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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

23,2 (1982) 

EXTENSIONS OF k-SUBSETS TO k+1-SUBSETS 
- EXISTENCE VERSUS CONSTRUCTABfUTY 

S. POLJAK, D. TURZiK, P. PUDiAK 

Abstrac t : Cur aim i s to look fo r algor i thms which const­
r u c t objects whose exis tence i s proved noncons t ruc t ive ly . We 
present two a lgo r i thms , one t h a t fo r any given k-subset of a 
s e t X f inds a d i s j o i n t k-subset of X so tha t d i s t i n c t subse ts 
have d i s t i n c t images, and one t ha t extends any given k-subset 
of a se t X to a k+1-subset of X so tha t d i s t i n c t k-subse ts ha­
ve d i s t i n c t ex t ens ions . We d i scuss some r e l a t i o n s between de ­
c i s i o n and cons t ruc t ion problems. 

Key words: Algorithm, polynomial t ime, f i n i t e s e t . 

C l a s s i f i c a t i o n : 68C05 

I n t r o d u c t i o n . Our aim i s to look for algor i thms which con­

s t r u c t objects whose ex is tence i s proved noncons t ruc t ive ly . In 

§ 1 we consider the fo l lowing two problems concerning s u b s e t s . 

1. Let X be a se t of c a r d i n a l i t y n and k ^ n / 2 . For any 

given k-subset A find a d i s j o i n t k-subset B, denoted by B » 

« DIS(AfX), so tha t d i s t i n c t subse ts have d i s t i n c t images, i . e« 

A4-A' impl ies J I S ( A , X ) = - F - Q I S ( A ' , X ) . 

2 . Let X be a set of c a r d i n a l i t y n and k< n / 2 . Extend 

any given k-subset A to a k+1-subset B, denoted by B « EXT(A,X)f 

so tha t d i s t i n c t k-subse ts have d i s t i n c t ex tens ions , i . e . A4-A 

implies BXT(A,X)4*EX!r(A'fX). 

Using the Konig-Hall theorem one can easily prove the ex-
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istence of such mappings DIS and EXT. We present two algorithms, 

DIS and EXT which for a given subset A construct DIS(A,X) and 

IXTCAfX) in polynomial time. 

In § 3 we specify a class of problems - we call them pure­

ly constructive - for which the decision problem is easy while 

the constructive one might be hard. Two problems about Hamilto-

nian cycles discussed in § 2 are examples of purely constructi­

ve problems. 

§ 1. A construction of a mapping <p can be understood in 

two ways. 

(a) A construction of the list of all pairs (x,<p(x))y 

(b) a procedure which for a given x constructs g>(x). 

If we wanted to obtain a list of all pairs (Af<p(A)) in 

the case when <y is either DIS(-,X) or EXTC-,X), we could do it 

well by using the matching algorithm (C5J). But such a list might 

be of size exponential in n, e.g. for k<v/n/3. The latter approach 

will be more convenient in the following case. 

Given an input sequence AitA2»***,Ar °^ ^no* necessarily 

all) subsets of X we are to construct the sequence <3p(An), 

y(A2)f»»«t ^ A y ) provided when dealing with A* we do not know 

the other members A., j;>-i. 

We present two algorithms DIS and EXT which for a given 

k-subset A construct DIS(A-X) and£XT(A,X), respectively, in 

0(k2) steps. x ) 

x) We count writing a number, comparing,two numbers etc. as 
a single step as in the model of HAM s. 
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Description of the algorithm PIS. Let X be a set of car­

dinality n and A its subset of cardinality k.£n/2. Suppose X = 

=- -{0,1,... ,n-l^ and A » Ca, , •.. ,a-^j. Suppose the set X forms a 

cycle. The image DIS(A,X) of A is constructed as "a shadow" of A. 

® - the elements of A 

W' - the elerrents of the imepe P 

F i g . 1 
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Formally, the procedure DIS constructs an output saquenee 

^l , b2'** * ,bk^ f'or an i nP u t sequence (a^,a2,... ,3^) as follows 

Procedure DIS(A,X); 

B:= lb (the empty set); 

For j:= 1 to k do 

Begin 

V " ad' 
Do by- b.i+1 mod n u n t i l b ^ A u B ; 

B:~ B u 4 b j i ; 

end; 

D I S ( ( a i t . . . , a k ) , X ) : « ( b ^ , . . . | b k ) ; 

Lemma. Let (aif..•,8^) be a permutation of (a^,...-a^) 

and DIS((a{»...,a^),X) = (bit...,b^). Then *bit...,bj^ * 

= K b ^ » . . • » b j ^ • 

Proof. As every permutation can be decomposed into trans­

lations of pairs of consecutive members, it is sufficient to 

prove the lemma only for the case when (a^j.-.ta^) * (a-,,..* 

••*,ai-l,ai+l,ai,ai+2,***,ak^ for * = * - 2 » # • • J*"* 1* 

Clear ly , b^ = bj for j =- l , . . . , i - l . Then e i ther b± * b^ 

and b i + i = b i + i , or b i = b i + , and b i + i = b i . Hence i b ^ , . . . -

. . . , b i + 1 ^ « { b ^ , . . . i^i^x^* a n d t n e n a ^ a i n t>4 - Dj f ° r J * i+2 f 

. . . , K. LJ 

Thus, the output set B does not depend on the ordering of 

the input set A. In the following DIS(A,X) will mean the out­

put set (without ordering). 

Theorem 1. The algorithm DIS satisfies 

(1) \DIS(A,X)1 -= k 

- 340 -



(2) AnDIS(AfX) = & 

(3) A=H'==-> DIS(A,X) + DIS(A%X) 

for a l l k -subse ts Af A ' of a se t X, k .6.1X1/2. Moreover, 

DIS(A,X) i s const ructed in 0(k ) s t e p s . 

Proof. The ( 1 ) , ( 2 ) and the number of s t eps are easy to 

check. We prove ( 3 ) . Consider a procedure DIS"1 defined i n the 

same way as DIS but b ^ : * ty-1 mod n. Clear ly DIS and DIS~" are 

i n v e r s e . • 

Descr ip t ion of the a lgor i thm EXT. Let X be a s e t of ca r ­

d i n a l i t y n and A i t s subset of c a r d i n a l i t y k < n / 2 . Suppose X -

= 4 . 1 , 2 , . . . ,n^ and A =- ^a-_,a2 , • . . f a k ^ with a^-^ a^*-:.. . < a^. 

1. Find an in t ege r t(A) such tha t 

t(A) » max -ft 1 1 A n { l , 2 f . . . ,2 t+l* ) * t\. 

( I t may happen t(A) = 0 . ) 

2 . Set Y = - U f 2 f . . . , 2 t U ) + l H and apply the a lgor i thm 

DIS to the input (AnY fY). Then the s e t DIS(AnY,Y) i s a s e t 

of c a r d i n a l i t y t U ) d i s j o i n t t o AnY. Thus Y\DIS(AnY fY) i s a 

s e t of c a r d i n a l i t y t(A)+l conta in ing AnY. 

3 . Set EXT(A,X) = A u»(Y\ D I S U n Y,Y)) which i s a s e t of 

c a r d i n a l i t y k+1 containing A. 

Procedure EXT(A,X); 

t:=- k; 

(4) While a t > 2 t + l do t:=* t - 1 ; 

Y : = * U f 2 , . . . , 2 t + l ^ ; 

EXT(A,X):- A u ( Y \ DJS(AnY,Y)); 

Theorem 2 . The algori thm EXT s a t i s f i e s 
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(5> !EXT(A,X)U k+1 

(61 AcEXT(AfX) 

(7) A * A ' « * EXT(AfX.l4.EXT(A'fX) 

for a l l k-subsets A, A ' of a s e t Xf k < l X l / 2 . Moreover, EXT(A,X) 

i s constructed in 0(k ) s t e p s . 

Proof. The ( 5 ) , ( 6 ) and the number of s tep s are easy to 

check. Clearly t U ) i s the integer t constructed by ( 4 ) . We 

prov« ( 7 ) . 

Let A and A ' be two d i s t i n c t k-subsets of X. Assume t(A )<--

^ t ( A ) . We d i s t inguish two cased. 

( i ) t (A') =- t U ) . Put Y * 4 l f 2 , . . . , 2 t ( A ) + l * . Then e i ther 

i \ I + A ' \ y or A n Y + A ' n Y . In the former case EXT(A,X) 4* 

4 - E X T ( A ' , X ) as the added elements belong to Y. In the l a t t e r 

case .DIS(AnYfY).+..OIS(A'n YfY) by ( 3 ) , and hence (7)» 

( i i ) t U ' ) < : t ( A ) . Set Y as above. 

Then 

(8) |EXT(A fX)nYl » t U ) + l f 

and 

(9) l E X T U ' f X ) n Y U t ( A ) f 

as U'nYl<t(A). Thus, by (8) and (9), the sets EXT(A,X) and 

EXT(A',X) have distinct intersection with Y, and (7) follows. O 

Remark 1. The k+1-subsets Bf the extensions of k-subsets 

constructed by the algorithm EXT, can be recognized as those 

satisfying 

lBrA-\lf2,...,2t+li| -» t+1 for some t = 0,1,..., [^J. 

Remark 2 . Put Pk<X) s -{AcXl | A I = k*. .Define b ipart i te 

graphs G.̂  and G2 as fo l lows . 
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V ( G 1 ) * * k * * O f » f 

^(A,0) ,(B,1)1 i s an edge of Qx i f AnB == 6, 

V(G?) = P k (X)uF k < f l (X) , 

{kfB\ i s an edge of G? i f A | B. 

Hence G-̂  i s a regular b ipart i te graph of degree (n~^)t and 

G2 i s a b ipart i t e graph with ver t ices of degree n-k in P and 

k+1 in Pj^i* I t follows from the Konig-Hall theorem that &i has 

a perfect matching i f f k ^ n / 2 , and Pk can be matched into f̂c+i 

in G2 i f f n-k.£k+l («=-* k< n / 2 ) . (See [ 2 ] , Chapter 7 , Corollary 

2 of Theorem 2 . ) 

Remark $. Let G^ and G2 be aa above. Using para l l e l P**o-

cess ing, the algorithms DIS and EXT construct a maximal match­

ing in G1 and G2, in OClog .G-J ) and 0(log2 lG2 l ) s t e p s , respec­

t i v e l y . 

Remark 4 . Let n,k,r be poe i t ive integere 3at iafying 2k • 

+ r ^ n . Define EXT(r) in the eame way as EXT but 

(4 ' ) While a k > 2 t + r do t : = t - 1 ; 

instead of ( 4 ) . Then EXT^r' construct3 a one-to-one extension 

of k-subsets to k+r-subset3. 

We were informed that re la ted questions were s tud i ed in 

1 8 ] , which y i e l d s another algorithm for the mapping EXT. 

§ 2 . The approach of the previous sec t ion can be charac­

terized as fo l lows . We were able to prove existence e a s i l y and 

we tr ied to f ind an algorithm. The same s i t u a t i o n has appeared 

also in other problems. For example, Chva'tal [43 proved that 

any graph G with n vert ices and degrees d-^ d^ £... _=:dn s a t i s -
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fying 

(#) dk^k<n/2 ^ d ^ ^ n - k 

must have a Hamiltonian cycle. An algorithm finding a Hamilto-

nian cycle for graphs satisfying (#) in polynomial time was 

given later in C3}. 

In 1946 C.A.B. Smith proved the following theorem. 

In a simple regular graph of degree 3, the number of Ha­

miltonian cycles that contain a given edge is even. 

A nonconstructive proof of this theorem, based on counting 

modulo 2 the number of cycles, is in (J2] , Chapter 10, Theorem 

2). This theorem suggests the following problem. Given a trip­

le (G,e,C), where G is a 3-regular graph, and C a Hamiltonian 

cycle of G containing the edge e, construct another Hamiltoni­

an cycle containing e. We do not know whether there is a poly­

nomial algorithm for this problem. Thomason [7J suggested the 

following algorithm, but it is not clear how many steps the 

algorithm requires in the worst case. 

1. Let C « (x1,«..,xn) be the given Hamiltonian cycle 

containing the given edge e =#(x1,Xp). A sequence P -P-, ...• 

is constructed until P^ forms a Hamiltonian cycle for some k>0. 

PQ =-- VX-j^Xg, • •. ,
x
n' 

Px = (x1,...,xi,xn,xn-1,...,xi+1) where (x^x^ E(G), 

xi*xl»xn-r 

• •. 

if Pj = (yi.,...,yn), 

put p J + 1 » (y1,...,yi,yn,yn.1,...,yi4.1) where <ynfy1) 

is the only edge incident to yn which belongs neither to 
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P. nor to P4..3/ 

We have found a family o*" graphs iGn\ for which the algo­

rithm constructs just (n-l) +2 paths. The graphs G are defin­

ed by 

V(Gn) =4x l f x 2 , . . . ,x 2 n ^ 

E(Gn) » ^^x±fx±^ 1 i = l f . » 2 n - l \ u { ( x 2 fxx)i u 

u { ( x i , x 2n- i } ' i s 1 » * * * » n - 1 i u ' C ( x n ' x 2 n ) 5 » 
C =s ( x l f x 2 , . . . , x 2 ) and e = ( x l f X 2 ) . 

2n-1 2n-2 2 n - 3 n + 2 

n - 1 

n 

Fig. 2 

§ 3. In the theory of NP-problems usually only the exis­

tence of decision algorithms is investigated. In practice, how­

ever, i t is more important to have an algorithm for a related 

construction problem. Namely, each NP-problem can be represen­

ted in the following form: 
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Given x determine whether there is y such that R(x,y); 

where R(x,y) is some polynomial time decidable relation and 

such that the size of y is bounded by a polynomial of the size 

of x. 

Then the construction problem is: Given x, construct y 

such that R(x,y) if there exists at least one such y. 

It is known [6J that for NP-complete problems the exist­

ence of a polynomial time decision algorithm is equivalent with 

the existence of a polynomial time construction algorithm. This 

is a reason why most investigations deal only with the simpler 

concept of decision problems. 

Consider for example Hamiltonian graphs. Then the relati­

on R(x,y) means x is a graph and y is a Hamiltonian cycle in x. 

Clearly, R(x,y) can be decided in polynomial time. Suppose a 

decision algorithm for Hamiltonian graphs is given. Then in or­

der to construct a Ham. cycle in a Ham. graph we can use the 

following simple procedure. Take an edge e in G and use the al­

gorithm to test whether G-e is Hamiltonian. If not, try another 

edge. If you find an edge f such that G-f is Ham., repeat the 

procedure with G replaced by G-f until the remaining edges form 

a Ham. cycle. For general NP-complete problems the proof is ve­

ry similar. 

The situation is different for the two examples discussed 

in the preceding section. The structure of these problems is 

the following: We are given a polynomial time decidable predi­

cate S(x) such that for each x 

S(x) -=? _3y R(x,y), 

and we need an algorithm which for x such that S(x) constructs 
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y such that R(x9y)» We suggest to call problems of this struc­

ture purely constructive; since their decision problems are by 

definition easy. 

In the first example R(x,y) means y is a Ham. cycle in a 

graph x and S(x) is the Chvdtal's condition. This condition can 

be tested in polynomial time and his theorem 141 assures that 

each graph satisfying the condition is Hamiltonian. In the se­

cond example R(x,y) means x « (G,e,C), where G is a graph, e 

is an edge and C is a Ham. cycle in G containing e, and y is a 

Ham. cycle in G distinct from C and containing e. 

On the other hand, one cannot show that maximal clique 

problem is purely constructive since no polynomial time algo­

rithm is known for decision whether given clique is of maximal 

cardinality in a given graph. 

There are two extreme possibilities for purely constructi­

ve problems: 

I. For each purely constructive problem there is a poly­

nomial time algorithm. 

II. There is a purely constructive problem such that each 

construction algorithm for it is NP-hard. 

We believe that the truth is somewhere lnbetween (i.e. nei­

ther I. nor II. is true). Let us note that I. implies NPn coNP=-

=- P, and NP = coNP implies II. It was shown in [1] that one can­

not prove or disprove P=-NP, NP-coNP, NP coNP=P, and some other 

statements using methods that allow relativization. The same is 

true about the statements I. and II., thus they are probably 

very difficult, too. * 
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Appendix. I t i s easy to modify the a lgor i thm DIS so t h a t 

i t runs in O(k) s t e p s . This gives us an a lgor i thm for EXT which 

runs in 0(k) s teps as w e l l . 

Let X =-«CO, l , . . . , n - l i and A = - U ^ a ^ , . . . ,ak> c X such that 

a l < a 2 < *•• < ak9 k - n ^ 2 # 

Procedure DIS(A,X); 

Begin 

B:» 0 ( the empty s e t ) ; 

Js» 0; 

L l : j : = j + l ; 

p :« 1; 

i : » a j 5 

L2: i : = i+1 mod n; 

i f i e A then 

begin 

p:=* p+l; 

i— J*i; 

go to L2; 

end; 

i f i e B then go to L2; 

i f p > 0 then 

begin 

p : - p - 1 ; 

B: = B u i i V , 

go to L2; 

end; 

i f i<c k then go to Ll; 

EXT(A,X):= B; 

end of procedure; " 348 -
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