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EXTENSIONS OF k-SUBSETS TO k+1-SUBSETS R
— EXISTENCE VERSUS CONSTRUCTABILITY

S. POLJAK, D. TURZIK, P. PUDLAK

Abgtract: Our aim is to look for algorithms which const-
ruct objects whose existence is proved nonconstructively. We
present two algorithms, one that for any given k-subset of a
set X finds a disjoint k-subset of X so that distinct subsets
have distinct images, and one that extends any given k-subset
of a set X to a k+l-subset of X so that distinct k-subsets ha-
ve distinct extensions. We discuss some relations between de-
cision and construction problems.
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Classification: 68C05

Int t . Our aim is to look for algorithms which con-
struct objects whose existence is proved nonconstructively. In

§ 1 we consider the following two problems concerning subsets.

1. Let X be a set of cardinality n and k£n/2. For any
given k-subset A find a disjoint k-subset B, denoted by B =
= DIS(A,X), so that distinct subsets have distinct images, i.e.
A4A" implies 0IS(A4,X)==DIS(A”,X).

2. Let X be a set of cardinality n and k< n/2. Extend
any given k-subset A to a k+l=-subset B, denoted by B = EXT(A,X),
so that distinct k-subsets have distinct extensions, i.e. As}:A'
implies EXT(A,X)<=EXT(A",X).

Using the Konig-Hall theorem one can easily prove the ex-
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istence of such mappings DIS and EXT. We present two algorithms,
DIS and EXT which for s given subset A construct DIS(A,X) and
EXT(A,X) in polynomial time.

In § 3 we specify a class of problems ~ we call them pure-
ly constructive = for which the decision problem is easy while
the constructive one might be hard. Two problems about Hamilto-
nian cycles discussed in § 2 are examples of purely constructi-

ve problems.

§ 1. A construction of a mapping ¢ can be understood in
two ways.
(a) A construction of the list of all pairs (x,¢(x)),

(b) a procedure which for a given x constructs ¢(x).

Ir we wanted to obtain a list of all pairs (A,cf (4)) in
the case when ¢ is either DIS(-,X) or EXT(-,X), we could do it
well by using the matching algorithm ([ 5]). But such a list might
be of size exponential in-n, e.g. for k~n/3. The latter approach

willl be more convenient in the following case.

Given an input sequence Al,Az,...,Ar of (not necessarily
all) subsets of X we sre to construct the sequence gl(4;),
¢(83) 4000, @(4,) provided when dealing with A; we do not know
th{e other members ‘AJ’ j>1i.

We present two algorithms DIS and EXT which for a given
k-subset A construct DIS(A,X) and EXT(A,X), respectively, in
o(¥?) steps. x)

- o ——— - oy o

x) We count writing a number, comparing,two numbers etc. as
a single step as in the model of RAM s.
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Description of the glgorithm DIS. Let X be a set of car-
dinality n and A its subset of cardinality k<n/2. Suppose X =
={0,1,...,n-1% and A ={a;,...,a, % Suppose the set X forms a
cycle. The image DIS(A,X) of A is constructed as "a shadow" of A..

@ ~ the elements of A

X ~ the elements of the imepe P

Fig. 1
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Formally, the procedure DIS constructs an output sequenece
(bl’bz""’bk) for an input sequence (al,az,..-,ak) as follows.

Procedure DIS(A,X);

B:= 0 (the empty set);

For ji=1 to k do

Begin

bJ:= aJ;

Do b'j:: b.j'rl mod n until bjt,*.AuB;

B:= Buibyl;

end;

DIS((ayyeeeymy),X)i= (byyeeesby);

Lemma. Let (ai,...,ai) be a permutation of (&),...,a,)
and DIS((ay,-e0,8.),X) = (by,ese,by). Then 4by,ece,by} =
= {byyererbyde

Proof. As every permutation can be decomposed into trans-
lations of pairs of consecutive members, it is sufficient to
prove the lemma only for the case when (ai,...,aé) = (al,..c
cee3B5_1185,018458,0re00,8,) for 1= 1,2,...,k"1.

Clearly, b3 = by for § = 1,...,i-1. Then either by = by
and b£+1 = by,ys OF b{ = by, and b£+l = by. Hence {bl,..r

seesbipgd =4blseee,bi ), and then again by = by for § = 142,
...’k. D

Thus, the output set B does not depend on the ordering of
the input set A. In the following DIS(A,X) will mean the out-
put set (without ordering).

Theorem 1. The algorithm DIS satisfies
(1) \D1s(a,X)| =k
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(2) ANDIS(A,X) =0
(3) A=4"=> DIS(4,X)+DIS(A”,X)

for all k-subsets A, A  of a set X, k«!X|/2. Moreover,

DIS(A,X) is constructed in 0(x%) steps.

Proof. The (1),(2) and the number of steps are easy to
check. We prove (3). Consider a procedure pIS™! defined in the
same way as DIS but bji= by-1 mod n. Clearly DIS and pIs™! are

inverse. O

s n_of the glgorithm EXT. Let X be a set of car-
dinslity n and A its subset of cardinality k<n/2. Suppose X -
= {1,2,...,n% and A = {al,az,...,ak§ with aj<ay<...<ap.

1. Find an integer t(A) such that

t(A) =max {t] 14 n{l,2,...,2t+1%] = t%,
(It may happen t(4) = 0.)

2. Set Y = {1,2,...,2t(A)+1)} and apply the algorithm
DIS to the input (AnY,Y). Then the set DIS(ANY,Y) 1s a set
of cardinality t(A) disjoint to An Y. Thus Y \DIS(A AY,Y) is a
set of cardinality t(A)+1 containing AnY.

3. Set EXT(A,X) = Au(Y\ DIS(ANY,Y)) which is a set of
cardinality k+l1 containing A.

Procedure EXT(4,X);

t:= k;
(4) while a,>2t+l do t:= t-1;

Yi=41,2,...,2t+1%;

EXT(A,X):= & u(¥Y\ DIS(ANY,Y));

Theorem 2. The algorithm EXT satisfies
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(5) 1EBXT(A,X)|= k+l
(6) &c EXT(A,X)
(7) A#A"=> EXT(A,X)+=EXT(4”,X)

for all k-subsets A, A" of a set X, k<|X|/2, Moreover, EXT(4,X)
1s constructed in 0(k%) steps.

Proof. The (5),(6) and the number of steps are easy to
check. Clearly t(A) is the integer t constructed by (4). We
prove (7).

Let & and A" be two distinct k-subsets of X. Assume t(A')<
£ t(A). We distinguish two cases.

(1) t(A") = t(A). Put ¥ = £1,2,...,2t(A)+1%. Then either
ANY4A'NY or 8nY+A A Y. In the former case EXT(4,X) =
4 EXT(A,X) as the added elements belong to Y. In the latter
case DIS(ANY,Y)+DIS(A N Y,¥) by (3), and hence (7).

(11) t(A") < t(A). Set Y as above.

‘Then

(8) |BXT(A,X)nY| = t(A)+l,
and

(9) IEXT(A",X)nYl&t(A),
as 1A’AYl<t(A). Thus, by (8) and (9), the sets EXT(A,X) and
EXT(A’,X) have distinct intersection with Y, and (7) follows. O

Remark 1. The k+l-subsets B, the extensions of k-subsets
constructed by the algorithm EXT, can be recognized as those
satisfying

|BA41,2,...,2t413| = t+1 for some t = 0,1,..., [ 53],
Remerk 2. Put Pk(x) = {AcX | |A| = ki, vefine bipartite
graphs Gl and (‘}2 as follows.
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V(G,) = P_x 10,11,
{(a4,0),(B,1)} is an edge of G; if AnB = 6,

v(G,) = Pk(X)“’Pk-rl(X)’
1A,B} is an edge of G, if A § B.

Hence G; is a regular bipartite graph of degree (“’;k), and
(}2 is a bipartite graph with vertices of degree n-k in Pk and
k+l in P ,,. It follows from the Konig-Hall theorem that G, has
a perfect matching iff k&n/2, and Py, can be matched into Pk+1
in G, 1ff n-kZk+l (&= k< n/2). (See [2], Chapter 7, Corollary
2 of Theorem 2.)

Remark 3. Let Gy and G, be as above. Using parallel pro-
cessing, the algorithms DIS and EXT construct a maximal match-
ing in G, and G,, in O(\logzlGll) and 0(10321(}21) steps, respec-
tively. Lo

Remark 4. Let n,k,r be positive integers satisfying 2k +
+ r<n. Define EXT(r) in the same way as EXT but

(4°) while a > 2t+r do ti= t-1;
instead of (4). Then ExT‘¥) constructs a one-to-one extension

of k-subsets to k+r-subsets.

We were informed that related questions were studied in

[8], which yields another algorithm for the mapping EXT.

§ 2. The approach of the previous section can be charae-
terized as follows. We were able to prove existence easily and
we tried to find an algorithm. The same situation has appeared
also in other problems. For example, Chvétal [4) proved that
any graph G with n vertices and degrees dlé dzé... !—.dn satis-
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fying

(x) dkg__k<n/2=->d > n-k

n-k~
must have a Hamiltonian cycle. An algorithm finding a Hamilto-
nian cycle for graphs satisfying (x) in polynomisl time was
given later in [3].

In 1946 C.A.B. Smith proved the following theorem.

In a simple regular graph of degree 3, the number of Ha-

miltonian cycles that contain a given edge is even.

4 nonconstructive proof of this theorem, based on counting
modulo 2 the number of cycles, is in ({2], Chapter 10, Theorem
2). This theorem suggests the following problem. Given a trip-
le (G,e,C), where G is a 3-regular graph, and C a Hamiltonian
cycle of G containing the edge e, construct another Hamiltoni-
an cycle containing e. We do not know whether there is a poly-
nomial algorithm for this problem. Thomason [T] suggested the
following algorithm, but it is not clear how many steps the

algorithm requires in the worst case.

le Let C = (X),s.4yX,) be the given Hamiltonian cycle
containing the given edge e =;(xl,12). A sequence Po’Pl""

is constructed until Pk forms a Hamiltonian cycle for some k>O.

P, = (xl,xz,...,xn)

Py = (xl""’xi’xn’xn-l""’xi+l) where (xn,xi) E(G),
xi*xl’xn‘l'

Ir P,j = (yl""’yn)’

put PJ+1 = (yl,...,yi,yn,yn_l,...,yi*l) where (yn,yi)

is the only edge incident to Yn which belongs neither to
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PJ nor to Pj-l'

We have found a family of graphs {G,3 for which the algo-
rithm constructs just (n=1)2+2 paths. The graphs G, are defin-

ed by

V(G = {xl,xz,...,x2n§

E(G) = {(xi,xi*l)\ i= 1,...,2n-11tJ{(x2n,xl)5 v
i)li=l,n.md§uﬂﬁﬂ%nn,

v { (xiyxzn_

C= (xl’x2”"’x2n) and e = (x;,%,).

2n-1 2n-2 2n-3 n+2 n+1

Gn

Fig. 2

§ 3. In the theory of NP-problems usually only the exis-
tence of decision algorithms is investigated. In practice, how-
ever, it is more important to have an algorithm for a related
construction problem. Namely, each NP-problem can be represen=-

ted in the following form:
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Given x determine whether there is y such that R(x,y);
where R(x,y) is some polynomial time decidable relation and
such that the size of y is bounded by a polynomial of the size

of X.

Then the construction problem is: Given x, construct y
such that R(x,y) if there exists at least one such y.

It is known [6] that for NP-complete problems the exist-
ence of a polynomial time decision algorithm is equivalent with
the existence of a polynomial time construction algorithm. This
is a reason why most investigations deal only with the simpler
concept of decision problems.

Consider for example Hamiltonian graphs. Then the relati-
on R(x,y) means x is a graph and y is a Hamiltonian cycle in x.
Clearly, R(x,y) can be decided in polynomial time. Suppose a
decision algorithm for Hamiltonian graphs is given. Then in or-
der to construct a Ham. cycle in a Ham. graph we can use the
following simple procedure. Take an edge e in G and use the al-
gorithm to test whether G~e is Hamiltonian. If not, try another
edge. If you find an edge f such that G-f is Ham., repeat the
procedure with G replaced by G-f until the remaining edges form
a Ham. cycle. For general NP-complete problems the proof is ve-
ry similer, L

The situation is different for the two examples discussed
in the preceding section. The structure of these problems is
the following: We are given a polynomial time decidable predi-

cate S(x) such that for each x
S(x) = 3y R(x,y),

and we need an algorithm which for x such that S(x) constructs
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¥ such that R(x,y). We suggest to call problems of this struc-
ture purely constructive since their decision problems are by
definition easy.

In the first example R(x,y) means y is a Heam. cycle in a
graph x and S(x) is the Chvétal’s condition. This condition can
be tested in polynomialhtime and his theorem [4] assures that
each graph satisfying the condition is Hamiltonian. In the se-=
cond example R(x,y) means x = (G,e,C), where G is a graph, e
is an edge and C is a Ham. cycle in G containing e, and y is a
Hams cycle in G distinct from C and containing e.

On the other hand, one cannot show that maximal clique
problem is purely constructive since no polynomial time algo—
rithm is known for decision whether given elique is of maximal
cardinality in a given graph.

There are two extreme possibilities for purely constructi-
ve problems:

I. For each purely constructive problem there is a poly-
nomial time algorithm.

II. There is a purely constructive problem such that each
construction algorithm for it is NP-hard.

We believe that the truth is somewhere inbetween (i.e. nei-
ther I. nor II., is true). Let us note that I. implies NPn coNP=
= P, and NP = coNP impliés II. It was shown in [1] that one can-
not prove or disprove P=NP, NP=coNP, NP coNP=P, and socme other
statements using methods that allow relativization. The same is
true about the statements I. and II., thus thLey are probably
very difficult, too. N
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A ndix. It 1s easy to modify the algorithm DIS so that
it runs in O(k) steps. This gives us an algorithm for EXT which

runs in O0(k) steps as well.

Let X = {0,1,...,n-1} and A = {ay,8,5,...,a8, 3 cX such that
81< 8y< eee < By, k< n/2.

Procedure DIS(A,X);

Begin
B:= @ (the empty set);
Ji= 03
Ll: Ji= j+l;
p:=1;
i:= ad;
I2: i:= i+l mod n;
if ieA then
begin
p:= p+l;
3= 3415
go to L2;
end;

if 1e B then go to L2;
if p>0 then

begin

p:= p-1;

B:= Buii};

go to L2;

end;
if j< k then go to Ll;
EXT(4,X):= B;

end of procedure; - 348 -
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