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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
23,2 (1982)

SOLVABILITY OF NONLINEAR PROBLEMS AT RESONANCE
Pavel DRABEK

Abstract: This paper deals with the solvability of non-
linear operator equations with finite-dimensional kernel of
the linear part and with nonlinearity given by odd real func~
tion g with ./o‘“’g(z)dz € Ruf* o} and with no restrictions on

lim t min g(x).
t >0,vela,t?

Key words: Noncoercive problems at resonance, weakly non-
linear boundary value problems, vanishing nonlinearities

Classification: 47H15, 35J40

1. Assumptions. Let Q. c RY be a bounded domain, H =
= 12(Q) be the real Hilbert space with usual inner product
{e+ 4% and with the norm Null = (u,u)l/z. Suppose that

L:D(L)c H—>H

is a symmetric linear operator with dense domain D(L), with
nontrivial finitedimensional nullspace N(L) and closed range
R(L), Let
H = N(L) & R(L)
and suppose that
K = (LIR(L))™L:R(L)—> R(L)
(so called the right inverse of L) is completely continuous.
We assume that N(L) has "unique continuation property"
in the sense that the only function we N(L) vanishing on a
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set of positive measure in ) is w = O.
Let G be the Nemytskii operator associated with continu-

ously differentiable odd bounded function g: R —> R , g0,
G:u —> gou.
Obviously G maps H into H and has bounded range.
Let us suppose that
=l ‘
(1) c Kllzs‘uplklg (z)l<1,

(2) there exists fo*wg(z)dz.

Let us denote I = j:wg(z)dz (we admit I = * o0 ).
In distinction from papers [1l] and [2] we assume nothing

about the limit

1im t min _gl(x).
t>+w Te<a,t?

This paper also generalizes in some sense the results from [3],

[4] and [6] because we may have dim N(L)>1.

2, Theorem. Let fe R(L). Then the operator eauatiom

(3) Lu + G(u) = ¢
hap at least one solution.
3. Proof of the theorem. We use the global Lyapunov-

Schmidt method. For this purpose we denote P and Q@ the ortho-
gonal projections from H onto N(L) and R(L), respectively. It
is easy to see that the solvability of (3) is equivalent to
the solvability of the bifureation system

(3a) v + KQG(w + v) - Kf = 0,

(3v) PG(w + v) = O,
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weN(L),ve R(L) ,w = Pu,v = Qu.

Step 1. For each we N(L) there exists exactly one v(w)e
€ R(L) guch that
(3a) v(w) + KQG(w + v(w)) - Kf = O.

Define F(w,.):R(L)—> R(L),
Flwye):v —> Kf - KQG(w + v),
for each we N(L). Then using Holder inequality we obtain that
NFéw,vy) = Flw,v,) Il 21KNIQI § Sup. 41 j_;l[g(w + v;) - glw +

+ v2)] uls "K"llj‘,%21 fnlg(w + vl) - glw + vz)l lul 2
2Kl sue, lg (z)1 vy = vyll=cllvy = v,ll
holds for each weN(L),vl,vze R(L). The Banach contraction the-

orem implies that for each we N(L) there exists exactly one

v(w) € R(L) that
viw) = Flw,viw)).

Step 2. There exists r>0 guch that for each weN(L) it
is
(4) le(w)ll £ p.

The proof follows immediately from the boundedness of G.

Step 3. It is

(5) 1im meas §x 6 O ; lviw)(x)1=R}= 0,
£ —>+c0

uniformly with respect to weN(L).

The equality (5) follows from (4).

Step 4. For each k € N we_have
lim meas {x e O ;|w(x)l£ki =0,
lurll> 00 w (L)
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Suppose on the contrary that there exists koe N , v, € N(L),
fw,l— + o such that
meas {x ¢ f) ;lwn(x)lékoiz €o> 0.
Put W, = w,/ llw Il . Then we have
(6) meas {x eI).;IGn(x)l-’: k/w I} = €.

Since dim N(L)< + o0 we can suppose that ’v?n-—>w in LZ(,Q.),

0
i.e. by Jegorov's theorem for each 7 > O there exists 'c O,

meas Q<7 and W, =% w, (uniformly)on 0 ~ £’ . If we put
M = €,/2 and take the limit for n—>+ 00 in (6), we obtain
meas {x € N ;]wo(x)l =03}z 80/270,
which is a contradiction with w,€ N(L) and the unique continu-
ation property of N(L).
Step 5. If I € R then it is

lim v(w) = Kf and lim Lv(w) = g.
Naw >+ Now ll = + c0

Using Holder inequality we obtain
lvlw) - kel 22 l‘xcs;z'lwg.?llg:1 Jy1gtw + vtw)ul? 2

£IKN12 (L lglw + v(m|2);

analogously NLv(w) - ¢ 1122 f_n_lg(w + v(w)1?).
Choose € > 0. Then there exists k>0 such that

(7 lg(z)l2 meas L) < €/2.

(sup
1212 S
According to Steps 3] and 4 we obtain the existence of such

2¢ > 0 that for lwll = 2¢ it is

(8) meas ) = meas 1x e N ;lw(x) + v(wl(x)l £k} <
< €/(2xgu£ lg(z)\z).
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Using (7) and (8) we obtain
Nvbw - ke 0Z< NKNZEC S, Tatw + v(w)12) +

* (n{nb\g(w s o132k 2 {(zsggk 1g(2)12 meas D)+

+ ( sup lg(z)1? meas N)3< kN2 e ;
Izl z &

analogously we obtain [[Lv(w) - ¢ Il2 < ©.

Step 6. Put
(w)
g = 1/2 CLv(w) wiw > + [Lax V7 g2z = [ evlw.

Then

" %im @(w) = Imeas 2 - 1/2{f,Kf>, in the case T e R and
wil-=> 00

( =% = % .
l‘M}%_xichg w) o ,irlI oo

We shall prove the assertion for Ie¢ R and I =+ co (the
case I = - co 1is analogous). Let I € R . According to Step 5

it is "wﬁmwn/z <Lv(w),v(w)> - [eviw)] = - 1/2< e, Ke ).

Choose € > O. There exists k>0 such that
the
(9) lj(: glz)dz - I < .
Let e > O be such that (see Steps 3, 4)
(10) meas Q, < €,

for all we N(L), llwl = s¢ . Then for llwll = s we obtain us-
ing (9) and (10)

w+ar (w) wiar (w)

\_[:ll dx fa g(z)dz - Imeas ﬂ|é|nf%dx f; g(z)dz -

N

wt g (w)
- Imeas (.O_\-Q-k)l + | fnkdx f: g(z)dz|+ Imeas _Q.k <

< ¢ (meas £ + f:a|g(z)|dz + I), which implies

w4 (W)
(z)dz = I Q .
"W"l_én;a fn_ dx ]: glz meas
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Let I =+ co . Then for arbitrary £ > O there exists
k>0 such that
+
j;'n"g(z)dz > L.
*
Let ¢ > O be guch that meas Q, <min (1/£ ja‘ | glz)ldz,
1/2 meas £ ), for all we N(L), lwll Z 2¢e . Thus for llwllz 2

it is
g (wr) W+, ()
fndx fo g(z)dz = n[nhdx j; g(z)dz -
s v (w)

- lfnhdx fo g(z)dz | = Lmeas ( O \.O.k) -

1 )
- meas 0, f;, 1g(2)ldz21/2 Lmeas fL - /2 , which implies

w+ v (w)
1 d dz =+ © .
'wllimw S, ax j; g(z)dz

This together with Step 2 proves the assertion for I = +o0 «

Step 7. The function v(.):wir— v(w) is Fréchet differen-
tiable on N(L). Since c<1l (see (1)), the Fréchet derivative

of
(v,w)—> v = Flv,w)

with respect to the first variable is invertible (lemma of Min-
ty) and the assertion then follows from the implicit function
theorem. ‘

According to Step 6 the function ¢ :N(L) —> R must at-
tain its maximum or minimum in some point w, ¢ N(L), if I e R,
¢ attains its maximum for I = - ¢©0 and minimum for I = + 0o
Then
(11) {g’lwy),h>=0

for each heN(L). On the other hand, it is

{@’tw)),n>=1/2 (Lv'(wo)h,v(wo)> +1/2 <Lv(w°),v'(w°)h) +
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+ fng(wo + viw )h + f_n_g(wo + v(wo))v'(wo)h - fn_fv'(wo)h.
Since L is symmetric, it is
1/2 <Lv’(wo).h,v(w°)> +1/2 <Lv(w°),v'(w°)h >= <Lv(w°),v'ﬁwo)h>
and (because of v'(wo)heR(L) and (3a) holds)
<Lv(w0),v'(w°)h>+ ]_'ag('wo + v(wo))v'(wo)h = /y fv'(wo)h
for each he N(L). From (11) we obtain that

J, ety + viw ))h =0,
for each he N(L), which is nothing else than (3b).

The function u = w, + v(wo). is then the solution of (3).

4, Applicationg. The results of this paper may be ap-
plied, for instance, to the following types of semilinear el-

Iiptic boundary value problems:

2
-Au-2u+ flue =f¢ in O
(12) { e B ’
u=0 on 30

2
(13) {hAu-ﬁku-r{&e-u sinu = f in Q.,
1
u=0 on 90 ;
Azu-ﬁku-’I:B—;%:f in O,
(14)
ou
u = =0 on 3N,
on
Azu—ﬁku*g(u)=f in O,
(15) {
du
u = =0 on 6.0.,

On
where g is bounded, odd, continuously differentiable function

with compact support in R .
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We put D(L) = W‘l’z(ﬂ), resp. D(L) = w‘2>'2(_0.), in the cases
(12),(13), resp. (14),(15). The operator L is defined by
{Lu,v? = anu Vv = Ay fn_uv,
in cases (12) and (13);
{Lu,v> = fn_AuAv - Ay f_Q uv,
in the cases (14) and (15). We suppose that Ay is any ei-
genvalue of the Laplace operator A , resp. the biharmonie
operator A 2, with Dirichlet boundary conditions. Then the
operator L satisfies all the assumptions from Section 1. Let
us note that the assumption of "unique continuation proper-
ty” 1is satisfied according to the result of Sitnikova [7].
The constant [5 > O depends on {) and it must be such that
the assumption (1) is fulfilled.

5. Remgrks. As it was pointed out in Section 1, we assu-
me nothing about the limit

(16) lim t m1;1 glz).

t—>o veca,t

It means that this paper generalizes the results of Fulik,
{rbec [1]) and Hess [2]. The price we must pay for this gene-
ralization is the assumption (1) which is not very eligible.

This paper generalizes the results of de Figueiredo, Ni
L33 and Concalves [ 6] because we may have dim N(L) >1 and it
reed not be necessarily g(t)tzo0, t € R .

Following the proof of the theorem it is obvious that the

assumption thnat g is odd can be replaced by the assumption

[; g(z)dz = - fawg(z)dz.

Studying the function ¢ :N(L) —> R and using the
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Brouwer degree theory it is possible to prove the existence of

multiple solutions of (3) with the right hand side
fzfl*fz,

fe R(L) and fy€ N(L) with sufficiently small N1l « The

sketch of the proof is given in [5].

6. en lem. According to the author s best knowled-
ge it remains to be an open problem to prove the theorem with-
hout the condition (1) which makes restriction on the deriva-

tive 1g’(2)l, ze R,
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