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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
23,2 (1982) 

GENERIC PROPERTIES OF VON KARMAN EQUATIONS 
Pavol QUIHNER 

Abstract: The operator equation f(w)= p connected with 

general boundary value problem for von K^rman equations is 

studied. It is proved that the singular sets B= {w; f (w) is 

not surjective} and f(B) are nowhere dense and that for 

every p £ f (B} the number of elements of f"(p) is finite 

and odd. Also a generic result for the global structure of 

the solution set of equation f(ft,w)= p /where A is a bi

furcation parameter/ is shown. 

Key words: Fredholm map of index p, coercive, analytic, 

proper, compact. 

Classification: 35J65 

1. NOTATION AND PRELIMINARIES 

We restrict ourselves to consider the domain with infi

nitely smooth boundary /see Definition 1/, but the main 

results are available under some assumptions also for an 

angular domain whose boundary is piecewise of C"* /see [ll/. 

We shall use the notation and assumptions from [*} eo 
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ĥat we juat recall them. 

Denote the partial derivatives by w , w , the outward 
x y 

Drmal derivative by w = w n + w n , the tangential deri-n x x y y 

ative by w^= -w
x
n
y
+ w

y
n
x* 

Denote further 

i 
Aw = w +2w + w , xxxx xxyy yyyy » ru.vl = u v + u v - 2u v • u,vj u

xx
vyy uyyvxx cuxyvxy 

The boundary operators M,T are defined by 

Mw = VAw + (1-v)(wxxnx + 2wxynxny + W y yn y ) 

Tw = -(4w) n + (l-v)(wxxnxny - w ^ n * - ^ ) - w y yn xn y) r 

where the Poisson constant V€<0,-) . 
2 

For u,v,<p€: W2,2(.nJ) we define 

(u,v)^2 = X^ x x* x x
+ 2u

Xy
Vxy+ Uyyvyy^ d x d y ' 

Hu«0 = ( K u ) ^ ) * , 

(u,v)v = (u,v)w2,z + V^u^ldxdy , 
° JL 

B(v;u,f) = f (v u <f> +v u V - v u <P -v u *f ) dxdv . J v xyuxTy vxy yrx xx yTy yy xTx' J 

If f€Wj2/il) we obtain B(v;u,<f) = B(v;f,u) = B(<P;u,v) . 

Definition 1. Let .lie ~E be a simply connected bounded 

domain. Let there exist a one-to-one mapping & of ^0,lO 

onto *t>XL defined by 0 : t»~-> (fr̂ tt) -«<>2(t)) 

with the properties 

u)± C C ° ° ( < 0 , R ) ) , i = 1,2, 

tofho) = lim t - j f i t ) , i = 1|2, k = 0 , 1 , 2 , . . . , 
x+ t - * R - 1 
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(-Co^Ct), (*>{(t))t t€<0,R) is the unit vector of the 

inner normal to ZSt * 

Then we say that il is of the class C°°. 

Definition 2. Let <f>0. Let the mapping 

(x,y): <0,R)x<o,cf>—* E2 

be defined by x: (t,s)i »^«(t)- s ̂ (t) 

y: (t,s)i—»W2(t)+ scj^t) . 

Denote by Mrf the image of <O,R)*(0,cT) in this mapping. 

Throughout the paper let 

J2.ec00, a a = q u r 2 u i l , r± ^ e<r^ > i=1,2>3 
where & is the mapping from Definition 1 and f- , i=1,2,3 

are pairwise disjoint measurable subsets of ^0,R). 

By [4] there exists <f > 0 such that the mapping (x,y) 

from Definition 2 is a one-to-one mapping of <0,R)^<0,cf)> 

onto -G--̂ ,. We shall suppose that 

s (s'S+s ( s ) - 2 s s s =0 on Q . xxv°y' yyv x' xy x y 2 

Let us denote by V the closure of the set 

y = {u£C°°(l) ; u=un=0 on CJ , u=0 on r2 } 

in the norm of Wa,a(-fi) . 

The functions k,m,r,4>,P specifying the boundary problem are 

supposed to fulfil /with arbitrary real numbers p>1, q>2/: 

k 2 € L p ( Г 2 ) ; k 2 = 0 on Q , 

k^cLpCГз) , **i* ° on Г3 , 

k 3 2 € L t ( Г Э ^ 1 k з a = 0 on Г3 , 

m2€Lp(Г2
) , m3€Lp(Г ) , г^Є L^ГS) , P € Lp(ja) , 

ф
o
Є W

3
"Ч'*(aГL) , Ф,€ W2

~*
,9
Ч2/2) , 
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qb<= <{)0= 0 on Q . 
2 •—• Then there exists a function FeC (XL) which satisfies the 

conditions 

F a % » V *t on 3 i l 

/ s e e [ 6 ] / . 

Let us introduce the following b i l inear forms: 

• <w/P> » / W dS + f (*&**+ k 3 i V > n ) * S 

((w,<f)) « (w,<f)v + e(w,<f>) . 

We sha l l suppose 

(1 .1 ) weV , ((w,w)) = 0 = > w = 0 . 

Then ||w|| = ((w,w))* i s an equivalent norm to || • ||^2,2 in V 

/ e e e [3 ] / . 

Def init ion 3 . The couple (w,<j>) € VxW2* (&) i s sa id to fee 

• variat ional so lut ion of the problem i f 

(1.2) ((w,<f)) -= B(w,<J>,<f)+ /Pfdxdy + /(r3<f+ mtfj dS + / m ^ d S 
IL q fz 

holds for each *f€V, 

0.3) (4>,Y)w*.* s - B(w,w,Y) ftolds for each Y* W ^ X L ) , 

(1.4) 4>* <$ t <|> = <{). on & & in the sense of traces. 

The sufficiently smooth variational solution defined above 

is the classical solution of the system of equations 

A* = [w,(f>] + P 
t on SL 

A4> = -[w,wj 

satisfying the boundary conditions 

w = w^ = 0 on Q, 

w = 0 , Mw + k* w = m.2 on Q, 
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Mw + ^щn= m
, , Tw - ŕ w ^ - w ^ + iц, = г

3
 o n Г „ 

Ф = Ф
0
 » Ф

n
 = Ф, on a л . 

2. REFORMULATION OF THE PROBLEM 

Let w€.W2,2(il). Using the H51der inequality and the 

continuous imbedding W ^ I D e W ^ i l ) we obtain that 

Bw: Y1—» B(wjw,Y) is a continuous linear functional on W*\ci) 

so that by the Riesz theorem 

(3! R(w)€Ŵ 2(ii)) (y Y ewffii)) (R(w)fY,W » B(W,W,Y) . 
"o 

Similarly 

(3! F€w|«2(i2))(y Y€w£\ja)) (F,Y;W2,I - (F,r)^i. f 

(3! C<w)€V)(V<p£ V) ((C(w),f)) = B(wfR(w),<f) f 

(31 L ( w ) t V ) ( V f e V) ((L(w),¥0) = B(wfP-F ff) , 

(3 ! p£V)(V"*>e V) ((p,f)) = /pfdxdy + /(r3<f +m3<?n)dS + / n ^ ^ d S . 

Now we can reformulate the cond it ions ( 1 . 3 ) and ( K 4 ) as 

( 2 . 1 ) (J) = - R(w)+ F - F . 

Substituting from (2.1) into (1.2) we obtain the equation 

(2.2) f(w) = p 

where 

f: V — * V: wt—> f(w) = w + C(w) - L(w) . 

The equation (2.2) is obviously equivalent to our problem. 

403 -



3. PROPERTIES OF OPERATOR f 

Lemma 1. The operators C,L: V—• V are compact. 

Proof. Let {w n}cv be bounded. We shall prove that 

{C(wn)J and {L(wn)} are relatively compact in V. 

We may assume wn—-> w in V, w** —-w.. and w n ---Wg in W*,a(-CL") 

/since {wnf, (wn) are bounded in W1,2(il)/. Using the compact x y 

imbeddings W^t-OJc w1,2(il) and W^il) c hHsl) one can easily prove 

w i = W
Y>

 w? = w v
# B v t n e compact imbedding W2,a(lZ)cw1,*(ilJ and l x c y 

by the compactness of the operator T:W1,l(.a) -» L\a&):u*-~*aL 

we have w11—*w in W^Jt), wj1/ —* w*/ , w?/ —* wy/ in L*<aa). 

Thus ||R(wn)- R(w)|l = sup ICEUw11) - R(w) ,T)w2,2 I = 

0 rci^iU^mkV-l ° 

= sup |B(wn-wn
tY)- B(w;w,Y)| = sup |B(Y;wn,wn) - B(Yjw,w)| ~ 

* suP/(2irxyiiw^-wxwy | + irxxii(w^f-w^|+ iryyiKw^f-wxi)dxdy ->o, 
s ince e . g . , _ „ 

/ |Y x y l lw5w n -w x w y |dxdy -

£ i ,rxy•( |wy''wx"wx'+1wx' |wy-wyJ ] d x d y * 

* imi 0 (l|w21|lwvr||w
n-wllw^+ ||w|lw^||wn-wllw^) . 

Similarly ||C(wn)- C(w)ll = sup |((C(wn)- C<w),f))| « 
f € V, Hf II * 1 

= sup lB(wn;R(wn),*r*>)- B(w;R(w>,^)| —* 0 . 

F inal ly , ||L(wn) - L(w)|| = sup |B(wn-w;F-F,*)| * 
S»€V, ll<fl|«1 

= sup |B(wn-w;F,f)| + sup |B(wn-w;F,¥)| . 

Clearly, sup |B(wn-w;F,f)| - sup lB(F;V,wn-w)| — f 0 . 

sing the integration by parts we get sup |B(wn-w$F,f)l —* 0. 
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Lemma 2. There exists a constant K such that for each 

wc V the following estimate holds 

((C(w) ,w)) - |((L(w) ,w)>! = - l\MZ - K . 

Proof. There exists a function feC°°(JI) with the 

- properties: 

• *y* ° J 

í = 

OП oSl , 

>x >y 

|B(w;fF,w)| -- \MZ for ••ch w*T 

/see [4] , Lemma 5/. 

Using the Riesz theorem we get 

( 3 ! fF€W2Z(IL))(VT€ w5ViL>; (f*,^)WJ» • ( f F ^ ) ^ . 

Since F-F = $F- $F , we have 

((C(w),w))- |((L(w),w))| = B(wjR(w),w) - |B(w;fF-fF,w)| = 

= B(w|W,R(w)) - |B(w-fF,w)| - |B(w|w,|F)l = 

* llR(w)||0 - ̂ llwll1- ||R<w)||0||fF|l0 * 

- - £|w|f • llR(w)|l0(||R(w)||0- ||JF||0) = - £l|w||*- UffllJ • 

Corollary. The operator f is coercive. 

Definition 4. Let X,Y be Banach spaces, A: X—» Y a conti

nuous linear mapping, f: X—*Y a /nonlinear/ C map. 

The mapping A is said to be a Fredholm mapping of index p 

if Im A is closed, dim Ker A<oo, codim Im A<o© and 

p= dim Ker A - codim Im A. 

The map f is said to be a Fredholm map of index p if f(x) 

is a linear Fredholm mapping of index p for each x t X . 

The map f is said to be p 

whenever K c Y is compact. 

The map f is said to be proper if f (K) is compact 
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Lemma 3. The operator f is a Predholm map of index zero. 

Proof. Let w*V. Since LtC are compact analytic operators, 

their derivatives L#(w) f C(w> have to be compact mappings. 

Thus f'(w) = Id-L(w)+C<w) is the compact perturbation of the 

identity and hence it is a linear Fredholm mapping of index 0. 

Lemma 4. The operator f is proper. 

Proof. Let K c Y be compact, let us choose a sequence 

{w11! s f* (K), Since f is coercive, {wnJ is bounded. According 

to Lemma 1 we may assume C(w11)—•»pi, L(wn)-~>p1. Further 

{f(wn)}s.K so that we may assume f (wn)—> pe K. Thus 

wn -- f(wn)-C(wn)+L(wn)-* p - pi+ p* and hence fH(K) is rela

tively compact. Since f is continuous, f (K) is closed. 

4. MODIFIED SMALE'S THEOREM 

Let X,Y be real Banach spaces, UffX open, Ms U. 

Let f: U—*Y be a C map. We shall denote the restriction 

of f to M by f/M. Further denote 

B(f/M)= {xcM; f'(x) is not surjective} , 

<?(f/M)=- iycY; (VxeMnfiy)) f '(x) is surjective} * Y-f (B(f/M» , 

B(f) « B(f/U)t tf(f) = 0(f/U) . 

Then C7(f/Mt) 3 t?(f/M2) for M~SM 2 and y€(2(f/M) for 

each y#f(M). 

Theorem 1« Let X,Y be real Banech spaces, UpUjfiX open 

subsets, tTj&Up. Let f:U2-*Y be a C /resp. real analytic/ 

Fredholm map-of index p^O, p«< k. Let fVlC) be reletively 

compact /in X/ whenever KcY is compect. 
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Then the set O * <9(f/lL) is a dense open subset of Y and for 

every y eC7 the set f" Cy ) (\ U.. is a (T /resp. analytic/ 

manifold of dimension p. If p=0 the set f (y^nU. is 

finite /for yQ€.OZ. 

Proof. We shall prove that the set O is dense and open 

in Y; all remaining assertions follow from the implicit 

function theorem. 

First we show that f is a closed mapping. 

Let Z s U 2 be closed /in X/, let x e Z, f <x ) — * y. 

Since {x \ is relatively compact, we may assume x — * x c Z . 

Then f(x)=y, y€ f(Z). Consequently f(Z) is closed. 

Since B(f/fL) is closed and f is a closed mapping, the set 

O is open. 

Let us choose y c Y . Then K = ff CyViU« is compact. 

Let x€ K. By [2] /see the "proof of Theorem C.1.3./ there > 

exists a neighbourhood U of x such that the set <?(f/U ) is 

dense. Let us choose W c U a closed neighbourhood of x. 

Then the set <?(f/Wx) is open /since B(f/Wx) is closed and f 

is a closed mapping/ and dense /since <2(f/Wx) 2 tP(f/U ) /. 

Further choose an open set V such that x c V x c W . Since 

K s U V v , there exists a finite set {x,,,,,,x}£K such that 
X€K X 1 n 

K s U V v . Let us denote G = C ^ . Since (?(f/Wv ) , i*\ X£ i*1 -4 xj' 
n 

i = 1,...,n is dense and open and 0(f/Q) 2 C\0(f/^lt ) , 
i»4 xl 

the set 0(f/Q) is dense in Y. 

One can easily prove that there exists a neighbourhood U of y 

such that UnfdJj-G) =- 0. Then tfnO(f/G) £ O and hence the 

set O is dense. 
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Lemma 5« Let the assumptions of Theorem 1 be fulfilled. 

Let U.j=U2=-X, p=0. Then card f~ (y) /i.e. the number of 

elements of the set f (y)/ is constant on every connected 

component of O . 

Proof. It is sufficient to prove that card f (y) is 

a continuous function on O , 

Choose y € O } let f~ tfyQ)-= { x..,... ,xN]r. By the implicit 

function theorem there exists an open neighbourhood 0- of x . 

/i=-1,...,N/ such that f/0- is a diffeomorphism. Thus 

card f~(y) is a lower semicontinuous function and it remains 

to show that it is also upper semicontinuous. 

Let us suppose zw<l U ^ » f(O —*• y«• We may assume 
n ' is»-j j- no 

z^—>z. But then f(z>= yrt, z£ U0- , which contradicts 
n o i«-̂  1 

the construction of 0.. 

5. THE STRUCTURE OF THE SOLUTION SET 

Theorem 2. Let f:V—*V be the mapping defined in Section 2. 

Then 0- 0(f) is a dense open subset of V and card f"\p> is 

finite, odd and locally constant for peO . 

Proof• l According to Lemmas 3,4,5 and Theorem 1 it remains 

to prove that card f*tp) is odd /for peO /. 

Let pc(2. For xtc<0,1> we define operators 

*ui V~»V: wi—»w + u(C-L)(w> . 

By Lemma 2 there exists a constant K such that for every w€ V 

and every M€<0,1.> the following estimate holds 

((f^Cw^w)) -* ̂{wtia- K . 

- 408 -



Consequently, there exists,*an open bounded set U in V such 

that pcU, fH(p)sU and p£ fp(9U) for every <**. 

By the homotopy invariance property of the Leray-Schauder 

degree we have * 

deg(f,U,p)= de|(f1,U,p)= deg(f0,U,p)= 1 . 

Since deg(f,U,p) = £i(w.) , where <w. ,... ,ww"J = f (p) 

and i(w.)=±1 /j=1,...,N/, we get that N = card f~ (p) 

is an odd number. 

Now let us consider /instead of (1.4)/ the following 

boundary conditions 

( 5 . D <j>=a<t>0 , 4>n-a<l>. 
/A being a real number/. 

"51 

The operator f = f connected with the boundary 

conditions (5.1) can be written in the form f = Id+ C - L , 

where C = C, L = 3L and C,L are operators connected with 

the boundary conditions (1.4) . 

Let us define the following operator 
g: VxE..-*?: (w,r\) t-> f *(w) = w+ C(w)-3L(w) . 

Theorem 3. 

(i) The set O = (?(g/Vx<-M,M>) is dense and open for any 

M€E.. For every P€C?M the set g~*(p) n(Vx(-M,M)) is 

an analytic relatively compact manifold of dimension t. 

(ii) (2(g) is a residual set. For each p£(?(g) the sot gH(p) is 

a 1-dimensional analytic manifold and there exists a 

discrete set D=D(p)cE1 such that the equation f (w)= p 

has only a finite number of solutions for any . A £ D* 
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proof. 

(i) g is obviously a Fredholm map of index 1. By Lemma 2 we 

have 

«Ca(w),w»- |((L*(w),w))l * - ilM*- Ka . 

Thus for MM M we obta in 

«C(w),w))-|A||((L(w),w»| * «CCw),w»- M|((L(w),w))l = 

= ((CM(w),w» - | ( (L H (w) ,w»| * - i| |w||Z- KM , 

hence g/VX<-M,M> i s coerc ive / i . e . lim (ft(x>;x) = » o o 
lxl-*oo »xl 

4 
where (•,•> is a scalar product in VxE. and lxl = (x,x)* /. 

Now one can easily prove /analogously as in Lemma 4/ that 

g/VX<-M,M> i s proper . Using Theorem 1 with U-= Vx(-M,M) , 

Up= Vx(-M-£,M+£) , fc>0 we get our a s s e r t i o n . 
oo 

< i i ) (0(g)- f l (?„ t hence 0(g) i s a r e s i d u a l s e t . 
mi n 

OO 4 

B"*(p)~ U((vx(-n,n))ng"4(p)) , hence g \p> is 1-dimensional 

analytic manifold. 

Let us consider the projection II: g~\p>—*Ej: (w,fl) *—* ̂  * 

P is an analytic map, H is proper. Using [9] for the maps 

of the form f7°A /where A*. E1—•g"
f(p) is a local 

description of the manifold g~Hp)/ w e get tnat tne s e t 

D = E.- V((l) is discrete. Our assertion now follows from 

the implicit function theorem. 

Remark 1. The problem g(w,i*) = p is often studied in the 

bifurcation theory. Theorem 3 shows that for generic p there 

is no bifurcation /cf. f7]/# 

Remark 2. Let us choose p CV and define the operator 

h: VxE-xE-—-* V: <w,A,£*> t—* g<w,̂ > + up0 . 
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Analogously as in Theorem 3 we get that 0(h) is a reeidual 

set, for each p e 0(h) the set hM(p) is an analytic manifold 

of dimension 2 and rf1(p)n(V*K) is compact if Kc E..XE. is 

compact. Let us define the projection 

fl: h*4(p>->E1: (W,A,,U)H-»^. 

Then the set E.-O(ri) is discrete and for each (*& O(fl) 

the set g"Vp+/<P0) is an analytic manifold of dimension 1. 

Let p£C?(h). If there exists A€l&4 such that p+Sp £ tf (h), 

then we can repeat our considerations and we get again that 

g"Vp+/4P0) is an analytic manifold for generic M. . 

6. THE SINGULAR SET B 

Theorem 4. The set B **B(f) is nowhere dense. 

Proof. Since 0 is nonempty and f is surjective, there 

exists w Q4 B. Choose we V and define /for 386 E^/ 

T(ae) = L- Cf(w +*tw-w^) . 

Obviously 

wQ+aetw-wo) £ B <?==--> 1 is an eigenvalue of T(9€) . 

T is an analytic mapping of E^ into the set of compact linear 

mappings on V and t is not an eigenvalue of the operator T(0), 

By [5] /Theorem VII.1.9/ the set 

{0?6E|> 1 is an eigenvalue of T(3f)} 

is discrete. Thus B is nowhere dense. 

Corollary. The eet f*1(f (B)) is nowhere dense. 
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Proof. Choose w^V and its open neighbourhood U. 

Since B is nowhere dense, there exists v£U-B. By the impli

cit function theorem there exists an open neighbourhood U 

of v /U£-U/ such that f/U is & diffeomorphism. Since 

f(U) is open, there exists p£f(UMt?. Let zef~(p)nU . 

Then z£f*(f(B)) and z € U. 

Remark 3. If the operator (Id-L) is invertible then 

Theorem 4 can be proved in an elementary way: 

We have f'(/\w) = Id- L + A V ( W ) , 

consequently 

Aws B 4*** (lv/*0) (Id-L)v + Ac'(w)v = 0 

4=Z (3VT*0) v + ;f(ld-L)"V(w)v = 0 

#==-> - -j, is an eigenvalue of (Id-L) C#(w) . 

Since (Id-L) C'(w) is compact, the set {^eE^ ^w£B} is 

discrete. 
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