

(i) Let ^ X:X—>CX be given by -»2xCx) =-{F|FcX and 

X e F}. Then TJ X:(X,U)—^CCX,^*) is quasi-uniformly con

tinuous* 

(ii) Let ^rC^X—>CX be given by ^icc) = {HlHcX, 

H* c oc\ , where H* is such that (he H* if and only if H c £ . 

Then ftx: (CrX, 16**)—>-(CX,U*) is quasi-uniformly continuous. 
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Mprepvgr, 

(a) ^ x i s an i n i t i a l and in ject ive map onto a 

U* v ( U * ) ~ -dense subspace of CX. 

(b) ^ x and *ix induce natural transformations ^:C—> 

—> C; *i : 11 — > C such that the following diagrams commute 

<лл 

çJ ^c2 c *~L2** C 

Thus, every space can be densely embedded in a complete space 

in a "regular" way, which is expressed by the functoriality 

of C. Moreover, even though the completion process always en

larges a space, the existence of <u, shows that the completion 

of a complete space is not "much larger" than the complete 

space itself. 

C. The separated completion 

Definition 5. A quasi-uniform space (X,U) is ae par a teg 

if the uniformity % v U ~ is separated, that is, the inter

section of all members of U v U " is the diagonal of Xx X. 

Construction of the separated reflection. Given a quasi-

uniform space (X,U), let R denote the equivalence relation 

xRy if and only if {"x* =- iyl . Denote by E x ] , the R-equi* 

valence class of x • Let X8 denote the set of R-equivalence 

classes on (X,U). Let s:X—> X8 denote the map s(^) ^{ocl. 

For XT c % , let U8 * {<[«] , [ y] ) I ( x , y ) fe U$, then the U8 

form a basis for a quasi-uniformity %B (since ( U t W ) a c 

c t f n v 8 ) . The map 3 x : ( X , U ) — > (Xs, %9) is an initial quasi-

uniformly continuous map onto a separated quasi-uniform space 
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and the assignment tXt%)—^(X8,^8) i s the separated re f 

l e c t i o n in grj. Moreover, ( X , ^ ) i s complete i f and only i f 

( X 8 , U 8 i i s complete. The composite soC * <f i s the separat-

ed-complet ion-functor. The natural transformations ^ 8 - s ^ 

and (Usa = 8 ^ provides the separated-completion monad 

cc 8 ,*^ 8 ) -
The importance of separated completions l i e s in the fact that 

the embedding map i x 8 : ( X , ^ ) — > ( X S , ^ 8 ) i s a map onto a 

1L v ( l t 8 ) ~ -dense subspace, hence an epimorphism i n the ca

tegory of separated quasi-uniform spaces (see £1} ,E3 ] ) . 

*>• The algebra of a monad 

Def ini t ion 6* Let (C, ^$^0) be a monad on a category A. 

An object A of JL i s a C-algebra i f there i s a morphism h in A,, 

cal led a structure map, h:CA—> A such that the following d i a 

grams commute: 

CA >CA A -i->CA 

CA \}> 
Examples of C-algebraa 

Example 1. Let X = {0,1* and 16 » XxX. It is straight

forward to verify that (Xf%) is a Oalgebra for every map 

h:(CX, U* )—*-(X,U). 

Example 2. Let (X, U) be a separated complete space and 

let h:(CX,U*)—>(X,^) be the limit map, h(#) » limit of T 

(convergence in the topology of 1l \/U~ ). Note that h is 
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well defined since l imi t s are unique in separated quasi-uni

form spaces . I t w i l l be shown in Section 3 that such a sepa

rated complete space i s a C-algebra. 

2* 0-algebras?. As expected , C-algebras are the comple

te spaces-. Although expected, we have found the proof e l u s i v e . 

The resu l t i s surpris ing in that there i s an arb i trariness In 

the structure map h:CX—>X (see Proposition 2) that suggests 

that not a l l complete spaces would be C-algebras. 

Proposit ion 1. I f (X,&) U a C-algebra, then (XfU) i s 

complete. 

This I s an immediate consequence of the fol lowing two 

lemmas. 

Lemma 1. I f S c X , then S* c nx^• 

Proof. Let oce S*„ Given a symmetric U in 11 N/ % f 

we show that uToo3 i n t e r s e c t s '»2xtS3. from cc e S* i t fo l lows 

that S e oo . Now <=c i s a Cauchy-fi l ter, so there i s F in oo 

such that F x F c U . But S and F are in oc so there i s x i n 

FHS. By d e f i n i t i o n of U* i t fol lows that ( oc, ^ ( x ) ) « 0 * 

since I e o o and F e ^ x ^ x ^ a n c i F x F c U . Thus U*Coc3 i n t e r 

sects *ri CS3, as required . 

Lemma 2 . Let h : ( C X , U * ) — > ( X , U ) be a quasi-uniformly 

continuous map such that h o ^ f i a ) » x for a l l x in X. Then 

a Cauchy f i l t e r & converges to h ( - ^ ) . 

££0££. We show that h ( ^ ) i s an adherence point of & $ 

from which i t follows that f converges to h ( ^ ) . Let S c ST, 

then F c S * , so that h ( r ) e h L S * 3 . By Lemma 1 we have htS*3 c 

c h C ^ x L S 3 3 c h [T1 XLS33 = S. Thus h ( ? > tsS for a l l § in 3" , 
í-X 
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showing that h(i?') is an adherence point of $'• 

To establish the converse of Proposition 1 we require 

the following lemmas. 

Lemma 3. Let oc € C^X, then fj-CHlHc X and h «— t H3 e 

e oc5 = r U h t k 3 I k e o c i . 

Proof. Suppose He X and h •*- t H 3 e * . h th«— tH33 = H 

(s ince h i s s u r j e c t i v e ) shows tha t H = hCk3 for some k i n cC , 

s ince k € oc and Kch<—ChCk33 . The proof i s complete. 

Lemma 4* Let oc 6 C X. I f oc converges to & , then 

ch(oc) converges to h ( 3 r ) . 

Proof. Suppose oc converges to $ , then $ i s an adhe

rence point of oc so tha t $ e k for a l l k € <x> • Hence 

h(&)e h t k3c ETk] for a l l k e oc . Thus, by Lemma 3 , hdT > c 

e f H H | h « — tH3 €oc? , so tha t h(3F) i s an adherence point 

of Ch(oc), as r e q u i r e d . 

Lemiqa, g. Let V G U V U~ . Let U be symmetric and such 

tha t U o U c V . I f & i s a Cauchy f i l t e r which converges to x , 

then U n ^ 3 c (V Cx3 )* . 

Proof. Because 3̂  i s Cauchy and converges to x , there 

i s F i n $ such tha t F ,x F, c U and F, c UtaeJ . Suppose 

^ £ U * c r ] , we show tha t Vtoc3 e % . B y d e f i n i t i o n of U*, 

i f ie U * t ^ 3 , there i s F^ e #* and G e ^ such tha t 

F 2 x G c U . 

Let F = i ^ O F ^ SO tha t ( i ) F e ^ , ( i i ) F x G c U , and ( i i i ) 

F c U Coc3 . 

From ( i i ) we have G c UCF3 so t ha t U[F3 e £ s ince G € ^ . 

But U[F3cUoUCx3 c VCcc3 , from ( i i i ) , ao tha t VCx3 €. i , 
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as r equ i red . 

Le îflfl 6 . Let ©c e (TX. I f oc converges to & and & con

verges to x f then ^ ( o c ) converges to x . 

Proof. Let V e % vll"1. We show tha t VCx3 e <ttx(oo)# 

Choose a symmetric entourage U such t ha t U o U c V . Because $* 

converges t o x , by Lemma 5 , we have U*C^J c (VCxJ ) * . S in-

c« 06 convergea to .-T we also have U*f:TJ in oc, hence ( V f x J ) * 

i s i n c6 and, consequently, TCpc lc^u (06) , as r e q u i r e d . 

Lemma 7 . Let oc e (TX, i f there i s x e X such tha t 

<ax(o6) = M f f l x e H $ , then Ch(oc) = ^ ( o c ) . 

Proof. Observe t h a t , for any f i l t e r & , & = -fH 1 x e 

6H!«-=» -CX \ G # . For convenience, l e t - I H l x e H ^ be denoted 

by < x > . To show that Ch(oc) = < x > i t auf f ices to prove t h a t 

{xl e Ch(oc), t ha t i s , h <— C -Cxi J 6 oc • 

Now, "C<x>5eoC s ince 4 x 5 e ^ ( o o ) implies ( *( x $ )* e oc and 

^ 6 K x i ) * i e equivalent t o ioz\ &$ which s t a t e a tha t $ = 

= <x > , so t h a t *f < x>$ e oc . Now <x>eh.x-—£'C<x*.}3 9ince 

h ( < x > ) = x . I t then follow3 t h a t h«--t-Cx}3 e oc , as r e 

qu i red . 

Note: Considerat ion of example 1 show9 t h a t i f Ch(oc ) = 

= M H | x 6 H $ , then i t doea not follow tha t p-x(oc) = Ch( 06). 

L?ffl"lfl 9- Let A^ conais t of a l l Cauchy f i l t e r a on X 

which converge to x . Let 00 e (TX. I f Ax e ©o , then 

(A* (06) convergee to x . 

Proof. I t i s s t ra igh t fo rward to check Ax - T^ . Also CX 

i3 complete 30 there i s ^ i n CX such that oc converges to & . 

Then & i s an adherence point to oc , 30 tha t $ e A . But 
x 
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then 9 e A^ , so that & converges to x . By Lemma 6, we 

have that (u.xCoc) converges to * # 

i m p o s i t i o n 2 . I f (X,U) i s complete, then i t i s a C-

algebra* 

Proof. Define h:CX—>X as fol lows: For each x , l e t 

[ocJ denote the R equivalence class of x ( x R y ^ oc = y ) . 

Let c be a choice function on X s , so cCCxl ) c Cxi . Observe 

that i f & i s a Cauchy f i l t e r on X which converges? to x and 

y, then [x3 » [ y l ; now l e t 

r » f i f 3"= ^ x ( x ) for some x • 

hlf) «J 

** C ( C X J ) , i f ^ + ^XCXJ and -f converges to x . 

By the remarks above, h i s well defined . Observe that T con

verges to htTl . It i s read i ly checked that h:(CX, 11*1 —> 

—> (X,2t ) i s quasi-uniformly continuous. We verify that the 

diagram corresponding to (1) in the de f in i t i on of the algebra 

of a monad i s commutative: Let cc e CTX. Because CX i s comp

l e t e , 06 converges to some & in CX. 

By Lemma 4, Ch(oo) converges to h ( ^ ) . Qy Lemma 6, 

/U (06) converges to h( $) and oc converges to & • Thus 

^ x ( o c ) and Ch(oc,) both converge to h ( ^ ) . To show that 

h f (u (oc)3 =r hfCh(oc)J we consider two cases . 

Case 1. Ch(o6) $ ^ x tXJ . Then (ccx< o6> + ^ xlX2> b^ Leni" 

ma 7 . By de f in i t i on of h , i t fol lows that h [(ux(oc)l = 

= c(th(T)J) and h[Ch(o6>J = c ( [ h ( ^ ) J ) , as required . 

Csrse 2 . Ch(oc) e ^X£X3. Then Ch(oC ) ~ < x > (for a uni

que x in X) so that h <*~~lixl1 e oc • We again d i s t ingu i sh 
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two cases: 

Case 2 a. x 4s c( t x l ) . In t h i s case, h «— H x i D = 

-» < <oc>l since for any ^ not in T I X [ X 3 , h ( T ) = x implies 

& converges to x so that h ( ^ ) » c ( £ x 3 ) -f x . Now Ch(<* )« 

=- < oc> imp l ies that h «— Hoc* 3 c ©c f s o that -Kx>] 6 oc . But 

then <ux(oc) = < x > . Thus Ch(oc) » ("x^00^ = < x > so that 

hCCh(oc)) = h( ^ ( o o ) ) . 

Case 2̂  b. oc = c ( £ x 3 ) . In t h i s case h - * - H « 1 3 con

s i s t s of a l l Cauchy f i l t e r s T which converge to a point in 

Lx3 . Thus h-tf-C-Cxn s Ax . From Lemma 8, i t fol lows that 

Cu
x(oc) converges to x . Prom the de f in i t ion of h (whether 

or not (Ctx(oc) i s in *^XLXJ) and x -= cCCx3 ) , i t fol lows 

that h [<ax(oc)J = x . Hence h r<e* t o t ) ] » h[Ch(oc,)3. 

I t i s remarkable that the regular i ty expressed in d i ag 

ram 1 of the d e f i n i t i o n of a monad could be achieved with the 

arbitrariness involved i n the function h of Proposit ion 2 . 

3 . The separated-completion Cs • The r e s u l t s in Sect ion 

2 read i ly ident i fy the C s-algebras in QUs: 

Proposition 3 . The C s-algebras are the separated and 

complete spaces* 

However, the d e l i c a t e comparison of f i l t e r s and limits? 

can be avoided and a simple proof of Proposit ion 3 w i l l be g i 

ven in two parts f where we r e l y on the fact that ^ x
 i s e P * c 

i n QVQ. 

Part 1. Every Cs-algebra i s complete and separated . 

Proof* Let h:CsX—> X be the structure map. Then h o ^ 5 -

» ^ x , so that 7^xoh o^ x - nx ° Ux - ^ x ° ^x* B u t ^x i s a n 
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epimorphism, hence if] oh = 41 . Thus X and C X are isomor-
x csx 

phic. 

Part 2. Let X be a complete and separated space, then 

every Cauchy filter $ converges to a unique point x . It is 

straightforward to verify that h:(CaX,( U*)s) —* (Xf& ) is 

quasi-uniformly continuous. Moreover hoiix = 4 X , since the 

filter ^ x ^ x ) converges to x . 

To prove that h ^ x = hoCh we show that h'*> fix*> ̂ c x = 

= hoCh o 7)rtv(=h) and use the fact that 10 „. is epic. 
-XX •'CX 

Now <*x*nCx
 = *cx» 3 0 that ho<ax°7lcx s h* A l s 0 , C h° Ucx = 

= "U^h (by naturality of \ ), so that 

hoCho-M = hoij -h =£ ^ x ° b
 = b. 

The proof is complete. 
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