Commentationes Mathematicae Universitatis Caroline

Pavol Quittner
 Generic properties of vol Kármán equations

Commentationes Mathematicae Universitatis Carolinae, Vol. 23 (1982), No. 2, 399--413
Persistent URL: http://dml.cz/dmlcz/106162

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 23,2 (1982)

generic properties of von karman equations Pavol QUITTNER

Abstract

The operator equation $f(w)=p$ connected with general boundary value problem for von Kármán equations is studied. It is proved that the singular sets $B=\left\{w ; f^{\prime}(w)\right.$ is not surjective $\}$ and $f(B)$ are nowhere dense and that for every $p \notin f(B)$ the number of elements of $f^{-1}(p)$ is finite and odd. Also a generic result for the global structure of the solution set of equation $f(\lambda, w)=p /$ where λ is a bifurcation parameter/ is shown.

Key words: Fredholm map of index p, coercive, analytic, proper, compact.

Classification: 35J65

1. NOTATION AND PRELIMINARIES

We restrict ourselves to consider the domain with infinitely smooth boundary /see Definition 1/, but the main results are available under some assumptions also for an angular domain whose boundary is piecewise of $C^{3} /$ eee [1]/.

We shall use the notation and assumptions from [4] 80
'hat we just recall them.
Denote the partial derivatives by w_{x}, w_{y}, the outward ormal derivative by $w_{n}=w_{x} n_{x}+w_{y} n_{y}$, the tangential deriative by $w_{\tau}=-w_{x} n_{y}+w_{y} n_{x}$.

Denote further

$$
\begin{aligned}
\Delta^{2} w & =w_{x x x x}+2 w_{x x y y}+w_{y y y y} \\
{[u, v] } & =u_{x x} v_{y y}+u_{y y} v_{x x}-2 u_{x y} v_{x y} .
\end{aligned}
$$

The boundary operators M, T are defined by

$$
\begin{aligned}
& M w=\nu \Delta w+(1-\nu)\left(w_{x x} n_{x}^{2}+2 w_{x y} n_{x} n_{y}+w_{y y} n_{y}^{2}\right) \\
& T w=-(\Delta w)_{n}+(1-\nu)\left(w_{x x} n_{x} n_{y}-w_{x y}\left(n_{x}^{2}-n_{y}^{2}\right)-w_{y y} n_{x} n_{y}\right)_{\tau}
\end{aligned}
$$

where the Poisson constant $\nu \in\left\langle 0, \frac{1}{2}\right)$.
For $u, v, \varphi \in W^{2^{2}}(\Omega)$ we define
$(u, v)_{W z_{0}^{2}}=\int_{\Omega}\left(u_{x x} v_{x x}+2 u_{x y} v_{x y}+u_{y y} v_{y y}\right) d x d y$,
$\|u\|_{0}=\left((u, u)_{W_{0}^{2} 2}\right)^{\frac{1}{2}}$,
$(u, v)_{V}=(u, v)_{W_{O}^{2,2}}+\nu \int_{\Omega}[u, v] d x d y$,
$B(v ; u, \varphi)=\int_{\Omega}\left(v_{x y} u_{x} \varphi_{y}+v_{x y} u_{y} \varphi_{x}-v_{x x} u_{y} \varphi_{y}-v_{y y} u_{x} \varphi_{x}\right) d x d y$.
If $\varphi \in W_{o}^{2^{2}}(\Omega)$ we obtain $B(v ; u, \varphi)=B(v ; \varphi, u)=B(\varphi ; u, v)$.
Definition 1. Let $\Omega \subset E_{2}$ be a simply connected bounded domain. Let there exist a one-to-one mapping θ of $\langle 0, R)$ onto $\partial \Omega$ defined by $\theta: t \mapsto\left(\omega_{1}(t), \omega_{2}(t)\right)$
with the properties

$$
\begin{aligned}
& \omega_{i} \in C^{\infty}(\langle 0, R)), \quad i=1,2 \\
& \omega_{i+}^{(k)}(0)=\left.\lim _{t \rightarrow R-} \omega_{i}^{(k)} l_{t}\right), \quad i=1,2, \quad k=0,1,2, \ldots \\
&-400-
\end{aligned}
$$

$$
\begin{aligned}
&\left(-\omega_{2}^{\prime}(t), \omega_{1}^{\prime}(t)\right), \quad t \in\langle 0, R) \text { is the unit vector of the } \\
& \text { inner normal to } \partial \Omega .
\end{aligned}
$$

Then we say that Ω is of the class C^{∞}.

Definition 2. Let $\delta>0$. Let the mapping

$$
(x, y):\langle 0, R) \times\langle 0, \delta\rangle \longrightarrow E_{2}
$$

be defined by $x:(t, s) \longmapsto \omega_{1}(t)-s \omega_{2}^{\prime}(t)$ $y:(t, s) \longmapsto \omega_{2}(t)+s \omega_{1}^{\prime}(t)$.
Denote by $\Omega \delta$ the image of $\langle 0, R) \times(0, \delta)$ in this mapping.

Throughout the paper let

$$
\Omega \in C^{\infty}, \quad \partial \Omega=\Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3}, \quad \Gamma_{i}=\theta\left(\gamma_{i}\right), \quad i=1,2,3
$$

where $\boldsymbol{\theta}$ is the mapping from Definition 1 and $\boldsymbol{\gamma}_{i}, i=1,2,3$ are pairwise disjoint measurable subsets of $\langle 0, R$).

By [4] there exists $\delta_{0}>0$ such that the mapping (x, y) from Definition 2 is a one-to-one mapping of $\langle 0, R) \times\left\langle 0, \delta_{0}^{\circ}\right\rangle$ onto $\bar{\Omega}_{\delta_{0}}$. We shall suppose that

$$
s_{x x}\left(s_{y}\right)^{2}+s_{y y}\left(s_{x}\right)^{2}-2 s_{x y} s_{x} s_{y}=0 \quad \text { on } \quad \Gamma_{2}
$$

Let us denote by V the closure of the set

$$
\boldsymbol{y}=\left\{u \in C^{\infty}(\bar{\Omega}) ; \quad u=u_{n}=0 \quad \text { on } \Gamma_{1}, u=0 \quad \text { on } \Gamma_{2}\right\}
$$

in the norm of $W^{2,2}(\Omega)$.
The functions k, m, r, ϕ, P specifying the boundary problem are supposed to fulfil /with arbitrary real numbers $p>1, q>2 /$:

```
\(k_{2} \in L_{p}\left(\Gamma_{2}\right) ; \quad k_{2} \geq 0\) on \(\Gamma_{2}\),
    \(k_{31} \in L_{p}\left(\Gamma_{3}\right) ; \quad k_{31} \geqslant 0\) on \(\Gamma_{3}\),
    \(k_{32} \in L_{1}\left(\Gamma_{3}\right) ; \quad k_{32} \geq 0\) on \(\Gamma_{3}\),
    \(m_{2} \in L_{p}\left(\Gamma_{2}\right), \quad m_{3} \in L_{p}\left(r_{3}\right), \quad r_{3} \in L_{1}\left(\Gamma_{3}\right), p \in L_{p}(\Omega)\),
    \(\phi_{0} \in w^{3-\frac{1}{2} \cdot q}(\partial \Omega), \quad \phi_{1} \in N^{2-\frac{1}{2} \cdot 2}(\partial \Omega)\),
```

$$
\phi_{1}=\phi_{0}=0 \text { on } \Gamma_{3} \text {. }
$$

Then there exists a function $F \in C^{2}(\bar{\Omega})$ which satisfies the conditioms

$$
F=\phi_{0}, \quad F_{n}=\phi_{1} \quad \text { on } \partial \Omega
$$

/see [6]/.
Let us introduce the following bilinear forms:

$$
\begin{aligned}
& a(w, \varphi)=\int_{\Gamma_{2}} k_{2} w_{n} \varphi_{n} d S+\int_{F_{3}}\left(k_{32} w \varphi+k_{31} w_{n} \varphi_{n}\right) d S, \\
& ((w, \varphi))=(w, \varphi)_{V}+a(w, \varphi) .
\end{aligned}
$$

We shall suppose
(1.1) $\quad w \in V,((w, w))=0 \quad \Longrightarrow \quad w=0$.

Then $\|w\|=((w, w))^{\frac{1}{2}}$ is an equivalent norm to $\|\cdot\|_{w^{2,2}}$ in V
/see [3]/.
Definition 3. The couple $(w, \phi) \in V \times W^{2,2}(\Omega)$ is said to be - wariational solution of the problem if
(1.2) $\quad((w, \varphi))=B(w ; \phi, \varphi)+\int_{\Omega} P \varphi d x d y+\int_{\Gamma_{3}}\left(r_{3} \varphi+m_{3} \varphi_{n}\right) d S+\int_{\Gamma_{2}} m_{2} \varphi_{n} d S$ holds for each $\varphi \in V$,
(1.3) $(\phi, \psi)_{w_{0}^{2,2}}=-B(w ; w, \psi)$ holds for each $\psi \in W_{0}^{2,2}(\Omega)$,
(1.4) $\phi=\phi_{0}, \phi_{n}=\phi_{1}$ on $\partial \Omega$ in the sense of traces.

The sufficiently smooth variational solution defined above is the classical solution of the system of equations

$$
\begin{aligned}
& \Delta^{2} w=[w, \phi]+P \\
& \Delta^{2} \phi=-[w, w]
\end{aligned}
$$

satisfying the boundary conditions

$$
\begin{gathered}
w=w_{r}=0 \quad \text { on } \Gamma_{1}, \\
w=0, \quad M w+k_{2} w_{-4}=m_{2} \quad \text { on } \Gamma_{2},
\end{gathered}
$$

$$
\begin{gathered}
M w+k_{31} w_{n}=m_{3}, \quad T w+\left(w_{x} \phi_{y \tau}-w_{y} \phi_{x \tau}\right)+k_{32} w=r_{3} \quad \text { on } \Gamma_{3}, \\
\phi=\phi_{0}, \quad \phi_{n}=\phi_{1} \quad \text { on } \partial \Omega .
\end{gathered}
$$

2. REFORMULATION OF THE PROBLEM

Let $w \in W^{2,2}(\Omega)$. Using the HBlder inequality and the continuous imbedding $W^{\mathbf{2 4}}(\Omega) \subset W^{1,4}(\Omega)$ we obtain that $B_{w}: \psi \longmapsto B(w ; w, \psi)$ is a continuous linear functional on $w_{0}^{2 / 2}(\Omega)$ so that by the Riesz theorem
$\left(\exists!R(w) \in W_{0}^{2 / 2}(\Omega)\right)\left(\forall \psi \in W_{0}^{22}(\Omega)\right) \quad(R(w), \psi)_{W_{0}^{2,2}}=B(w ; w, \psi)$. Similarly
$\left(\exists!\tilde{F} \in W_{0}^{2,2}(\Omega)\right)\left(\forall \psi \in W_{0}^{2,2}(\Omega)\right) \quad(\tilde{F}, \psi)_{W_{0}^{2,2}}=(F, \psi)_{W_{0}^{2,2}}$,
$(\exists!C(w) \in V)(\forall \varphi \in V) \quad((C(w), \varphi))=B(w ; R(w), \varphi)$,
$(\exists!L(w) \in V)(\forall \varphi \in V) \quad((L(w), \varphi))=B(w ; F-\tilde{F}, \varphi) \quad$,
$(\exists!p \in V)(\forall \varphi \in V)((p, \varphi))=\int_{\Omega} P \varphi d x d y+\int_{\Gamma_{3}}\left(r_{3} \varphi+m_{3} \varphi_{n}\right) d S+\int_{\Gamma_{2}} m_{2} \varphi_{n} d S$.
Now we can reformulate the conditions (1.3) and (1.4) as

$$
\begin{equation*}
\phi=-R(w)+F-\tilde{F} \tag{2.1}
\end{equation*}
$$

Substituting from (2.1) into (1.2) we obtain the equation

$$
\begin{equation*}
f(w)=p \tag{2.2}
\end{equation*}
$$

where

$$
f: V \longrightarrow V: w \longmapsto f(w)=w+C(w)-L(w) \cdot
$$

The equation (2.2) is obviously equivalent to our problem.

3. PROPERTIES OF OPERATOR f

Lemma 1. The operators $C, L: V \rightarrow V$ are compact.
Proof. Let $\left\{w^{n}\right\} \subset V$ be bounded. We shall prove that $\left\{C\left(w^{n}\right)\right\}$ and $\left\{L\left(w^{n}\right)\right\}$ are relatively compact in V.

We may assume $w^{n} \rightarrow w$ in $V, w_{x}^{n} \rightarrow w_{1}$ and $w_{y}^{n} \rightarrow w_{2}$ in $w^{1,2}(\Omega)$ /since $\left\{w_{x}^{n}\right\},\left\{w_{y}^{n}\right\}$ are bounded in $w^{1,2}(\Omega) /$. Using the compact imbeddings $W^{22}(\Omega) \subset W^{1,2}(\Omega)$ and $W^{1,2}(\Omega) \subset L^{2}(\Omega)$ one can easily prove $w_{1}=w_{x}, w_{2}=w_{y}$. By the compact imbedding $W^{2,2}(\Omega) \subset W^{1.4}(\Omega)$ and by the compactness of the operator $T: W^{1,2}(\Omega) \rightarrow L^{2}(\partial \Omega): u \mapsto u / \partial \Omega$ we have $w^{n} \rightarrow w$ in $w^{1,4}(\Omega), w_{x}^{n} / \partial \Omega \rightarrow w_{x} / \partial \Omega, w_{y}^{n} / \partial \Omega w_{y} / \partial \Omega$ in $L^{2}(\partial \Omega)$. Thus $\quad\left\|R\left(w^{n}\right)-R(w)\right\|_{0}=\sup _{r \in w_{0}^{2}(\Omega), \| \gamma u_{0} \leqslant 1}\left|\left(R\left(w^{n}\right)-R(w), \psi\right)_{W_{0}^{22}}\right|=$ $=\sup \left|B\left(w^{n} ; w^{n}, \psi\right)-B(w ; w, \psi)\right|=\sup \left|B\left(\gamma ; w^{n}, w^{n}\right)-B(\psi ; w, w)\right| \leq$ $=\sup \int_{\Omega}\left(2\left|\psi_{x y}\right|\left|w_{x}^{n} w_{y}^{n}-w_{x} w_{y}\right|+\left|\psi_{x x}\right|\left|\left(w_{y}^{n}\right)^{2}-w_{y}^{2}\right|+\left|\psi_{y y}\right|\left|\left(w_{x}^{n}\right)^{2}-w_{x}^{2}\right|\right) d x d y \rightarrow 0$, since e.g.

$$
\int_{\Omega}\left|Y_{x y}\right|\left|w_{x}^{n} w_{y}^{n}-w_{x} w_{y}\right| d x d y \leq
$$

$\leq \int_{\Omega}\left|\psi_{x y}\right|\left(\left|w_{y}^{n}\right|\left|w_{x}^{n}-w_{x}\right|+\left|w_{x}\right|\left|w_{y}^{n}-w_{y}\right|\right) d x d y \leq$
$\leq\|Y\|_{0}\left(\left\|w^{n}\right\|_{W^{1,4}}\left\|w^{n}-w\right\|_{W^{1,4}}+\|w\|_{W_{1,4}}\left\|w^{n}-w\right\|_{W^{1,4}}\right)$.
Similarly $\left\|C\left(w^{n}\right)-C(w)\right\|=\sup _{\varphi \in v,\|\varphi\| \leqslant 1}\left|\left(\left(C\left(w^{n}\right)-C(w), \varphi\right)\right\rangle\right|=$
$=\sup \left|B\left(w^{n} ; R\left(w^{n}\right), \psi\right)-B(w ; R(w), \psi)\right| \rightarrow 0$.
Finally, $\quad\left\|L\left(w^{n}\right)-L(w)\right\|=\sup _{\varphi \in V,\|\varphi\| \leq 1}\left|B\left(w^{n}-w ; F-\tilde{F}, \psi\right)\right| \leq$
$\leq \sup \left|B\left(w^{n}-w ; \tilde{F}, \psi\right)\right|+\sup \left|B\left(w^{n}-w ; F, \varphi\right)\right|$.
Clearly, $\quad \sup \left|B\left(w^{n}-w ; \tilde{F}, \varphi\right)\right|=\sup \left|B\left(\tilde{F} ; \psi, w^{n}-w\right)\right| \rightarrow 0$.
'sing the integration by parts we get sup $\left|B\left(w^{n}-w ; y, \psi\right)\right| \rightarrow 0$.

Lemma 2. There exists a constant K such that for each $w \in V$ the following estimate holds

$$
((C(w), w))-|((L(w), w))| \geq-\frac{1}{2}\|w\|^{2}-K
$$

Proof. There exists a function $\xi \in C^{\infty}(\Omega)$ with the properties:

$$
\begin{aligned}
& \left.\begin{array}{l}
\xi=1 \\
\xi_{x}=\xi_{y}=0
\end{array}\right\} \text { on } \partial \Omega, \\
& |B(w ; \xi F, w)| \leq \frac{1}{2}\|w\|^{2} \quad \text { for each } v \in V
\end{aligned}
$$

/see [4], Lemma 5/.
Using the Riesz theorem we get
($\exists!\widetilde{\left.\tilde{F} F \in W_{0}^{22}(\Omega)\right)\left(\forall \gamma \in W_{0}^{2,2}(\Omega)\right) \quad(\widetilde{\xi} F, \psi)_{W_{0}^{22}}=(\xi F, \gamma)_{W_{0}^{2,2}} .}$
Since $\quad F-\widetilde{F}=\xi F-\widetilde{\xi} \widetilde{F}$, we have
$((C(w), w))-|((L(w), w))|=B(w ; R(w), w)-|B(w ; \xi F-\widetilde{\xi} F, w)| \geq$
$\geq B(w ; w, R(w))-|B(w ; \xi F, w)|-|B(w ; w, \widetilde{\xi})| \geq$
$\geq\|R(w)\|_{0}^{2}-\frac{1}{2}\|w\|^{2}-\|R(w)\|_{0} \cdot\|\widetilde{\xi} F\|_{0}=$
$=-\frac{1}{2}\|w\|^{2}+\|R(w)\|_{0}\left(\|R(w)\|_{0}-\|\tilde{\xi} F\|_{0}\right) \geq-\frac{1}{2}\|w\|^{2}-\|\tilde{\xi} F\|_{0}^{2} \quad$.
Corollary. The operator f is coercive.
Definition 4. Let X, Y be Banach spaces, $A: X \rightarrow Y$ a continuous linear mapping, $f: X \rightarrow Y$ a/nonlinear/ C^{1} map.

The mapping A is said to be a Fredholm mapping of index p if $\operatorname{Im} A$ is closed, $\operatorname{dim} \operatorname{Ker} A<\infty, \operatorname{codim} \operatorname{Im} A<\infty$ and $p=\operatorname{dim} \operatorname{Ker} A-c o d i m \operatorname{Im} A$.

The map f is said to be a Fredholm map of index p if $f^{\prime}(x)$ is a linear Fredholm mapping of index p for each $x \in X$. The map f is said to be proper if $f^{-1}(K)$ is compact whenever $K \subset Y$ is compact.

Lemma 3. The operator f is a Fredholm map of index zero.
Proof. Let weV. Since L, C are compact analytic operators, their derivatives $L^{\prime}(w), C^{\prime}(w)$ have to be compact mappings. Thus $f^{\prime}(w)=I d-L^{\prime}(w)+C^{\prime}(w)$ is the compact perturbation of the identity and hence it is a linear Fredholm mapping of index 0 .

Lemma 4. The operator f is proper.
Proof. Let KCY be compact, let us choose a sequence $\left\{w^{n}\right\} \subseteq f^{-1}(K)$. Since f is coercive, $\left\{w^{n}\right\}$ is bounded. According to Lemma 1 we may assume $\quad C\left(w^{n}\right) \rightarrow p^{1}, L\left(w^{n}\right) \rightarrow p^{2}$. Further $\left\{f\left(w^{n}\right)\right\} \subseteq K$ so that we may assume $f\left(w^{n}\right) \rightarrow p \in K$. Thus $w^{n}=f\left(w^{n}\right)-C\left(w^{n}\right)+L\left(w^{n}\right) \rightarrow p-p^{1}+p^{2}$ and hence $f^{-1}(K)$ is relatively compact. Since f is continuous, $f^{-1}(K)$ is closed.

4. MODIFIED SMALE'S THEOREM

Let X, Y be real Banach spaces, $U \subseteq X$ open, $M \subseteq U$. Let $f: U \rightarrow Y$ be a C^{\prime} map. We shall denote the restriction of f to M by f / M. Further denote $B(f / M)=\left\{x \in M ; f^{\prime}(x)\right.$ is not surjective $\}$, $O(f / M)=\left\{y \in Y ;\left(\forall x \in M \cap f^{-1}(y)\right) \quad f^{\prime}(x)\right.$ is surjective $\}=Y-I(B(f / M))$, $B(f)=B(f / U), \quad O(f)=O(f / U)$.

Then $v\left(f / M_{1}\right) \supseteq O\left(f / M_{2}\right)$ for $M_{1} \subseteq M_{2}$ and $y \in O(f / M)$ for each $y \notin(x)$.

Theorem 1. Let X, Y be real Banach spaces, $U_{1}, U_{2} \leq X$ open subsets, $U_{1} \subset U_{2}$. Let $f: U_{2} \rightarrow Y$ be a $C^{k} /$ resp. real analytic/ Fredholm map of index $p \geqslant 0, p<k$. Let $f^{-4}(K)$ be relatively compect /in $X /$ whenever $K \subset Y$ is compact.

Then the set $\mathcal{O}=\mathcal{O}\left(\mathrm{f} / \bar{U}_{1}\right)$ is a dense open subset of Y and for every $y_{0} \in \mathcal{O}$ the set $f^{-1}\left(y_{0}\right) \cap U_{1}$ is a $C^{k} / r e s p$. analytic/ manifold of dimension p. If $p=0$ the set $f^{-4}\left(y_{0}\right) \cap U_{1}$ is finite /for $y_{0} \in \mathcal{O}$.

Proof. We shall prove that the set \mathcal{O} is dense and open in Y; all remaining assertions follow from the implicit function theorem.

First we show that f is a closed mapping.
Let $Z \subseteq U_{2}$ be closed /in $X /$, let $x_{n} \in Z, f\left(x_{n}\right) \rightarrow y$.
Since $\left\{x_{n}\right\}$ is relatively compact, we may assume $x_{n} \rightarrow x \in Z$.
Then $f(x)=y, y \in f(Z)$. Consequently $f(Z)$ is closed.
Since $B\left(f / \bar{U}_{1}\right)$ is closed and f is a closed mapping, the set \mathcal{O} is open.

Let us choose $y \in Y$. Then $K=f^{-1}(y) n \bar{U}_{1}$ is compact. Let $x \in K$. By [2] /see the proof of Theorem C.1.3./ there exists a neighbourhood U_{x} of x such that the set $O\left(f / U_{x}\right)$ is dense. Let us choose $W_{x} \subset U_{x}$ a closed neighbourhood of x. Then the set $O\left(f / W_{x}\right)$ is open /since $B\left(f / W_{x}\right)$ is closed and f is a closed mapping/ and dense /since $O\left(f / W_{x}\right) \supseteq \mathcal{O}\left(f / U_{x}\right) /$. Further choose an open set V_{x} such that $x \in V_{x} \subset W_{x}$. Since $K \subseteq \bigcup_{x \in K} V_{x}$, there exists a finite set $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq K$ such that $K \subseteq \bigcup_{i=1}^{n} V_{x_{i}}$. Let us denote $G=\bigcup_{i=1}^{n} V_{x_{i}}$. Since $O\left(f / W_{x_{i}}\right)$, $i=1, \ldots, n$ is dense and open and $O(f / G) \supseteq \bigcap_{i=1}^{n} O\left(f / W_{x_{i}}\right)$, the set $O(f / G)$ is dense in Y. One can easily prove that there exists a neighbourhood \tilde{U} of y such that $\tilde{U} \cap f(\bar{U},-G)=\varnothing$. Then $\tilde{U} \cap \cup(f / G) \subseteq O$ and hence the set \mathcal{O} is dense.

Lemma 5. Let the assumptions of Thearem 1 be fulfilled. Let $U_{1}=U_{2}=X, p=0$. Then card $f^{-1}(y) / i . e$. the number of elements of the set $f^{-1}(y)$ / is constant on every connected component of 0 .

Proof. It is sufficient to prove that card $f^{-1}(y)$ is a continuous function on \mathcal{O}.
Choose $y_{0} \in \mathcal{O}$; let $f^{-1}\left(y_{0}\right)=\left\{x_{1}, \ldots, x_{N}\right\}$. By the implicit function theorem there exists an open neighbourhood 0_{i} of x_{i} $/ i=1, \ldots, N /$ such that f / O_{i} is a diffeomorphism. Thus card $f^{-1}(y)$ is a lower semicontinuous function and it remains to show that it is also upper semicontinuous.
Let us suppose $z_{n} \notin \bigcup_{i=1}^{N} O_{i}, \quad f\left(z_{n}\right) \rightarrow y_{0}$. We may assume $z_{n} \rightarrow z$. But then $f(z)=y_{0}, \quad z \notin \bigcup_{i=1}^{N} O_{i}$, which contradicts the construction of O_{i}.

5. THE STRUCTURE OF THE SOLUTION SET

Theorem 2. Let $f: V \rightarrow V$ be the mapping defined in Section 2. Then $\mathcal{O}=\mathcal{O}(f)$ is a dense open subset of V and card $f^{-1}(p)$ is finite, odd and locally constant for $p \in \mathcal{O}$.

Proof. According to Lemmas 3,4,5 and Theorem 1 it remains to prove that card $f^{-1}(p)$ is odd /for $p \in \mathcal{O}$.

Let $p \in \mathcal{O}$. For $\mu \in\langle 0,1\rangle$ we define operators

$$
f_{\mu}: V \rightarrow V: w \mapsto w+\mu(C-L)(w)
$$

By Lemma 2 there exists a constant K such that for every $w \in V$ and every $\mu \in\langle 0,1\rangle$ the following estimete holds

$$
\left(\left(f_{\mu}(w), w\right)\right) \geq \frac{1}{\gamma}\|w\|^{2}-\ddot{i}
$$

Consequently, there exists an open bounded set U in V such that $p \in U, f^{-1}(p) \subseteq U$ nd $p \notin f_{\mu}(\partial U)$ for every μ. By the homotopy invariance property of the Leray-Schauder degree we have

$$
\begin{array}{r}
\operatorname{deg}(f, U, p)=\operatorname{deg}\left(f_{1}, U, p\right)=\operatorname{deg}\left(f_{0}, U, p\right)=1 . \\
\text { Since } \operatorname{deg}(f, U, p)=\sum_{j=1}^{N} i\left(w_{j}\right), \text { where }\left\{w_{1}, \ldots, w_{N}\right\}=f^{-1}(p)
\end{array}
$$ and $i\left(w_{j}\right)= \pm 1 / j=1, \ldots, N /$, we get that $N=\operatorname{card} f^{-1}(p)$ is an odd number.

Now let us consider /instead of (1.4)/ the following boundary conditions
(5.1) $\quad \phi=\lambda \phi_{0}, \quad \phi_{n}=\lambda \phi_{1}$
$/ \lambda$ being a real number/.
The operator $f=f^{\lambda}$ connected with the boundary conditions (5.1) can be written in the form $f^{\boldsymbol{\lambda}}=I d+C^{\boldsymbol{\lambda}}-L^{\boldsymbol{\lambda}}$, where $C^{\boldsymbol{\lambda}}=C, L^{\boldsymbol{\lambda}}=\lambda L$ and C, L are operctors connected with the boundary conditions (1.4).

Let us define the following operator

$$
g: V \times E_{1} \rightarrow V:(w, \lambda) \mapsto f^{\lambda}(w)=w+C(w)-\lambda L(w) .
$$

Theorem 3.

(i) The set $\mathcal{O}_{M}=\mathcal{O}(G / V \times\langle-M, M\rangle)$ is dense and open for any $M \in E_{1}$. For every $p \in \mathcal{O}_{M}$ the set $g^{-1}(p) \cap(V \times(-M, M))$ is un anelytic relatively compact manifold of dimension 1.
(ii) $\mathcal{O}(g)$ is a residuel set. For each $p \in \mathcal{O}(g)$ the set $g^{-1}(p)$ is a 1-dimensional anelytic manifold and there exicts a discrete set $D=D(p) \subset E_{q}$ such that the equetion $f^{\lambda}(w)=p$ has only a finite number of soiutions for any. $\lambda \notin D$.

Proof.
(i) g is obviously a Fredholm map of index 1. By Lemma 2 we have

$$
\left(\left(C^{\lambda}(w), w\right)\right)-\left|\left(\left(L^{\lambda}(w), w\right)\right)\right| \geq-\frac{1}{2}| | w \|^{2}-K_{\lambda} .
$$

Thus for $|\lambda| \leq M$ we obtain

$$
((C(w), w))-|\lambda||((L(w), w))| \geq((C(w), w))-M|((L(w), w))|=
$$

$$
=\left(\left(C^{M}(w), w\right)\right)-\left|\left(\left(L^{M}(w), w\right)\right)\right| \geqslant-\frac{1}{2}\|w\|^{2}-K_{M},
$$

$$
\text { hence } g / V x\langle-M, M\rangle \text { is coercive /i.e. } \lim _{\substack{|x| \rightarrow \infty \\ x \in V x\langle-M, M\rangle}} \frac{(g(x), x)}{|x|}=+\infty \text {, }
$$

where (\cdot, \cdot) is a scalar product in $V \times E_{1}$ and $|x|=(x, x)^{\frac{1}{2}} /$. Now one can easily prove /analogously as in Lemma 4/ that g/V $\times\langle-M, M\rangle$ is proper. Using Theorem 1 with $U_{1}=V \times(-M, M)$, $U_{2}=V \times(-M-\varepsilon, M+\varepsilon), \varepsilon>0$ we get our assertion.
(ii) $\mathcal{O}(g)=\bigcap_{n=1}^{\infty} O_{n}$, hence $\mathcal{O}(g)$ is a residuel set. $g^{-1}(p)=\bigcup_{n=1}^{\infty}\left((V \times(-n, n)) \cap g^{-1}(p)\right)$, hence $g^{-1}(p)$ is 1 -dimensional analytic manifold.

Let us consider the projection $\Pi: g^{-\boldsymbol{\gamma}}(\mathrm{p}) \rightarrow \mathrm{E}_{\mathrm{p}}:(\mathbf{w}, \boldsymbol{\lambda}) \longmapsto \boldsymbol{\lambda}$. Π is an enalytic map, Π is proper. Using [9] for the maps of the form $\Pi \circ \Lambda /$ where $\Lambda: E_{1} \rightarrow g^{-1}(p)$ is a local description of the manifold $g^{-1}(p)$ / we get that the set $D=E_{1}-\mathcal{O}(\Pi)$ is discrete. Our assertion now follows from the implicit function theorem.

Remark 1. The problem $g(w, \lambda)=p$ is often studied in the bifurcetion theory. Theorem 3 shows that for generic p there is no bifurcation /cf. [7]/.

Remark 2. Let us choose $p_{0} \in V$ and define the operator $h: V \times E_{1} \times E_{1} \rightarrow V:(w, \lambda, \mu) \longmapsto g(w, \lambda)+\mu p_{0} \quad$.

Analogously as in Theorem 3 we get that $\mathcal{O}(h)$ is a reaidual set, for each $p \in \mathcal{O}(h)$ the set $h^{-1}(p)$ is an analytic manifold of dimension 2 and $h^{-1}(p) \cap(V \times K)$ is compact if $K \subset E_{1} \times E_{1}$ is compact. Let us define the projection

$$
\Pi: n^{-1}(p) \rightarrow E_{1}: \quad(w, \lambda, \mu) \longmapsto \mu
$$

Then the set $E_{1}-\mathcal{O}(\Pi)$ is discrete and for each $\mu \in \mathcal{O}(\Pi)$ the set $g^{-1}\left(p+\mu p_{0}\right)$ is an analytic manifold of dimension 1 :

Let $p \notin \mathcal{O}(h)$. If there exists $\tilde{\mu} \in E_{1}$ such that $p+\tilde{\mu} p_{0} \in \mathcal{O}(h)$, then we can repeat our considerations and we get again that $g^{-1}\left(p+\mu p_{0}\right)$ is an analytic manifold for generic μ.

6. THE SINGULAR SET B

Theorem 4. The set $B=B(f)$ is nowhere dense.
Proof. Since \mathcal{O} is nonempty and f is surjective, there exists $w_{o} \notin B$. Choose $w \in V$ and define /for $x \in E_{1}$ / $T(x)=L-C^{\prime}\left(w_{0}+x\left(w-w_{0}\right)\right) \quad$.
Obviously
$w_{0}+\partial e\left(w-w_{0}\right) \in B \quad 1$ is an eigenvalue of $T(\partial)$. T is on analytic mapping of E_{1} into the set of compact linear mappings on V and I is not an eigenvalue of the operator $T(0)$. By [5]/Theorem VII.1.9/ the set

$$
\left\{\partial \in E_{1} ; 1 \text { is an eigenvalue of } T(\not x)\right\}
$$

is discrete. Thus B is nowhere dense.
Corollary. The set $f^{-1}(f(B))$ is nowhere dense.

Proof. Choose $w \in V$ and its open neighbourhood U. Since B is nowhere dense, there exists $\nabla \in U-B$. By the implicit function theorem there exists on open neighbourhood \tilde{U} of $v / \tilde{U} \leftrightarrows U /$ such that f / \tilde{U} is a diffeomorphism. Since $f(\tilde{U})$ is open, there exists $p \in f(\check{U}) \cap 0$. Let $z \in f^{-1}(p) \cap \tilde{U}$. Then $z \& f^{-1}(f(B))$ and $z \in U$.

Remark 3. If the operator (Id-L) is invertible then Theorem 4 can be proved in an elementary way:
We have $\quad f^{\prime}(\lambda w)=I d-L+\lambda^{2} C^{\prime}(w)$, consequently

$$
\begin{aligned}
& \lambda w \in B \quad \Longleftrightarrow(\exists v \neq 0) \quad(I d-L) v+\lambda^{2} c^{\prime}(w) v=0 \\
& \Longleftrightarrow(\exists v \neq 0) \quad v+\lambda^{2}(I d-L)^{-1} c^{\prime}(w) v=0 \\
& \Longleftrightarrow-\frac{1}{\lambda^{2}} \text { is an eigenvelue of }(I d-L)^{-1} C^{\prime}(w) . \\
& \text { Since }(I d-L)^{-1} C^{\prime}(w) \text { is compact, the set }\left\{\lambda \in E_{1} ; \lambda w \in E\right\} \text { is }
\end{aligned}
$$ discrete.

REFERENCES

[1] Franců J.: On Signorini problem for von Kármán equations /The case of angular domain/. Aplikace matematiky 24 (1979), 355-371.
[2] Geba K.: "The Leray Schauder degree and framed bordism" in La théorie des points fixes et ses applications à l'enalyse. Séminaire de Mathématiques Supérieures 1973, Presses de l'Université de Montreal 1975.
[3] Hlavácek I., Naumann J.: Inhomogeneous boundary value problems for the von Kármán equations, I. Aplikace matematiky 19 (1974), 253-269.
[4] John O., Nečas J.: On the solvability of von Karman equations. Aplikace matematiky 20 (1975), 48-62.
[5] Kato T.: Perturbation theory for linear operators. Springer-Verlag, Berlin - Heidelberg - New York, 1980.
[6] Nečas J.: Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967.
[7] Saut J.C., Temam R.: Generic properties of Navier-Stokes equations: genericity with respect to the boundary values. Indiana Univ. Math. J. 29 (1980), 427-446.
[8] Smale S.: An infinite dimensional version of Sard's theorem. Amer. J. Math. 87 (1965) , 861-866.
[9] Soucek J., Souxek V.: The Morse Sard theorem for real analytic functions. Comment. Math. Univ. Carolinae 13 (1972), 45-51.

Author's address: Pavol Quittner, Matematicko-fyzikáni Pakulta KU, Sokolovská 83, 18600 Praha 8.
(Oblatum 4.2. 1982)

